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Herbrand’s Theorem and

Alternative Semantics

Computational Logic Lecture 7

Tim Hinrichs and Mike Genesereth                        Autumn 2006
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Propositional Interpretations

For a language with n constants, there are 2n interpretations.
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Relational Interpretations

    |i|      a  b  r
{!,!}      !  ! {}
{!,!}      !  ! {!}

{!,!}      !  ! {!}

{!,!}      !  ! {!, !}

{!,!}      !  ! {}
{!,!}      !  ! {!}

{!,!}      !  ! {!}

{!,!}      !  ! {!, !}

{!,!}      !  ! {}
{!,!}      !  ! {!}

{!,!}      !  ! {!}

{!,!}      !  ! {!, !}

       . . .

Infinitely many interpretations.

4

Logical Entailment

A set of premises logically entails a conclusion if and

only if every interpretation that satisfies the premises

also satisfies the conclusion.

In the case of Propositional Logic, the number of

interpretations is finite, and so it is possible to check

logical entailment directly in finite time.

In the case of Relational Logic, the number of

interpretations is infinite, and so a direct check of

logical entailment is not feasible.
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Good News

Given any set of sentences, there is a special subset

of interpretations called Herbrand interpretations.

Under certain conditions, checking just the

Herbrand interpretations suffices to determine

logical entailment.

Since there are fewer Herbrand interpretations than

interpretations in general, checking just the

Herbrand interpretations is less work than checking

all interpretations.
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HHHHerbrand

The Herbrand universe for a set of sentences in

Relational Logic (with at least one object constant) is

the set of all ground terms that can be formed from

just the constants used in those sentences. If there are

no object constants, then we add an arbitrary object

constant, say a.

The Herbrand base for a set of sentences is the set of

all ground atomic sentences that can be formed using

just the constants in the Herbrand universe.
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Herbrand Interpretation

A Herbrand interpretation for a function-free

language is an interpretation in which (1) the universe

of discourse is the Herbrand universe for the language

and (2) each object constant maps to itself.

    |i|={a,b}

    i(a) = a

    i(b) = b

    i(r) = {!a,a", !a,b"}

8

Herbrand Interpretations

   |i|  a  b  r

{a,b}  a  b {}
{a,b}  a  b {!a,a"}
{a,b}  a  b {!a,b"}
{a,b}  a  b {!b,a"}
{a,b}  a  b {!b,b"}
{a,b}  a  b {!a,a", !a,b"}
{a,b}  a  b {!a,a", !b,a"}
{a,b}  a  b {!a,a", !b,b"}
{a,b}  a  b {!a,b", !b,a"}
{a,b}  a  b {!a,b", !b,b"}
{a,b}  a  b {!b,a", !b,b"}
{a,b}  a  b {!a,a", !a,b", !b,a"}
{a,b}  a  b {!a,a", !a,b", !b,b"}
{a,b}  a  b {!a,a", !b,a", !b,b"}
{a,b}  a  b {!a,b", !b,a", !b,b"}
{a,b}  a  b {!a,a", !a,b", !b,a", !b,b"}
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Herbrand Theorem

Herbrand Theorem: A set of quantifier-free sentences

in Relational Logic is satisfiable if and only if it has a

Herbrand model.

Construction of Herbrand model h given i.

The model assigns every object constant to itself.

The interpretation for relation constant ! is the set of

all tuples of object constants "1 ,…, "n such that i

satisfies the sentence !("1 ,…, "n).

10

Example

Interpretation

    |i|={!, !}

    i(a) = !

    i(b) = !

    i(r) = {!!,!", !!,!"}

Herbrand Base

    {r(a,a), r(a,b), r(b,a), r(b,b)}

Herbrand Interpretation

    |i|={a,b}

    i(a) = a

    i(b) = b

    i(r) = {!a,b", !b,b"}
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Example

Interpretation

    |i|={!, !, "}

    i(a) = !

    i(b) = !

    i(r) = {!!,!", !!,!", !",!"}

Herbrand Base

    {r(a,a), r(a,b), r(b,a), r(b,b)}

Herbrand Interpretation

    |i|={a,b}

    i(a) = a

    i(b) = b

    i(r) = {!a,b", !b,b"}
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Herbrand Theorem

Herbrand Theorem: A set of quantifier-free sentences

is satisfiable if and only if it has a Herbrand model that

satisfies it.

