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1. Introduction. As part of an increased attention to issues in the philosophy of mathematical 

practice there has been a renewed interest in the spectrum of justification strategies for 

mathematical axioms. In a recent and ongoing debate (Feferman et al. 2000, Easwaran 2008) 

different methodological principles underlying the practice of axiom choice have been 

discussed that are supposed to explain the reasoning involved in the introduction of new 

axioms (such as the case of large cardinal axioms (Feferman 1999)) as well as to clarify 

informal justification methods found in the history of mathematical axiomatics (see Maddy 

1997). 

My attempt in this paper is to take up and extend this discussion by drawing to a historical 

episode from early axiomatic set theory centered around Abraham Fraenkel’s axiom of 

restriction (Beschränktheitsaxiom) (in the following AR). The paper is structured as follows: 

After a brief overview of different theories of axiom justification I will specifically focus on a 

model presented by Maddy 1999 in which the distinction between “intrinsic” and “extrinsic” 

arguments for the acceptance of an axiom plays a fundamental role. Her approach will be 

discussed in greater detail for the specific case of the Fraenkel’s axiom candidate. As will be 

shown, Fraenkel develops different lines of argumentation for it that only partially fit 

Maddy’s account of extrinsic justification. His main intention behind the axiom grounds on a 

metatheoretical consideration, i.e. to restrict the set theoretic universe to what can be termed 

his intended model, thereby rendering his axiom system categorical. I will give a detailed 

presentation of different proposed versions of AR as well as of the evolution of Fraenkel’s 

informal arguments for it from 1922 onward. Further, I will highlight the intellectual 

background in which the axiom is developed and argue that Fraenkel implicitly draws on 

Dedekind’s approach to defining sets via closures in his conception of the intended effect of 

AR. Finally, a number of objections directed against AR by Baldus, von Neumann and 

Zermelo from the late 1920s will be discussed that eventually resulted in a fundamental shift 

in Fraenkel’s justification of his axiom candidate. 
                                            
1 Recipient of a DOC-Fellowship of the Austrian Academy of Sciences at the Institute of Philosophy 
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2. Axiom types. Feferman has recently proposed a consequential distinction between two 

different types of axioms used in mathematics, namely structural axioms of the “working 

mathematician“ and foundational axioms concerning structures that “underlie all 

mathematical concepts“ (Feferman 1999, 3). The distinction follows different functions: the 

axioms of the first group (e.g. the axioms of rings, groups etc.) are taken to be “definitions of 

kinds of structures“ that have a unifying role for being applicable in various mathematical 

fields and allowing to use similar argument patterns in different mathematical contexts. 

Foundational axioms (e.g. the Peano axioms for arithmetic and ZFC for set theory) in contrast 

are intended to capture structural properties of one specific class of entities (the natural 

numbers, the sets etc.) that allow to reduce all other mathematical branches to such a “secure 

basis“ immune to rational doubt. The main rationale behind this type of axioms is epistemic 

reduction (see ibid, 3).2 

Now, according a common view the two types of axioms are generally associated with 

genuinely different styles of justification. Structural axioms are often considered to be 

introduced and justified on pragmatic grounds comparable to the experimental testing of 

hypotheses in the natural sciences. They are primarily assessed by their theoretical 

fruitfulness, i.e. with an eye on the intended consequences for the resulting theory. 

Foundational axioms in turn share an entirely different status. Justification of them has often 

been based on a reference to certain epistemic norms such as those of intuition, intuitiveness, 

obviousness, immediacy, naturalness etc.. Examples from the history of twentieth century 

mathematics that suggest such a view are numerous: Discussing the (epistemological) 

primacy of the Peano axioms over ZF Skolem argues that in contrast to the latter the former 

are “immediately clear, natural and not open to questions” (Skolem 1922, 299). In opposition 

to this, Gödel - in a well known passage in his (1964) describes a faculty of “intuition” as a 

sufficient “criterion of truth” for the set theoretic axioms.3 Following a classification 

developed by Penelope Maddy, these instances of arguments can be clustered as intrinsic.  

The common guiding norm is that - in contrast to “extrinsic justifications” in which an axiom 

is evaluated “in terms of its consequences” - the motivation for accepting an axiom mainly 

depends on to the intuitive nature of the properties it expresses (see Maddy 1997, 36-37). 

 
                                            
2 It is not questioned here whether this classification is generally valid or exclusive (compare Easwaran 2008), 
nor do I intend to provide a discussion of the involved concepts of mathematical unification and reduction 
(compare e.g. Hafner & Mancosu 2008). 
3 “But, despite their remoteness from sense experience, we do have something like a perception also of the 
objects of set theory, as is seen from the fact that the axioms force themselves upon us as being true. I don‘t see 
any reason why we should have less confidence in this kind of perception, i.e. in mathematical intuition, than in 
sense perception, which induces us to build up physical theories  (…).” (Ibid., 271) 
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3. Extrinsic evidence. Nevertheless, the assumed correlation between the two different types 

of axioms and different types of arguments is not exclusive. As Maddy has highlighted in 

(1997) a number of genuinely extrinsic arguments can be identified in the history of the 

axiomatization of set theory. In these cases (most prominently in Zermelo’s defense of the 

axiom of choice, see ibid, 56) the motivation for the acceptance of an axiom lies outside the 

literal meaning expressed in it but in its theoretical consequences.  

Maddy refers to Russell 1907 as the first explicit methodological modeling of axiom 

choice along similar lines. In fact, in his lecture Russell proposes a “regressive method” for 

justifying axioms standardly labelled as foundational, i.e. the logical axioms of the Principia 

Mathematica, that does not depend on any direct intrinsic support as the appeal to intuition, 

but on a kind of inductive confirmation through its “obvious” consequences: „Hence we tend 

to believe the premises because we can see that their consequences are true, instead of 

believing the consequences because we know the premises to be true.“ (Russell 1907, 273-

274). Note the use of epistemic notions of “believing” “knowing”, “truth”, the “intrinsic 

obviousness” of consequences here. Now, Russell’s theory of axiom choice is clearly 

extrinsic in in the sense above. In its epistemological character, however, it is comparable to 

Gödel’s and Skolem’s accounts of an epistemic foundationalism for arithmetic and set theory 

respectively. It differs from them only in inverting the “direction of epistemic support” 

(Easwaran) between the axioms and its consequences.4  

 

3.1. Non-epistemic arguments. Maddy’s survey of the history and practice of axiom choice 

in set theory suggests that a number of justifications for the axioms of ZF were developed that 

share the extrinsic structure with Russell’s approach but have a closer affinity to the practical 

considerations underlying the choice strategies for structural axioms mentioned above. 

