Site programming by Marcin Junczys-Dowmunt



 
 
 
W innych językach: English | Deutsch

Matcog

From Zakład Logiki Stosowanej

(Różnice między wersjami)
Wersja z dnia 07:29, 18 maj 2016 (edytuj)
Pogonowski (Dyskusja | wkład)
(Poznanie matematyczne)
← Poprzednia edycja
Wersja z dnia 18:03, 21 lut 2017 (edytuj) (undo)
Pogonowski (Dyskusja | wkład)
(Tematy wykładów)
Następna edycja →
Linia 22: Linia 22:
==Tematy wykładów== ==Tematy wykładów==
 +
 +* 0. [[Media: pozmat00.pdf | Wprowadzenie]]
* 1. Przełomowe idee w matematyce (do 1800 roku) * 1. Przełomowe idee w matematyce (do 1800 roku)

Wersja z dnia 18:03, 21 lut 2017

Spis treści

CV | Badania | Posługa dydaktyczna | Publikacje | Teksty on line


Poznanie matematyczne

Planowany wykład fakultatywny dla studentów kognitywistyki UAM.

Syllabus

Tematy wykładów

  • 1. Przełomowe idee w matematyce (do 1800 roku)
  • 2. Rewolucja strukturalna w wieku XIX
  • 3. Informacja o wybranych działach matematyki współczesnej
  • 4. Praktyka badawcza: ustalanie standardów
  • 5. Praktyka badawcza: wyznaczanie granic badawczych
  • 6. Praktyka badawcza: wielkie programy
  • 7. Filozofia matematyki: stanowiska tradycyjne
  • 8. Filozofia matematyki: odmiany empiryzmu
  • 9. Filozofia matematyki: ontologia i epistemologia matematyki
  • 10. Ujęcia kognitywne: zdolności numeryczne
  • 11. Ujęcia kognitywne: matematyka ucieleśniona - ustalenia i hipotezy
  • 12. Ujęcia kognitywne: matematyka ucieleśniona - polemika
  • 13. Ujęcia kognitywne: matematyka osadzona w kulturze
  • 14. Ujęcia kognitywne: matematyka, świat, umysł
  • 15. Wyzwania dla dydaktyki matematyki