Proof.  Assume the set of sentences contains at least one object constant.  If a

set of quantifier-free sentences is satisfiable, then there is a model that

satisfies it.  Take the intersection of this model with the Herbrand base. By

definition, this is a Herbrand model.  Moreover, it is easy to see that it

satisfies the sentences. If the sentences are ground, it must agree with the

original interpretation on all of the sentences, since they are all ground and

mention only the constants common to both interpretations.  If the sentences

contain variables, the instances must all be true, including those in which the

variables are replaced only by elements in the Herbrand universe.

If there is no object constant, then create a tautology involving a new

constant (say a) and add to the set.  This does not change the satisfiability of

the sentences but satisfies proof above. QED
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Utility of Herbrand’s Theorem

# |= $ if and only if # % {¬$} is unsatisfiable.

Skolemization is a process than converts any set of

sentences in relational logic into a set of quantifier-free

sentences while preserving satisfiability.  (See the

upcoming lectures.)

Herbrand Theorem: A set of quantifier-free sentences

is satisfiable if and only if it has a Herbrand model that

satisfies it.

# |= $ if and only if skolem[# % {¬$}] has no

Herbrand models. (See upcoming lectures.)
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Computational Logic for Computer Scientists

Computational Logic is concerned with algorithms for

automatically processing logic.  The consumers of

those algorithms are usually mathematicians or

computer scientists.

Relational logic is good for mathematicians who must

contend with uncountable infinities.

Computer scientists are chiefly concerned with

representing, manipulating, and analyzing a finite

machine operating in discrete steps for an arbitrary

amount of time.  Countably infinite is big enough!
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A Logic for Computer Scientists

Logic is used throughout computer science.

Examples:

Database theory

Logic programming

Constraint satisfaction

Formal verification

All of these can be defined in a single logic.

That logic is more intuitive than relational logic, and it

can be used to represent more of the problems

computer scientists care about.
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Herbrand Logic

Logic = Syntax + Semantics

Herbrand logic has the same syntax as relational logic,

but the semantics are different.

The only interpretations that exist are the Herbrand

interpretations.

A set of premises logically entails a conclusion if and

only if every Herbrand interpretation that satisfies the

premises also satisfies the conclusion.
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Example

Premises: Conclusion:

p(a)  #x.p(x)

Relational Logic: counterexample

    |i|={!, !}

    i(a) = !

    i(p) = {!}

Herbrand Logic: entailed              Interpretations

    Herbrand universe: a               {}
    Herbrand base: p(a)                 {p(a)}

18

Finite Herbrand Logic

Without function constants, the Herbrand universe is

always finite.

Finite Herbrand Logic (FHL) is the special case of

Herbrand Logic where there are no function constants.

Finite Herbrand Logic has exactly the same expressive

power as propositional logic:  every set of

propositional sentences can be represented by a set of

FHL sentences, and every set of FHL sentences can be

represented by a set of propositional sentences.
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Example

Finite Herbrand: q(b) $ q(c)

%x. p(x)

¬p(a)

Grounded FHL: q(b) $ q(c)

p(a) & p(b) & p(c)

¬p(a)

Propositional: s $ u

p & q & r

¬p

20

Interpretation Sizes in Herbrand Logic

In FHL, all the interpretations have a universe of a

fixed size: the number of object constants.

When the vocabulary includes at least one function

constant and one object constant, there are infinitely

many ground terms.  Every interpretation has an

infinite universe.

In HL, there are either infinite interpretations or finite

interpretations but never both.
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Example

Premises: p(a) Conclusion:

p(f(a))  #x.p(x)

p(f(f(a)))

…

Relational Logic: counterexample

    |i|={!, !}

    i(a) = !

    i(f) = {!!" & !, !!" & ! }
    i(p) = {!!"}

Herbrand Logic: entailed

    Herbrand universe: a, f(a), f(f(a)), …

    Herbrand base: p(a), p(f(a)), p(f(f(a))), …

22

Compactness

Compactness: A set of sentences is unsatisfiable if and

only if there is some finite subset that is unsatisfiable.

Theorem: Herbrand logic is not compact.

Proof: 'x. ¬p(x)

 p(a)

 p(f(a))

 p(f(f(a)))

 …

Theorem: Relational logic is compact.



12

23

Example

Premises: Conclusion:

p(a)  #x.p(x)

p(x) $ p(f(x))

Relational Logic: counterexample

    |i|={!, !}

    i(a) = !

    i(f) = {!!" & !, !!" & ! }
    i(p) = {!!"}

Herbrand Logic: entailed

    Herbrand universe: a, f(a), f(f(a)), …

    Herbrand base: p(a), p(f(a)), p(f(f(a))), …

24

Induction

Mathematical Induction:

      To prove (n.p(n),

prove the base case, e.g. p(a)

prove the inductive case, e.g. (x.(p(x))p(f(x)))

The semantics of Herbrand logic justify using

induction to prove entailment.

