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1 Computable numbers

Half a century after Alan Turing’s death in 1954, we can ask whether computing can
go beyond the framework of computability that he set out in his classic 1936 paper On
computable numbers, with an application to the Entscheidungsproblem. We shall do so
in the light of what Turing himself did, starting with his work in 1936.

It is usual to describe the background to that paper (Turing 1936a) in terms of
Hilbert’s decision problem for first-order logic, Gödel’s discovery, and so forth. This is a
perfectly correct description of how Turing came to this work through Newman’s 1935
Cambridge lectures. But Turing made a typically individualistic point of setting forth
his new definition of computability in terms of numbers, presenting the Hilbert problem
as ‘an application’ of this definition. In what follows, this relationship of computability
to number structure will be emphasised, because it is highly relevant to current propos-
als concerning the potential scope of computing. Of course, it is most important that
from that 1936 start, Turing was always considering calculation within general symbolic
systems, without restriction to numerical data. His practical proposals for digital com-
puting were streets ahead in their recognition of non-numerical structures. But for the
connection with physical reality, which we shall emphasise, the basis of computability in
the classical mathematics of the integers Z and the real continuum R is essential.

Indeed, a clear picture of Z and R is necessary even to understand the title of
Turing’s paper. Turing’s word ‘numbers’ refers to elements of R: the ‘real numbers’,
generally thought of as corresponding to the measurement of continuous quantities like
distance and time, and expressible as infinite decimal fractions.1 But the computation of

∗email andrew.hodges@wadh.ox.ac.uk, web www.turing.org.uk
1The word ‘decimal’ properly implies an expansion specifically in inverse powers of ten, but it makes

no difference, in the material discussed here, what number base is used for representations. In writing
of ‘decimals’ we follow Turing, who introduced his own 1936 definition as: ‘a number is computable if
its decimal can be written down by a machine.’
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a real number, in Turing’s picture, is specified by defining a finite ‘machine’, consisting
of certain discrete elements, which can all be coded as an element of Z, the ‘description
number’ of the machine. That (some) elements of R can be encoded systematically by
elements of Z is a non-trivial insight.

Students may well be puzzled that although they are taught that a well-defined algo-
rithm must terminate, and that a Turing machine formalizes the concept of an algorithm,
the computation of a computable number by a Turing machine never terminates! But
there is no contradiction here. Turing’s model for computing a real number demands
that the calculation of any one digit is indeed guaranteed to be a terminating task. (No
preset bound can generally be placed on the time it will take, however, nor on the amount
of working space required.) Computation of the computable number corresponds to the
calculation of each digit successively, and this of course cannot be done in a finite time.
The crucial point is that the same finite package of information, which can be coded as
a single ‘description number’, suffices for infinitely many different digits.

What Turing called the ‘circle-free’ condition is the condition that every digit can
thus be calculated, and his theory demonstrated the undecidability of circle-free-ness.
It is more common now to use the simpler ‘halting problem’—the question of whether
a given Turing machine, starting on a blank tape, will ever reach a particular ‘halting’
state—as a classic example of an undecidable problem. But this reformulation is of no
fundamental significance.

Since the description of a computable number is given as an integer, the computable
numbers are countable.2 In this light, we can construct a picture of the ‘real line’ R
with certain special countable subsets of points: first the integers, then the larger set of
rationals, then the still larger set of algebraic numbers. The countable set of the com-
putable numbers appears to be the final natural extension of this idea. It characterizes
by quite simple means all the numbers used in vast areas of mathematics (as Turing
showed in his 1936 paper) and this alone is a great achievement of Turing’s. He hoped
for yet more: Turing’s introduction stated that he hoped soon to base ‘the theory of
functions of a real variable’ on this concept, and this remark suggests that in 1936 he
had every intention of redefining the relationship between Z and R in a constructivist
way.