Moreover, they are explicitly non-epistemic in character. To understand these arguments is - 

according to Maddy – to conceive of an alternative picture of set theory as a foundational 

discipline that seems to be presupposed here. In contrast to a strong “foundationalist” reading 

of foundational axioms in terms of ontological reduction or reduction to an epistemologically 

secure basis, set theoretic axioms in this “modest” version of foundations share no „preferred 

epistemological status“.5 Instead they provide a fruitful codification of all other branches of 

mathematics by allowing a set theoretic “representation” of other mathematical entities and 
                                            
4 Maddy seems to misinterpret Russell’s theory as a non-epistemic model of axiom acceptance in saying that 
“(…) he explicitly renounces the epistemic goal of founding mathematics on something more certain than the 
statements of mid-level mathematics.” (Ibid, 32). However, Russell in effect seems to propose a kind of modest 
“structural” foundationalism by introducing a new model of inferential evidence that strengthens the epistemic 
support of  the “logical premises” of the theory. Compare Williams 2001, 82.    
5 For a comparable account of (higher-order) logic as a “nonfoundationalist foundation” for mathematics see 
Shapiro 1991. 
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structures (see Maddy 1997, 25-26). The acceptance of an axiom then primarily depends on 

its specific consequences for the overall success of the foundational discipline. This success 

can be captured by various criteria such as its theoretical fruitfulness or indispensability for 

mathematics, its unifying role, its explanatory power, its simplicity etc. In the specific case of 

set theoretic foundations especially unification (in Maddy’s understanding of the concept) 

plays a central role:  
 

(…) vague structure are made more precise, old theorems are given new proofs and unified with other 

theorems that previously seemed quite distinct, similar hypotheses are traced at the basis of disparate 

mathematical fields, existence questions are given explicit meaning, unprovable conjectures can be 

identified, new hypotheses can settle old problems, and so on. (Ibid, 34-35)   

 

This strong unifying role is due to the creation of a single and common universe of discourse, 

the universe of sets, to which all of mathematics is reducible:  
 

The force of set-theoretic foundations is to bring (surrogates for) all mathematical objects and 

(instantiations of) all mathematical structures into one arena - the universe of sets – which allows the 

relations and interactions between them to be clearly displayed and investigated. (Ibid, 26)  

 

Two points of commentary are in order here. Note first that this view on foundational 

disciplines and the understanding of its axioms following from it stands in direct opposition to 

Feferman’s functional distinction between structural and foundational axioms. It especially 

runs against his point that unification can be seen as an identification criterion for structural 

axioms as Maddy reasonably argues that the unification via set theoretic reduction plays a 

central role for the assessment of foundational axioms as well. One could follow from this 

that since both types of axioms seem to have certain unifying roles a principled distinction is 

not possible.6  

Secondly, one central implication of this picture of set theoretic unification through a 

“unified arena” is that a specific conception of the domain of set theory, i.e. the universe of 

sets becomes a central issue. Maddy‘s discussion of argument types for the axioms of set 

theory is mainly historical for the axioms of ZFC and Gödel‘s axiom of construction. What is 

not mentioned in her survey, however, is that there has already been a strong and ongoing 

debate throughout in 1920s on how to conceive this universe of sets and characterize it 

axiomatically. In the course of different attempts to fix a domain of set theory that is capable 

                                            
6 Of course, Feferman’s classification could be vindicated by highlighting the different nature of the two 
informal notions of unification used here. See footnote 2.   
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of providing such a “unified arena” for mathematics, one specific axiom candidate, namely 

Fraenkel’s axiom of restriction stands out as the most persistent contribution. In the remaining 

part of the article I will focus on this specific historical episode in the early history of the 

axiomatic set theory in general and Fraenkel’s axiom candidate in specific.  It will be seen 

that in his elucidations concerning set theoretic restriction, one can identify a type of extrinsic 

argument not discussed in Maddy that is based on metatheoretic considerations, namely those 

concerning the categoricity of the axiomatization. 

 

4. Fraenkel’s axiom of restriction. In 1922 Abraham Fraenkel suggested two axioms to be 

added the axiom system presented in Zermelo (1908): the axiom of replacement, meanwhile a 

standard axiom of ZF, as well as the lesser known AR. The latter was basically devised to 

express a restriction clause, more specifically a minimality condition for any set model 

satisfying the Zermelo axioms. 

Now, the axiom never recieved the status of an accepted axiom and is considered in 

retrospect as an “ad-hoc axiom” without any real, remaining significance in modern axiomatic 

set theory (see e.g. Kanamori 2004). Generally, the project of restricting the universe of sets 

to an intended model through such an axiom is commonly regarded as seriously flawed for 

several reasons, mainly due to its vague “metatheoretical” character. Nevertheless, Fraenkel’s 

attempts to define such an axiom remains highly interesting from a historical point of view 

since the axioms takes a central and so far neglected place in a discussion about the (non-) 

categoricity of set theory. Beside this historical interest, its closer study is also instructive for 

the general methodology of axiom choice due to the specific justifications that Fraenkel 

provides for his axiom candidate. One can in fact identify several types of arguments in his 

works on the axiom, some of which can be classified as extrinsic, others as intrinsic in 

character. Before going into details, I will first give a brief reconstruction of the evolution of 

Fraenkel’s thought on the notion of restriction in the 1920s. 