The semantics of Relational logic DO NOT justify

using induction to prove entailment.

A lecture later in the course is devoted entirely to proof

by induction.



13

25

Entailment Comparison

Entailment in Herbrand logic and entailment in

relational logic give different results.

Every sentence entailed in relational logic is still

entailed in Herbrand logic.

There are sentences entailed in Herbrand logic that are

not entailed in relational logic.

Reln

Herbrand

Consequences of

a set of axioms:

26

Computability

A problem can be categorized based on the type of

algorithms that exist for solving it.

Decidable: There is an algorithm that halts and either

returns a solution or states there is no solution.

Semi-decidable: There is an algorithm that halts and

returns a solution when there is one.

Not semi-decidable: There is no algorithm guaranteed

to find a solution.
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Computability of Entailment

A set of premises logically entails a conclusion if and

only if every interpretation that satisfies the premises

also satisfies the conclusion.

Propositional Logic: decidable

Enumerate the possible models and check.

Relational Logic: semi-decidable

Proof by Goedel

Herbrand Logic: not semi-decidable

28

Reductions

Prove that entailment in Herbrand logic is not semi-
decidable.

Find a problem that is not semi-decidable.

Encode the problem as an entailment query in
Herbrand logic.

Answering the entailment query must then be at least
as difficult as solving a problem that is not semi-
decidable.
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Diophantine Equations

P(x1,…,xn) represents a polynomial with n variables.

For example,

P(x,y,z) might stand for 4x2y3 + 7y4z2

The following problem is semi-decidable.

Is there an integral solution to P(x1,…,xn) = 0?

Since solving a Diophantine is semi-decidable and not
decidable, the following problem is not semi-
decidable.

Is there no integral solution to P(x1,…,xn) = 0?

30

Encoding the Natural Numbers

Natural numbers: 0, 1, 2, 3, …

Represent the natural numbers in unary:

0, s(0), s(s(0)), s(s(s(0))), …

Define a relation that includes all the natural numbers.

num(0)

num(x) $ num(s(x))
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Encoding Addition

Instead of writing x + y = z, we write sum(x, y, z)

Base case:

x + 0 = x

sum(x, 0, x)

Recursive case:

x + y = z  $  (x+1) + y = (z+1)

sum(x, y, z) $ sum(s(x), y, s(z))

32

Encoding Multiplication

Instead of writing x * y = z, we write product(x, y, z)

Base case:

     x * 0 = 0

     product(x, 0, 0)

Recursive case:

     (x * y = z) ^ (z + y = w) $  (x+1) * y = w

     product(x, y, z) ^ sum(z, y, w) $ product(s(x), y, w)
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Encoding a Polynomial: 2x2 + y2z

2x2 can be written as (2*x)=w and w*x=t1

    '(x,t1):

%w. (product(s(s(0)), x, w) ^ product(w,x,t1))

y2z can be written as (y*y)=u and u*z=t2
    ((y,z,t2):

%u.(product(y,y,u) ^ product(u,z,t2))

2x2 + y2z = t uses the last two formulas

    !(x,y,z,t):

%t1t2. ('(x,t1) ^ ((y,z,t2) ^ sum(t1, t2, t))

34

Diophantine Equations

Is there an integral solution to 2x2 + y2z = 0?

 %xyz. !(x,y,z,0)

Is there no solution to the equation 2x2 + y2z = 0?

 #xyz. ¬!(x,y,z,0)
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Upshot

In Herbrand logic, we have demonstrated how to
encode a problem that is not semi-decidable.

#xyz. ¬!(x,y,z,0)

Theorem: Entailment in Herbrand logic is therefore not
semi-decidable.

36

Relational Logic

Is there no integral solution to !(x,y,z,0)?

In relational logic, the following sentence DOES NOT
encode this problem.

#xyz. ¬!(x,y,z,0)

Why? In relational logic, the# quantifier includes the

real numbers.
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Some Good News

Theorem: (*.# |= '*.$ in Herbrand logic if and only if

it holds in relational logic.

Corollary: (*.# |= '*.$ is semi-decidable in HL.

Notation:

   (*.#: after pushing all the quantifiers in # to the

   front (prenex form), every quantifier is a (.

