Computability Theory (ATC-CT)

Recursion theorem and Rice's theorem

Stefan Dantchev

VII

Recursion Theorem

Theorem. Let $g(z, x_1, x_2, ..., x_m)$ be a partially computable function. Then there is a number *e* such that

$$\Phi_e^{(m)}(x_1,x_2,\ldots,x_m)=g(e,x_1,x_2,\ldots,x_m)$$

What does it mean? Given g, we need to produce a "program" e that computes g in the following weird way: all except one inputs of g are supplied. The program e must compute the missing input so that it coincides with its own "source code"!

Naive attempt to prove the theorem: The program *e* can have the number *e* built in. **Does not work** as **any number** that can be **built into a program** is **smaller than** the program's **Gödel number**!

Recursion Theorem

Proof: The program \mathcal{P} with #(P) = e must contain some "partial description" of itself built-in, so that it can recover its own Gödel number, *e*, from that description.

Let Q be the following program:

$$egin{array}{rcl} Z &\leftarrow & S^1_m(X_{m+1},X_{m+1}) \ Y &\leftarrow & g\left(Z,X_1,X_2,\ldots X_m
ight). \end{array}$$

Now, the program \mathcal{P} will consists of #(Q) copies of the instruction $X_{m+1} \leftarrow X_{m+1} + 1$, followed by the program Q.

After having executed the first #(Q) increments as well as the instruction $Z \leftarrow S_m^1(X_{m+1}, X_{m+1})$, Z holds the Gödel number of the program consisting of #(Q) copies of the instruction $X_{m+1} \leftarrow X_{m+1} + 1$ followed by the program Q (all this is because $X_{m+1} = \#(Q)$ at that stage). But this is exactly the program \mathcal{P} !

Recursion Theorem

Proof (the real one, without programs): Consider the partially computable function

$$g\left(S_m^1(v,v), x_1, x_2, \ldots x_m\right).$$

We have a number z_0 such that

$$g(S_m^1(v,v), x_1, x_2, \dots x_m) = \Phi^{(m+1)}(x_1, x_2, \dots x_m, v, z_0)$$

= $\Phi^{(m)}(x_1, x_2, \dots x_m, S_m^1(v, z_0))$
= $\Phi^{(m)}_{S_m^1(v, z_0)}(x_1, x_2, \dots x_m).$

Now set $v = z_0$ and $e = S_m^1(z_0, z_0)$.

Applications

Corollary. (Quine) There is a number *e* such that for all *x*

$$\Phi_e(x) = e.$$

Take g(z,x) in the statement of the Recursion theorem to be $u_1^2(z,x) = z$.

Theorem. (Fixed Point) Let f(z) be a computable function. There is a number *e* such that

$$\Phi_{f(e)}(x) = \Phi_{e}(x)$$

for all x.

Let $g(z, x) = \Phi_{f(z)}(x)$.

Theorem. (Rice) Let Γ be a collection of partially computable functions of one variable such that there exist two partially computable functions f(x) and g(x) with $f(x) \in \Gamma$ but $g(x) \notin \Gamma$. Then the characteristic function of Γ , R_{Γ} is not recursive.

What does it mean? If Γ is a non-trivial property of functions, then Γ is undecidable.

Definition. (Index Set) $R_{\Gamma} = \{t \in \mathbb{N} | \Phi_t \in \Gamma\}$.

Note that Γ is a set of functions while R_{Γ} is a set of programs. (Informally: a function has many, in fact infinitely many, implementations).

Proof: We will construct a *recursive function* $\phi(i)$ such that

 $i \in K$ if and only if $\phi(i) \in R_{\Gamma}$ for all $i \in \mathbb{N}$

(here $K = {}^{def} \{ x | \Phi_x(x) \downarrow \}).$

If R_{Γ} were recursive, *K* would be recursive, too - a contradiction (revisit the proof of Undecidability of the Halting Problem).

Denote by h(x) the function that is defined nowhere, i.e. $h(x) \uparrow$ for all x. Consider two cases:

1. $h(x) \notin \Gamma$. Consider the following program

 $Z \leftarrow \Phi(X_2, X_2)$ $Y \leftarrow f(X_1)$

and denote its Gödel number by q.

 $i \in K \Rightarrow \Phi(i,i) \downarrow \Rightarrow \Phi^{(2)}(x,i,q) = f(x) \text{ for all } x \Rightarrow \Phi^{(1)}(x,S_1^1(i,q)) = f(x) \text{ for all } x \Rightarrow \Phi_{S_1^1(i,q)}(x) = f(x) \text{ for all } x \Rightarrow S_1^1(i,q) \in R_{\Gamma}.$

 $i \notin K \Rightarrow \Phi(i,i) \uparrow \Rightarrow \Phi^{(2)}(x,i,q) = h(x) \text{ for all } x \Rightarrow \Phi^{(1)}(x,S_1^1(i,q)) = h(x) \text{ for all } x \Rightarrow \Phi_{S_1^1(i,q)}(x) = h(x) \text{ for all } x \Rightarrow S_1^1(i,q) \notin R_{\Gamma}.$

2. $h(x) \in \Gamma$. Apply the same argument as in the previous case to $\overline{\Gamma}$ instead of Γ and g(x) instead of f(x). Conclude that \overline{R}_{Γ} is not recursive. \Box