 

The first mention of AR can be found in an article titled “Zu den Grundlagen der Cantor-

Zermeloschen Mengenlehre” in Mathematische Annalen from 1922 (1922a). Fraenkel’s 

motivation for adding the axiom candidate is mainly pragmatic and concerns set theory as a  

foundational discipline. He states that “Zermelo’s concept of set is more comprehensive than 

seems to be necessary for the needs of mathematics (…).” (Fraenkel 1922a, 223) He goes on 

to mention two types of possible sets in the “domain” (“Grundbereich”) of set theory that are 

consistent with the existing axioms, however irrelevant for mathematical purposes. The first 

are „non-conceptual“ sets consisting of physical elements. The second are non-wellfounded 

sets, i.e. sets with infinite membership chains as already specified by Mirimanoff (1917). 
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From their possibility within Zermelo’s axiomatization, he draws an interesting consequence 

for the general status of Z: 
 

Whereas sets of the first as of the second kind are not necessary for set theory considered as a 

mathematical discipline, it in any case follows from the fact that they have a place within Zermelo’s 

axiomatization that the axiom system (..) does not have a “categorical character”, that is to say it does 

not determine the totality of sets completely. (Ibid, 234)   

 

Categoricity is understood here as a “complete fixation” of the domain of sets. A more 

structured presentation of his arguments for AR can be found in the second edition of his 

monograph Einleitung in die Mengenlehre (1924). Here, the introduction of the additional 

axiom leads to a "simplification of the set theoretic edifice“ without losing its significance for 

mathematics due to the fact that “all mathematically relevant sets can (…) be saved with such 

a restricted axiomatization.“ (Fraenkel 1924, 218) As a independent argument – the 

metatheoretical property of categoricity is mentioned: “Moreover, without such a restriction it 

is not within reach that our axiom system captures the totality of admissible sets completely as 

it is desirable for the construction of every axiomatization.” (Ibid, 218) Two points are 

relevant here. First, there are at least two related, however non-identical objections against 

Zermelo’s original axiomatization: (a) the non-eliminability of extraordinary sets not 

necessary for the formalization of mathematics; (b) the non-categoricity of Z considered as a 

general theoretical deficiency of any axiomatization.7 Secondly note that these two issues, i.e. 

the applicability of set theory to mathematics and the metatheoretical property of categoricity 

are treated independently here. One can find no remark about the possible implications of the 

categoricity of the extended axiom system for its foundational role in mathematics. We come 

back to this point in the last section. 

 

4.1. The (non-)categoricity of set theory. In Einleitung (1924) we also find Fraenkel’s first 

explicit definition of the notion of categoricity referred to in the argument above:  
 

According to it an axiomatic system is called complete, if it determines uniquely the mathematical 

objects governed by it, including the basic relations between them, in such a way that between any two 

                                            
7 This is further highlighted in a passage in his lectures from 1925: “It means more than a mere flaw of our 
axiom system that the totality of all possible sets is not unequivocally fixed but that instead there are always 
narrower and more comprehensive interpretations of the concept of set that remain compatible with our axiom 
system.” (Fraenkel 1927, 101) 
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interpretations of the basic concepts and relations one can effect a transition by means of a 1-1 and 

isomorphic correlation. (Ibid, quoted from Awodey & Reck 2002, 30)8 

 

For the specific case of set theory the following informal explication is given:  
 

If the axiom system is complete and one has chosen in two distinct ways, each in accord with the 

axioms, an interpretation of the concept of set – in particular also according to its extension – and of 

the basic relation a ∈ b, then it has to be possible to maintain a correlation between the sets of the one 

interpretation and those of the other such that first, to each set of the first interpretation corresponds 

one and only one (…) set of the other interpretation and vice versa and that secondly, if a ∈ b is a valid 

relation in the first interpretation (…) then the relation a’ ∈ b’ also holds for the sets a’ and b’ that 

have been assigned to a and b in the other interpretation and vice versa. (Ibid, 228)      

 

This is probably the first application of the concept of categoricity via isomorphism to 

axiomatic set theory. Nevertheless, his presentation remains sketchy in one regard. The 

central concept used in these remarks about the conditions of categoricity for set theory is the 

notion of an isomorphic correlation between set models. In modern terminology such a 

correlation is commonly taken as a 1-1- mapping between two models that is structure-

preserving. However, in the 1920s, Fraenkel did not provide a closer specification of the 

notion of isomorphism for set theory.9 It is in the third edition of Einleitung (1928) that one 

can find an interesting remark concerning his understanding of the concept. Following a more 

general discussion of the categoricity of axiom systems, he adds in a footnote:  
 

The expression “isomorphic” has a considerably more general sense than is usually common (…). In 

fact the isomorphism is applicable to arbitrary relations, not only to those tertiary and n-ary relations 

denoted as “operations.” (Fraenkel 1928, 349)  

 

Unfortunately, he does not get more explicit how such a generalized notion of isomorphism 

could be conceived.10  

Irrespective of this, Fraenkel holds that Zermelo’s axiomatization is non-categorical in the 

sense specified above. This has been a commonly acknowledged position in the 1920s shared 

                                            
8 In the third edition of Einleitung the equivalence of this type of completeness with the notions of “categorical” 
(Veblen) and “monomorph“ (Feigl-Carnap) is stated, see Fraenkel 1928, 349. 
9 An alternative notion of isomorphism for sets had already been introduced some years before Fraenkel’s 
version in Mirimanoff (1917). His definition is based on the simple notion of equivalence between sets and does 
not take into account a correlation between set models (see Mirimanoff 1917, 41). For an early discussion of this 
definition see Sierpinski 1922. 
10 It was due to Rudolf Carnap who seems to have followed Fraenkel’s informal remarks on a generalized 
concept of isomorphism to develop a formal definition of a “n-stage isomophism correlator” for a type-theoretic 
language in his works on a general methodology of axiomatics. See Carnap 2000 and Carnap & Bachmann 1936. 
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by such eminent figures such as Skolem, von Neumann and Zermelo himself. What has been 

subject of debate was what possible reasons were responsible for this fact and whether 

Zermelo’s original axiomatization could be rendered categorical by adding additional axioms 

(see Shapiro 1991).  As we have seen, according to Fraenkel view, the non-categoricity of Z is 

mainly due to the non-eliminability of “extraordinary sets” by the existing axioms. This in 

turn is due to the fact that the existential axioms, i.e. the empty set axiom and the axiom of 

infinity, do not restrict the domain of sets whereas the restrictive axioms as the axiom of 

separation are not restrictive enough to yield a “unequivocal specification” of the concept of 

set. As a solution to this Fraenkel proposes to introduce his AR which is described in analogy 

to Hilbert’s completeness axioms in geometry:  
 

(…) as is the case there, the mentioned deficiencies can be remedied by setting up a (…) last axiom, 

the “axiom of restriction” that imposes on the concept of set or more appropriate the domain [of sets] 

the smallest comprehension compatible with the remaining axioms. (Ibid, 234)      

 

An alternative definition of the axiom can be found in Fraenkel 1924: „Aside from the sets 

imposed by the axioms [of Z] there exist no further sets.” (Franekel 1924, 219) Now, the 

motivation for introducing this axiom is clearly extrinsic in Maddy’s sense. The intention 

behind both versions is evident: to rule out non-intended and non-well founded sets by 

restricting either the interpretation of the concept of set or the domain of set and, by doing so, 

to render the axiom system categorical.  

