Computability Theory (ATC-CT)

Recursion theorem and Rice's theorem

Stefan Dantchev

VII

Recursion Theorem

Theorem. Let $g\left(z, x_{1}, x_{2}, \ldots x_{m}\right)$ be a partially computable function. Then there is a number e such that

$$
\Phi_{e}^{(m)}\left(x_{1}, x_{2}, \ldots x_{m}\right)=g\left(e, x_{1}, x_{2}, \ldots x_{m}\right)
$$

What does it mean? Given g, we need to produce a "program" e that computes g in the following weird way: all except one inputs of g are supplied. The program e must compute the missing input so that it coincides with its own "source code"!

Naive attempt to prove the theorem: The program e can have the number e built in. Does not work as any number that can be built into a program is smaller than the program's Gödel number!

Recursion Theorem

Proof: The program P with \# $(P)=e$ must contain some "partial description" of itself built-in, so that it can recover its own Gödel number, e, from that description.

Let Q be the following program:

$$
\begin{aligned}
Z & \leftarrow S_{m}^{1}\left(X_{m+1}, X_{m+1}\right) \\
Y & \leftarrow g\left(Z, X_{1}, X_{2}, \ldots X_{m}\right) .
\end{aligned}
$$

Now, the program \mathscr{P} will consists of $\#(Q)$ copies of the instruction $X_{m+1} \leftarrow X_{m+1}+1$, followed by the program Q.

After having executed the first $\#(Q)$ increments as well as the instruction $Z \leftarrow$ $S_{m}^{1}\left(X_{m+1}, X_{m+1}\right), Z$ holds the Gödel number of the program consisting of \# (Q) copies of the instruction $X_{m+1} \leftarrow X_{m+1}+1$ followed by the program Q (all this is because $X_{m+1}=\#(Q)$ at that stage). But this is exactly the program \mathcal{P} !

Recursion Theorem

Proof (the real one, without programs): Consider the partially computable function

$$
g\left(S_{m}^{1}(v, v), x_{1}, x_{2}, \ldots x_{m}\right)
$$

We have a number z_{0} such that

$$
\begin{aligned}
g\left(S_{m}^{1}(v, v), x_{1}, x_{2}, \ldots x_{m}\right) & =\Phi^{(m+1)}\left(x_{1}, x_{2}, \ldots x_{m}, v, z_{0}\right) \\
& =\Phi^{(m)}\left(x_{1}, x_{2}, \ldots x_{m}, S_{m}^{1}\left(v, z_{0}\right)\right) \\
& =\Phi_{S_{m}^{1}\left(v, z_{0}\right)}^{(m)}\left(x_{1}, x_{2}, \ldots x_{m}\right)
\end{aligned}
$$

Now set $v=z_{0}$ and $e=S_{m}^{1}\left(z_{0}, z_{0}\right)$.

Applications

Corollary. (Quine) There is a number e such that for all x

$$
\Phi_{e}(x)=e .
$$

Take $g(z, x)$ in the statement of the Recursion theorem to be $u_{1}^{2}(z, x)=z$.
Theorem. (Fixed Point) Let $f(z)$ be a computable function. There is a number e such that

$$
\Phi_{f(e)}(x)=\Phi_{e}(x)
$$

for all x.
Let $g(z, x)=\Phi_{f(z)}(x)$.

Rice's Theorem

Theorem. (Rice) Let Γ be a collection of partially computable functions of one variable such that there exist two partially computable functions $f(x)$ and $g(x)$ with $f(x) \in \Gamma$ but $g(x) \notin \Gamma$. Then the characteristic function of Γ, R_{Γ} is not recursive.

What does it mean? If Γ is a non-trivial property of functions, then Γ is undecidable.
Definition. (Index Set) $R_{\Gamma}=\left\{t \in \mathbb{N} \mid \Phi_{t} \in \Gamma\right\}$.
Note that Γ is a set of functions while R_{Γ} is a set of programs. (Informally: a function has many, in fact infinitely many, implementations).

Rice's Theorem

Proof: We will construct a recursive function $\varphi(i)$ such that

$$
i \in K \text { if and only if } \varphi(i) \in R_{\Gamma} \text { for all } i \in \mathbb{N}
$$

(here $K={ }^{\text {def }}\left\{x \mid \Phi_{x}(x) \downarrow\right\}$).
If R_{Γ} were recursive, K would be recursive, too - a contradiction (revisit the proof of Undecidability of the Halting Problem).

Denote by $h(x)$ the function that is defined nowhere, i.e. $h(x) \uparrow$ for all x. Consider two cases:

Rice's Theorem

1. $h(x) \notin \Gamma$. Consider the following program

$$
\begin{aligned}
Z & \leftarrow \Phi\left(X_{2}, X_{2}\right) \\
Y & \leftarrow f\left(X_{1}\right)
\end{aligned}
$$

and denote its Gödel number by q.

$$
\begin{aligned}
& \quad i \in K \Rightarrow \Phi(i, i) \downarrow \Rightarrow \Phi^{(2)}(x, i, q)=f(x) \text { for all } x \Rightarrow \Phi^{(1)}\left(x, S_{1}^{1}(i, q)\right)=f(x) \text { for all } x \Rightarrow \\
& \Phi_{S_{1}^{1}(i, q)}(x)=f(x) \text { for all } x \Rightarrow S_{1}^{1}(i, q) \in R_{\Gamma} . \\
& \quad i \notin K \Rightarrow \Phi(i, i) \uparrow \Rightarrow \Phi^{(2)}(x, i, q)=h(x) \text { for all } x \Rightarrow \Phi^{(1)}\left(x, S_{1}^{1}(i, q)\right)=h(x) \text { for all } x \Rightarrow \\
& \Phi_{S_{1}^{1}(i, q)}(x)=h(x) \text { for all } x \Rightarrow S_{1}^{1}(i, q) \notin R_{\Gamma} .
\end{aligned}
$$

2. $h(x) \in \Gamma$. Apply the same argument as in the previous case to $\bar{\Gamma}$ instead of Γ and $g(x)$ instead of $f(x)$. Conclude that \bar{R}_{Γ} is not recursive.