   '*.$: after pushing all the quantifiers in $ to the

             front, every quantifier is a '.

38

More Bad News

Corollary: Whether a set of sentences is satisfiable in

Herbrand logic is not semi-decidable.

The theory of integer arithmetic, i.e. the natural

numbers and 0, 1, +, *, < is finitely axiomatizable in

Herbrand logic.

More Good News
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Significance

There is no algorithm for determining whether # |= $
in Herbrand logic.

There is no algorithm for determining whether # |# $
in Herbrand logic.

In the general case, there is no algorithm for

automatically answering entailment queries either

positively or negatively.

ATP in Herbrand logic relies on analyzing # and $ and

taking advantage of special cases.

40

Herbrand and Relational Logic

FiniteNot r.e.Arithmetic

NoYesCompact

Not SemiNot Semi|#

DecidableSemiNo functions

SemiSemi(* |= '*

Not SemiSemi(* |= (*

Not SemiSemi|=

HerbrandRelationalFragment
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Finite Relational Logic

Finite Herbrand logic is decidable, but Herbrand logic

in general is not semi-decidable.

Infinite models were the source of all the trouble in

Herbrand logic.

Finite Relational Logic (FRL) has the same syntax as

relational logic.  An interpretation has the same

definition as in relational logic, except the universe is

always finite.

42

Example

Dense linear order:

#xy.(x < y $ %y. (x < z ) z < y))

#x. ¬(x < x)

#xy.(x * y $ x < y & y < x)

Relational logic: satisfiable

    |i| = rational numbers

    i(<) = usual ordering

Finite relational logic: unsatisfiable
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Entailment Comparison

Entailment in finite relational logic and entailment in

relational logic give different results.

Every sentence entailed in relational logic is still

entailed in finite relational logic.

There are sentences entailed in finite relational logic

that are not entailed in relational logic.

Reln

FRL

Consequences of

a set of axioms:

44

Isomorphic Finite Interpretations

Two interpretations are isomorphic if and only if they

satisfy all the same sentences.

Consider the class C of all finite interpretations where the

universe is a subset of the natural numbers.

Every finite interpretation of size n is isomorphic to one

of the interpretations in C where the universe is {1,…,n}.

In Finite Herbrand logic, a set of premises logically

entails a conclusion if and only if every interpretation in

C that satisfies the premises also satisfies the conclusion.
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Example

Finite interpretation

    |i|={!, !}

    i(a) = !
    i(f) = {!!" & !, !!" & ! }
    i(p) = {!!"}

Interpretation where universe is a subset of the natural
numbers.

    |i|={1, 2}

    i(a) = 1
    i(f) = {!1" & 2, !2" & 2 }
    i(p) = {!1"}
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Satisfaction, Limited Satisfiability, Satisfiability

Satisfaction: Given an interpretation I and a sentence $,

does I satisfy $?

Limited Satisfiability: Given a sentence $ and a positive

integer n, is $ satisfied by some model of size n?

In finite relational logic, satisfaction and limited
satisfiability are decidable.

Theorem: Given a finite set of sentences #, determining
whether # is satisfiable is semi-decidable.
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Trakhtenbrot’s Theorem

Trakhtenbrot’s Theorem: Entailment in finite relational

logic is not semi-decidable.

Proof: Reduction using the halting problem shows that

satisfiability in finite relational logic is undecidable.

Corollary: Satisfaction in finite relational logic is

undecidable.

48

General Problem

The number of finite models can be very large.

n objects

m k-ary relation constants

Number of k-ary tuples: nk

Number of k-ary relations: 2^nk

Number of interpretations: (2^nk)^m

10 objects

3 2-ary relation constants

Number of k-ary tuples: 100

Number of k-ary relations: 2100

Number of interpretations: 2300
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Summary

Not possibleFiniteNot r.e.Arithmetic

NoNoYesCompact

Not Semi

Not Semi

Decidable

Not Semi

Semi

Herbrand

Semi

Not Semi

Finite

Not Semi|#

SemiNo functions

Semi(* |= '*

Semi(* |= (*

Semi|=

RelationalFragment

Herbrand’s theorem: A set of quantifier-free sentences is

satisfiable if and only if it has a Herbrand model that

satisfies it.
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Expressiveness Comparison

Consequences of

a set of axioms:

Reln

FRL FHL

=

Prop

HL

FHL: Finite Herbrand

Prop: Propositional

Reln: Relational

FRL: Finite Relational

HL:   Herbrand