 

4.2. Versions of restriction. Fraenkel’s elucidations of this intended effect of AR do not go 

beyond the level of informal remarks. The most detailed exposition can be found in the article 

“Axiomatische Begründung der transfiniten Kardinalzahlen” (1922b) in which Fraenkel 

develops an axiomatization for cardinal numbers. Here he formulates two versions of the 

axiom that also prove to be instructive for the case of standard set theory. According to the 

first, restriction is considered as a minimality condition on sets: There exist no sets apart from 

the sets implied by the given axioms. The second reading is more interesting. According to it 

AR can be viewed as imposing a minimal model for the axiom system: “If the domain 

(Grundbereich) B contains a smallest submodel (Teilbereich) B0 satisfying the axioms (…), 

then B is identical with such a smallest submodel B0.” (Fraenkel 1922b, 163) This in effect 

rules out the existence of any possible submodel of B0 that also satisfies the axiom system. 

The second definition is followed by a footnote concerning the method of constructing such a 

minimal model: 
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As is usual, a smallest submodel of the indicated character is to be understood as a model that is the 

intersection of all submodels of B with the property in question and that also possesses the property 

itself. (Ibid., 163) 

 

Two claims are made here: first, a minimal model for Z can be conceived as the intersection 

of all possible models satisfying the axioms. Secondly, if such a minimal model exists, the 

extended axiom system Z*, i.e. the Zermelo axioms plus replacement and restriction, is 

categorical. Now, Fraenkel does not get more explicit about his conception of the domain or 

the models of set theory. How are these notions conceived? In approaching this question it 

will prove to be fruitful to take into consideration Fraenkel’s immediate intellectual 

background. Specifically, a closer look at Richard Dedekind’s methodological innovations 

concerning set formation and mapping in Was sind and was sollen die Zahlen from 1888 will 

be instructive for the understanding of how Fraenkel’s ideas behind restriction evolved. 

 

5. Dedekind’s influence.  Two interpretive issues concerning AR are in need of further 

consideration. First, how exactly did Fraenkel conceive the intended effect of his axiom on 

the possible set models satisfying Z? Secondly, how should it constitute the categoricity of the 

axiom system? My claim in this section is that on both questions Fraenkel was directly 

influenced by Dedekind’s methodological work. More specifically I will argue that 

Dedekind’s theory of chains (“Kettentheorie”) introduced in 1888 was the driving force 

behind the development of AR.   

Concerning the first question, we can find an insightful remark in Einleitung (1928) about 

the “special character” of the axiom compared to the “existential” and “relational axioms” of 

Z. Here AR is described as similar in effect to Peano’s induction axiom. Fraenkel states that 

“in both versions [of AR], the inductive moment is essential.” (p.355) What is his intuition 

about this “inductive character”? As we have already seen, the concept of intersection plays a 

central role for the intended effect of the axiom. It is supposed to impose a minimal model as 

the intersection of all possible models satisfying Z. From a methodological point of view, this 

is in effect a “pairing down” approach of defining a specific minimal structure by taking the 

intersection of all closed subsets of a given set. This method has first been introduced by 

Dedekind in (1888) and used for fixing the standard model of Peano arithmetic. One could 

therefore assume that Fraenkel’s idea of a minimal model for set theory has been shaped in 

direct analogy to Dedekind’s strategy of defining the standard sequence of natural numbers as 

a minimal set closed by induction. However, there is no immediate textual evidence that 

Fraenkel was guided by Dedekind’s method in his thinking about restriction. My approach 

will be to give a short presentation of the central concepts developed in (1888) that seem of 
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relevance for Fraenkel’s axiom. In consequence I will present a number of arguments that 

strengthen the plausibility of my claim of this relation of influence. 

 

5.1. The theory of chains. Dedekind’s project of developing an “unambiguous 

foundational conception” of the natural numbers in 1888 is based on a number of well-known 

definitions and methodological results concerning the central concepts that allow the 

reduction of numbers to a logical basis.  

Here also the idea of an isomorphism correlation based on a 1-1 mapping (“ähnliche 

Abbildung”) between elements of two systems is expressed formally for the first time. 

Systems that are isomorphic in this sense are terminologically fixed as “classes of similar 

systems” (see Dedekind 1888, 351).11 A second newly introduced concept that will allow 

Dedekind to devise the sequence N of the natural numbers is that of a chain (relative to 

mapping function ϕ and a system S): in modern terminology, a subsystem B of S is called a 

chain if its is closed under a mapping ϕ (Ibid, 352). Subsequently, a system A0 is defined as 

the chain of A (“Kette des Systems A”) if and only if A0 is the intersection of all chains 

containing A (Ibid., 353). The the way Dedekind conceives A0 as the intersection of closures 

implies that it is also the smallest chain containing A, i.e. the smallest subset of S closed under 

ϕ. Again, in modern terminology, this effectively says that A0 is the minimal closure of A 

under ϕ.12 13  

Dedekind’s application of his theory of chains to the sequence of natural numbers cannot 

be discussed here. What is more important in this context is to highlight the obvious similarity 

between the idea of minimal chains developed here, i.e. the method of  building minimal 

closures of a given base set and a specific operation via intersection and Fraenkel’s remarks 

on AR. A number of additional arguments can be presented that strengthen the view that 

Fraenkel was immediately influenced by Dedekind’s approach.  

First, both positions are strikingly alike in their motivations for imposing a minimality 

condition on the intended model. In Fraenkel’s case, as we have seen, the aim is to restrict the 

model to well-founded and abstract sets, thereby keeping out all types of non-standard and 

extraordinary sets. A comparable account can also be found in Dedekind’s writings, most 
                                            
11 Compare Sieg & Schlimm 2005 for a systematic presentation of the evolution of the concept of mapping in 
Dedekind’s foundational work.  
12 Compare Sieg & Schlimm 2005 on this fact: “A0 obviously contains A as a subset, is closed under the 
operation ϕ; and is minimal among the chains that contain A, i.e. if A ⊆ K and ϕ(K) ⊆ K then A0 ⊆  K.”  
(Ibid., 145)   
13 Dedekind himself is not explicit about the minimality property of chains of A in his (1888). There exists, 
however, as Sieg & Schlimm (2005) have pointed out, a note in Dedekind’s earlier manuscript “Gedanken über 
Zahlen” from the Nachlaß in which this issue is explicitly mentioned: “(A) [i.e. the chain of A] is the “smallest” 
chain that contains the system A”. (quoted from Sieg & Schlimm 2005, 144). I would like to thank Dirk 
Schlimm for drawing my attention to this passage.  
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explicitly in his famous letter to Kieferstein from 1890. After a short discussion of his basic 

concepts used for expressing N he states: 
 

(…) however, these facts are still far from being adequate for completely characterizing the nature of 

the number sequence N. All these facts would hold also for every system S that, besides the number 

sequence N, contained a system T, of arbitrary additional elements t, to which the mapping ϕ could 

always be extended while remaining similar and satisfying  ϕ (T) = T. (…) What, then, must we add to 

the facts above in order to cleanse our system S again of such alien intruders t as disturb every vestige 

of order and to restrict it to N.” (Dedekind 1890, 100)   

 

To exclude such non-standard elements from the interpretation in question can thus be 

considered a common motivation behind the method of devising a minimal model. In 

Fraenkel’s case this restriction is imposed by AR. In Dedekind’s pre-axiomatic presentation 

of arithmetic of the natural numbers it is required by a condition equivalent to Peano’s 

axioms.  

This immediately leads to a second observation that presents additional evidence for my 

claim. It concerns Fraenkel’s original conception of the model of ZF which seems to be 

directly modeled on this idea of closures. In Dedekind’s account of the natural numbers 1 is 

the base element and the sequence N the intersection of all sets containing 1 and closed under 

the successor operation. Accordingly, Fraenkel’s intended set model is understood as the 

intersection of all set models that share the properties of (a) containing the empty set and the 

infinite set Z and (b) being closed under the operations specified in the Zermelo axioms, i.e. 

pairing, union, power set etc.. This is essentially an understanding of models as “algebraic 

closures” (see Kanamori 2004, 515). One can find textual evidence for this conception in his 

work, mainly in the context of building different restricted models – e.g. as sets closed under 

the operations of power set or union - used for independence proofs (see e.g. Fraenkel 1922a, 

233, also Fraenkel 1922b, 165-171). Here, as well as in Einleitung (1928) in the course of the 

discussion of AR he gives an informal sketch of the standard model (“Normalbereich”) of Z 

as a system closed under all operations specified in the axioms. Adding the axiom to Z would 

impose the following effect:   
 

This will probably result in the fact that only the empty set functioning as the primary building block 

for all sets is set up as the initial point. Then only those sets are admissible which emerge from the 

empty set and the sets imposed by [the axiom of infinity] by an arbitrary but certainly finite 

application of the individuals axioms. (Fraenkel 1928, 355)    
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Even though Dedekind’s notion of chains is not mentioned in Fraenkel’s remarks on model 

building, it seems obvious that AR can be understood here as a “restriction clause for 

closures” (Kanamori 2004, 515), i.e. for a universe of sets conceived in direct analogy to 

Dedekind’s method of constructing minimal systems.  

 

5.2. Categoricity results. Now, as I have mentioned before, there is no direct indication 

in Fraenkel’s writings of Dedekind’s influence on his conceptualization of models and AR. In 

first edition of Einleitung (1919) Dedekind is mentioned only for his existence proof of 

infinite systems and his definition of a finite system given in 1888. In the concluding remarks 

of the second edition there is a reference to his theory of chains that, as Fraenkel writes, has 

received a “general and fundamental significance in set theory.” (Fraenkel 1924, 244)14 

However, no connection is made to his concept of restriction. There exists, however, a 

passage in his lectures from 1925 that allows to draw a direct link between Dedekind’s 

minimal closures and his own approach of devising a minimal model for set theory. In a 

section on the “non-predicative” methods in mathematics, more specifically the debate 

between Poincaré and Zermelo on the indispensability of non-predicative proofs in 

mathematics, there is an interesting footnote mentioning Dedekind’s theory: 
 

In a series of important and thoughtful proofs in set theory especially due to Dedekind and Zermelo 

(…), deductions of the following kind are taking a center stage: a set M is considered whose elements 

are all sets of a specific property E exclusively characteristic for it; M is thus the set of all sets sharing 

the property E. For the cases in question it is then shown that the sum s and the intersection d 

respectively of all elements of M themselves have the property E; therefore s and d respectively – 

which exist by virtue of the definition as sum and intersection respectively - also belong to the set M 

and can be characterized as the set the most comprehensive and the most limited in size respectively 

sharing the property E. Due to this characterization s and d respectively play a decisive role in the 

concerned proof. (Fraenkel 1927, 29, notation slightly changed)   

  

The approach described here essentially follows the proof strategy introduced by Dedekind in 

1888 to prove the categoricity of Paeno arithmetic. And it is precisely this idea – here 

formulated in Fraenkel’s own words - that also most likely lies behind Fraenkel’s own 

understanding of AR. To interpret his tacit assumptions underlying restriction in this way also 

sheds further light on the second issue mentioned above, namely how to understand the claim 

that the addition of AR to Z would render the resulting axiomatization categorical. Fraenkel’s 

remarks alone are not conclusive on this intended effect. Here a glance at Dedekind’s 

                                            
14 For the set theoretic application of the theory of chains he refers to Hessenberg 1909 and to Zermelo 1908. 
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categoricity proofs will be instructive to show how Fraenkel might have conceived a similar 

categoricity result for set theory.  

Dedekind’s well-known metatheoretical results (see ibid, §10) can be qualified as 

instances of a “categoricity based on minimal models” according to which a theory is 

categorical if and if only it has a minimal model and any two minimal models are isomorphic 

(see Grzegorczyk 1962, 63).15 His proofs (in remarks 132 and 133) that the simple infinite 

system N can be captured completely, i.e. up to isomorphism by the conditions equivalent to 

the Peano axioms, strongly depends on his idea of minimal chains (see ibid, 376-377). This 

connection follows from Dedekind’s definition of a mapping of a number sequence through 

induction used in his proofs. In remark 126 he shows that there is one and only one mapping 

of N into any system Ω via a function ψ that satisfies the conditions that (i) the closure of N is 

a subset of Ω, that (ii) ψ(1) = ω , where ω is an element of Ω and that (iii) for any number n, 

ψ(n’) = θψ(n), where “n‘” stands for the successor of “n” and θ is a function on Ω (see ibid, 

370-371). In remark 128 Dedekind then proves that there exists an equivalence between such 

an inductive mapping ψ(N) and a minimal closure θ0(ω) of Ω containing ω, i.e. ψ(N) = θ0(ω) 

(Ibid, 372). It is in fact here, i.e. in the proof of this equivalence the following categoricity 

proofs centrally depend on that the central link between minimal chains and the mapping of a 

simple infinite system via induction becomes evident.  

Now, unlike Dedekind, Fraenkel did not develop an actual proof of the categoricity of Z* 

nor does he make any remarks how such a proof based on AR might be designed. Besides this 

fact, the presentation of the central concepts of his theory, most importantly those of 

restriction, the set universe and minimal models is not comparable in technical rigor to 

Dedekind’s foundational work in arithmetic. Nevertheless, given the textual evidence above 

as well as his various informal remarks on the effect of the axiom candidate as imposing a 

minimal model, on its “inductive character” as well as on his conception of the intended set 

model as a minimal closure, it seems a strongly plausible interpretation that AR was 

conceptualized by Fraenkel in close analogy to Dedekind’s method developed in his (1888).   

 

6. Objections to AR. A number of serious objections have been raised against Fraenkel’s 

axiom candidate shortly after its first presentation in print that have led to general scepticism 

concerning the validity of AR as a set theoretical axiom and have prevented it from being 

added to the canonical list of ZF. Eventually the criticism has also provoked Fraenkel to 

substantially modify his own justifications given for the axiom. In what follows I will first 

                                            
15 A minimal model can be defined as a model M satisfying a theory T such that for every submodel N of M that 
also satisfies T, N is isomorphic to M. See ibid., 63. 
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briefly present the main arguments adduced against Fraenkel’s axiom candidate. In the final 

section his reaction to the objections and its impact on his own conception of restriction will 

be discussed. 

One point of critique was first forwarded by the German mathematician Richard Baldus in 

the course of a discussion of Hilbert’s completeness axiom in geometry (Baldus 1928). It 

concerns the metatheoretical character of Hilbert’s and related axioms, later terminologically 

clustered as “extremality axioms” (Carnap & Bachmann 1936). Unlike the other axioms in 

Hilbert’s axiomatization (e.g. that of order), the completeness axiom makes an assertion “not 

only over the thought things [of an interpretation] but actually over all conceivable things” 

(Baldus 1928, 331). This assumption of the non-extensibility (“Nicht-Erweitungsfähigkeit”) of 

the basic elements involves a quantification over the individuals in all models. Baldus 

correctly indicates methodological doubts about the validity of such quantification over 

models:  
 

In order to reserve the completeness axiom its status as an axiom, one would have to allow within the 

axioms also assertions over other things than those thought in the respective interpretation of the 

axiom system, which would extend the concept of axioms in geometry in a precarious and superfluous 

way. (Ibid, 331) 

 

In an attached footnote, Baldus also mentions Fraenkel’s AR in this respect expressing a 

direct critique of it based on similar grounds:  
 

In a meeting in Kissingen Mr. A. Fraenkel has suggested that set theory can in no other way be 

rendered monomorph than by a “postulate” (…), namely by an axiom of restriction, against which 

similar objections can be raised as against the axiom of completeness. (Ibid, 331)       

 

Baldus’s criticism of the problematic (meta-)semantic character of the axiom has meanwhile 

become a standard argument against Fraenkel’s axiom candidate. It basically objects that the 

axioms of restriction imposes no condition on sets as the individuals of set theory, but on set 

models (compare Ferreirós 2007).   

An objection of a different nature raised specifically against Fraenkel’s axiom is found in 

von Neumann 1925. Here an alternative axiomatization of set theory is developed based on 

the notions of function and argument. Von Neumann also presents in his notation a formalized 

version of the AR conceived to capture Fraenkel’s original intention of imposing a minimal 

model for the theory. In von Neumann’s terminology a subsystem of a given system is 

minimal if and only if it contains no subsystem that also satisfies the axioms (von Neumann 



 15

1925, 404). He then presents two “serious objections” against the axiom. According to (a) it 

presupposes notions of “naive set theory”, most importantly that of a submodel that is not 

definable precisely in his own theory of sets.16 The resulting regression to informal set theory 

would make the whole process of axiomatizing set theory circular (Ibid, 404). A possible 

remedy for this is to assume a “higher set theory” and a corresponding expanded domain P, in 

which the original domain Σ can be properly defined as a class of P and the subsystems Σ’ of  

Σ as subclasses of P respectively. However, this additional “hypothesis” implies an even 

graver difficulty for expressing restriction clauses for his axiomatization. von Neumann 

argues that Fraenkel’s proposed method of devising a minimal model via the intersection of 

all possible models need not necessarily lead to a model satisfying the other axioms (Ibid, 

405). His argumentation cannot be discussed here since it is closely related to the distinction 

between sets and classes and the satisfaction conditions he devises for subsystems of  a given 

system to satisfy his set theoretic axioms, both of which is not subject of this article.17 What is 

relevant is the strong conclusion he draws from this for Fraenkel’s axiom candidate:  
 

For these reasons we believe that we must conclude, first, that the axiom of restriction absolutely has 

to be rejected and, second, one cannot possibly succeed in formulating an axiom to the same effect. 

(Ibid, 405)  

 

According to him this fact, together with the existence of „inaccessible sets“ such as 

“descending sequences of sets” that lie “outside the system” in question are the main sources 

of the non-categoricity of set theory. 

 

6.1. Zermelo on set models. A third and somehow the most serious objection against 

Fraenkel’s axiom candidate has been expressed in Zermelo’s paradigmatic paper “On 

boundary numbers and set-domains” (Zermelo 1930). Zermelo here introduces a new 

conception of the set universe as an open and unbounded sequence of connected set models 

(“Normalbereiche”) of increasing size that all satisfy the standard axioms of ZF (including a 

newly introduced axiom of foundation). A comparable view of a sequence of larger and larger 

set models has already been presented but not further developed in von Neumann 1925. 

Unlike von Neumann, Zermelo, in giving a formal explication of a cumulative hierarchy of 

                                            
16 For his distinction between sets and classes that plays a central role in his argumentation see ibid, 403. 
17 Very briefly, von Neumann shows that unlike in the original system Σ the boundaries between arguments and 
functions are not clearly separated for the subsystem Σ’. Therefore, in order to satisfy the axiom system Σ’ has to 
satisfy certain additional conditions that relativize the range of these concepts as well as the quantifiers ranging 
over them to Σ’. He argues that these satisfaction conditions are sufficient but don’t necessarily imply the 
existence of a minimal model to satisfy the axioms (see ibid, 405-408). 
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sets, provides a theoretical model for this view. He also proposes a definitive clarification of 

the semantic notions of set models, submodels etc. that can be found both in Fraenkel and von 

Neumann. According to Zermelo, each set is decomposable into layers and cumulative 

sections that include all sets formed at earlier layers in the set theoretic hierarchy (Ibid, 32-

33).18 Set models in turn are treated “exactly like sets” that can be specified by two numbers, 

a base – i.e. the cardinality of its base set of individuals – and a characteristic or boundary 

number, i.e. the least ordinal greater than all ordinals contained in the model. From this it 

follows that each model can act as a submodel of a set model with a higher boundary number 

(see ibid, 31). 

Now, it is evident that this theory of the set theoretic universe as an “unlimited sequence 

of well-distinguished models” differs substantially from Fraenkel’s static conception of a 

closed and fully describable universe of sets. This divergence also results in an opposing view 

on the issue of the (non-)categoricity of set theory. Whereas Zermelo admits that ZF captures 

set models of a given “base” and “boundary number” up to isomorphism –the main results of 

his article in fact are a number of relative categoricity theorems and proofs (see ibid, 40-41) - 

categoricity in the standard meaning of capturing a unique model is not possible due to the 

boundlessness of the set theoretic universe, i.e. the “existence of a unlimited sequence of 

boundary numbers”. It follows from this that talk about the one intended model captured by 

ZF is inadequate.  

This insight also underlies his general critique of restrictive axioms. We have seen that 

von Neumann holds the assumption that for set theory there always exists a larger domain, a 

“higher set theory” in which the original model is definable as a set (in his terminology as a 

class) and in which a restriction for the lower theory yielding categoricity could at least in 

principle be formulated. Zermelo’s theory of relative or “quasi”-categoricity essentially 

conforms to this view. Nevertheless, for him a domain restriction will never be a desirable 

from a practical point of view, because it decisively delimits the functional role of set theory 

as a foundational discipline: 
  
Our axiom system is non-categorical, which in this case is not a disadvantage but rather an advantage, 

for on this very fact rests the enormous importance and unlimited applicability of set theory. (Ibid, 

1232)   

 

Here lies the central objection to Fraenkel’s account of restriction. Its effect is not considered 

a theoretical virtue of the axiomatization, but in contrary as a deficiency in a practical sense: it 

                                            
18 For the technical details of this early version of an iterative conception of sets see e.g. Kanamori 2004 and 
Ferreiros 2007. 
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restricts set theory in its task of formalizing mathematics. Zermelo explicitly refers to 

Fraenkel’s axiom candidate in order to underline the difference between their conceptions. He 

remarks that,  
 

Naturally one can always force categoricity artificially by the addition of further ‚axioms‘, but always 

at the cost of generality. Such postulates, like those proposed by Fraenkel (…) do not concern set 

theory as such, but rather only characterize a quite special model chosen by the author concerned. (…) 

the applicability of set theory has to be given up. (Ibid, 1232) 

 

Note that the actual argument against restrictive axioms like that of Fraenkel mainly concerns 

the fruitfulness of set theory as foundational discipline. Any deliberate restriction of the set 

universe negatively affects the “full generality” of set theory, i.e. its “unlimited applicability“ 

to mathematics. Recall again Maddy’s account of unification as a central motive behind set 

theoretic axiomatization presented above. We come to see that Zermelo, in his motivation for 

a cumulative set universe seems to be much more attentive to this pragmatic ideal than is 

Fraenkel in his call for a categorical axiomatization. As has been mentioned, Fraenkel does 

not provide a reflection on the possible practical consequences of the adoption of restriction to 

ZF for its success as a foundational discipline. It was left for Zermelo to highlight the fact that 

an unrestricted universe of sets allows the strongest set-theoretic unification in mathematics.     

 

7. Fraenkel’s reaction. Fraenkel’s reaction to the presented objections against his AR in 

subsequent work is in several ways instructive. For one part it better illustrates his own tacit 

understanding of the concepts involved in his earlier presentation of restriction. For the other 

part it highlights substantial shifts in his justification of the axiom as a direct result of this 

critique. 

As far as I know Fraenkel never responded in print to Baldus’ legitimate doubts about the 

metatheoretical character of extremality axioms and their semantic implications. Even though 

he acknowledged the “special character” of the axiom in comparison to the other axioms of Z 

he never seemed to become aware of the problem that the axiom requires quantification over 

set models.19 By contrast, he immediately reacted to the objections levelled against the axiom 

by von Neumann. This might seem surprising at first sight because it is far from obvious that 

the latter’s critique actually meets Fraenkel’s informal presentation of the restriction on set 

models. First, it seems more reasonable that the technical objections against the AR rather 

concern von Neumann’s own non-standard axiomatization of set theory (and specifically his 

                                            
19 As Shapiro points out this fact is probably due to the circumstance that a clearly delineated syntax/semantic-
distinction was for from being standard by the time Fraenkel developed his theory. See Shapiro 1991, 184.    
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formalization of the axiom) than Fraenkel’s preliminary ideas. Secondly, the general validity 

of his critical remarks against restriction can be challenged by drawing to a number of 

inconsistencies in his own treatment of set models. As Shapiro (1991) has shown, von 

Neumann set theory does not allow a consistent presentation of models (as classes containing 

its subclasses) due to the fact that proper classes cannot be conceived as elements of either 

sets or classes in his theory (see ibid, 186).20 

Nevertheless, Fraenkel in grosso modo seems to have acknowledged von Neumann’s 

critique. In 1927 for example he considers it “very doubtful” whether his version of restriction 

can be attributed “a sound meaning”. He states that, 
 

One seriously has to take the eventuality into consideration that the possible realisations of the axiom 

system that differ in their size do not have a smallest common subpart that would also satisfy all the 

axioms. Also the previously given instruction for a “construction” of such a smallest model (…) need 

not lead to a definite result for the axioms IV – VI [i.e. the axioms of power set, separation and choice] 

themselves do have a purely constructive character. This is a serious and so far not satisfactorily 

solved problem from which possibly the natural necessity of a certain “boundlessness” and also a 

certain vagueness (so to speak at the boundaries) of the yet legitimate concept of set will follow. 

(Fraenkel 1927, 102)       

 

The first remark here essentially rephrases von Neumann’s critique. The second remark 

concerning the “boundlessness” of the set concept seems already - i.e. five years before 

Zermelo’s (1930) - to indicate doubts about his conception of the set universe as an 

(algebraic) closure.21  

Now, despite the acknowledged criticism, Fraenkel remains optimistic about the practical 

usefulness and general correctness of a restrictive axiom.22 However, his subsequent 

presentations of the axiom candidate are marked by a number of substantial modifications. By 

1958, in his Foundations of Set Theory, the extrinsic justification of the axiom changes 

substantially. Whereas the well-foundedness of the sets composing the set theoretic universe 

is now imposed by the axiom of foundation (as already proposed in von Neumann 1925 and 

                                            
20 Shapiro suggest a modification of this system in order to vindicate the axiom of restriction, to the effect that 
“sets and proper classes of the original theory (can be treated as) as elements, i.e. as sets” thereby allowing to 
treat models for a theory T as the subclasses of a higher-level theory T’. The effect on restriction would then be 
that “(…) one can state in the higher theory that a given class has no proper subclasses that are models of 
ordinary set theory.” (Ibid, 186) 
21 Similar remarks along these lines can be found in Fraenkel (1928). 
22 In Fraenkel 1928 he concludes his discussion of the axiom by stating that: “Nevertheless I like to believe that 
the mentioned doubts can be resolved and that the axiom of restriction can be maintained - and then considered 
as a very central part of the axiomatization! – if only its formulation can be made more precise.” (Ibid. 355) 
According to Fraenkel an adequate formal presentation of the axiom is later developed in Carnap & Bachmann 
1936, see Fraenkel et al. 1958, 90. 
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Zermelo 1930), the main motivation for introducing the axiom of restriction is to secure the 

“non-existence of inaccessible numbers” (Fraenkel et al.1958, 88). The former version of AR 

is thus functionally divided into an independent axiom of foundation and an accessibility 

axiom introduced to exclude all inaccessible numbers. This change has to be interpreted as a 

direct reaction to the theory of set models proposed in Zermelo 1930. According to Fraenkel, 

the addition of this new “limitative axiom” to ZF “should enable us to prove that all models of 

the axiom system are isomorphic” i.e. to render the resulting axiom system categorical in the 

standard, absolute sense of the word (Ibid, 88).  

What follows from this is that Fraenkel was still holding to his original core idea of a 

single and closed “intended domain of sets” in (1958) and obviously did not approve of 

Zermelo’s conception of an ever-expanding domain composed of different set models. In a 

remark he critically comments on this conception of a set universe and the categoricity proofs 

based on it given in Zermelo (1930):  
 

The cardinal of the basis and the ordinal α together are an invariant characteristic of the intended 

domain of sets. The first leads to the domain of finite sets, the second to the domain of sets up to the 

first inaccessible number. However, Zermelo‘s proof that this invariant guarantees the monomorphism 

(categoricalness) of the domain can hardly be considered stringent, and even the concepts used, e.g. 

„cardinal of the basis“ are objectionable. (Ibid, 92). 

  

Neither did he accept the latter’s objections against his axiom candidate. On the contrary, 

restriction is thus redefined with the specific motivation to rule out the existence of boundary 

numbers. This version of the axiom is essentially maintained in the second and revised edition 

of Foundations (Fraenkel et al. 1973)23. Here, however, Zermelo’s argument against AR is 

commented on in a more refined and almost neutral way: 
 

The axiom of restriction points to the existence of some fixed natural universe of sets, but if the 

collection of all sets in this universe is again a Platonistic entity, then why should it not be admitted as 

a new set by allowing a wider universe than that allowed by the axiom of restriction. (Ibid, 118)       

  

The point to be emphasised here is that Fraenkel is in fact conceding the legitimacy of an 

“ever-growing universe” that follows once the cumulative hierarchy of sets has been accepted. 

 

                                            
23 Fraenkel here defines a “first axiom of restriction” as “the conjunction” of an axiom of foundation and an 
accessibility axiom excluding inaccessible (cardinal) numbers. A second, “stronger” version of restriction is 
effectively conceived as the conjunction of an accessibility axiom and Gödel’s axiom of constructability. See 
ibid, 115-116. 
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7.1. An “intuitive justification”. This is related to my second and final remark. In Fraenkel 

et al. 1973 the given arguments for the axioms of restriction are complemented by a new type 

of justification, not comparable to the extrinsic justifications given by reference to non-well-

founded sets or inaccessible numbers. This new justification strategy is clearly intrinsic in 

character in Maddy’s sense: not in terms of an allusion to a set-theoretic intuition or self-

evidence, but explicitly based on a prior explanation of the set universe underlying the 

axiomatization. The axiom in question is then justified on this ground for it captures certain 

structural properties of this conception (compare Maddy 1997, 37). In the second edition of 

Foundations, Fraenkel seems to have adopted Zermelo’s cumulative hierarchy of sets as the 

underlying model for ZF. After an informal presentation of it, he makes the following remarks 

concerning a necessary “intuitive justification” of the axioms of restriction:   
 

In the case of the axiom of induction in arithmetic and the axiom of completeness in geometry, we 

adopt these axioms not only because they make the axiom systems categorical or because of some 

metamathematical properties of these axioms, but because, once these axioms are added, we obtain 

axiomatic systems which perfectly fit our intuitive ideas about arithmetic and geometry. In analogy, 

we shall have to judge the axioms of restriction in set theory on the basis of the set theory obtained 

after adding these axioms fits our intuitive ideas about sets. (Ibid, 117)  

  

This passage is remarkable in the sense that it documents the substantial shift in Fraenkel’s 

own position on the methodology of axiom choice. What is effectively said here is the 

justification of an axiom – here the different versions of AR – has to depend on a combination 

of extrinsic and intrinsic considerations. The latter are necessary to confirm (so to speak in a 

second loop) the choice originally made on extrinsic grounds. An acceptance solely based on 

extrinsic considerations – such as on “metamathematical properties” of the resulting 

axiomatization or simply on the "sake of economy” – do not provide sufficient evidence 

unless backed up by an intrinsic "absolute faith” in the sufficiency of the axioms (see ibid, 

117). By 1973, Fraenkel eventually seems to have adopted the view that the cumulative 

hierarchy of sets can act as one such possible source of evidence.  
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