The structure of R does not enjoy the same intuitive and compelling status as that
of Z, and Turing might well have felt there was room for improvement. A viable logical
relationship between counting (Z) and measuring (R) was only elucidated in the nine-
teenth century, with notable steps taken by Weierstrass in 1860 and Dedekind in 1872.
When Turing started to read mathematics at Cambridge in 1931, it had only been es-
tablished there for a generation. (According to Ray Monk (1996), Bertrand Russell had
graduated in mathematics in 1893 while completely unaware of it, and only learnt the
modern definition of a limit in 1896.) G. H. Hardy’s Pure Mathematics, first published
in 1908, was the most famous text through which English mathematical students learnt
the analysis of R developed in nineteenth-century Europe, but Turing actually studied

2More accurately, for any particular computable number there are infinitely many Turing machines,
and so infinitely many integers.
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the deeper treatment in the textbook of Knopp (1921). Knopp also emphasised the
actual numerical computation of series, which made it a good introduction to Turing’s
down-to-earth treatment of computability.

It is a pity that Turing left no indication of how he developed his ideas in 1935. The
computable numbers seem to come fully-formed without precursor or rehearsal in his
work. However, a curious fact about Turing’s papers is worth mentioning. They include
both a manuscript and a typescript of a paper on normal numbers (Turing 1936?b), a
topic springing from measure theory. Normal numbers are, roughly speaking, those in
which the digits of the decimal expansion are uniformly distributed, no matter what
number base is used. It was known that almost all numbers are normal, yet no ex-
plicit example of one had been given. But Turing’s friend David Champernowne, also
a Scholar at King’s College, Cambridge, made a contribution to the theory, and so had
a mathematical paper published while he was a second-year undergraduate. Champer-
nowne (1933) wrote down the number 0.12345678910111213 . . . and proved that it is
normal in base 10. Turing’s investigation may be seen as an attempt to give an equally
explicit construction for more general normal numbers. Turing’s proof had several faults,
according to Britton (1992), and anyway was never published.

What lends extra interest to this piece of research is that Turing’s manuscript was
written on the reverse side of six pages from the typescript of On computable numbers.
(The typing of the text is not his own, but the equations are written in his own hand.)
The six pages include the section on ‘computable convergence’, which is the material that
Turing might have hoped to expand into a constructivist definition of real analysis. One
of these pages has now been published in a facsimile form, with further commentary
(Hodges 2006b). Interestingly also, Turing’s analysis of normal numbers includes a
reference to ‘a mechanical process’ and ‘constructive enumeration’, indicating a link
with computability. There is no indication of the date of this work, except that it
appears on the typescript of On computable numbers, which places it in 1936 or later.
But Turing had known of Champernowne’s work since 1933. It seems possible that
friendly rivalry with Champernowne in 1933-1935 gave Turing a particular personal
motivation to think about defining real numbers in a constructive way before learning
from Newman of the Entscheidungsproblem. It might also have increased his confidence
to plunge into a research field, despite being young and a complete outsider. But the
deeper philosophical interest evidenced by Turing’s essay Nature of Spirit (Turing 1932?)
seems more important as a precursor. Above all, it is due to Turing’s quite inexplicable
genius that he saw a connection, invisible to others, between Hilbert’s decision problem,
the classical question of free will and physical determinism, and the computation of real
numbers.3

3Britton (1992) only edits and comments on Turing’s typescript, which omits the reference to Cham-
pernowne. Britton comments that Champernowne had given an example of a normal number, but
Turing’s manuscript points out that Champernowne’s number is only shown to be normal in base 10.
Incidentally, it is sometimes believed by computer historians that binary representation marks a major
step. For engineers, perhaps it was. But for mathematicians the possibility of representations in any
base was a matter of common currency. If explicit proof were needed, Turing’s usage in this paper would
supply it.
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Since the real numbers are uncountable, almost all the real numbers are uncom-
putable. Turing gave an explicit example of a definable but uncomputable number: the
number which differs in the nth decimal place from the nth computable number, as
ordered by their description numbers. Another uncomputable number Ω, related to the
‘halting problem’, has been made popular by Chaitin.4 It would, however, be rather
misleading to present Ω as a natural constant like π, because the definition depends on
conventional technical details of how Turing machines are specified. It is also somewhat
misleading for a deeper reason: whereas π, being a computable number, can be specified
by a finite set of data, a number like Ω cannot. Some writers make much of how the
infinite data in Ω, which corresponds to an infinite list of answers to deep mathematical
questions, is encoded in a ‘single’ real number. But this is less surprising when it is
remembered that the concept of a ‘single’ real number involves an infinite quantity of
discrete data.

Turing thus opened up new aspects of the number system. But the novel technical
apparatus he developed for doing this was equally important, because it has turned
into the dominant technology of the modern world. Gödel had shown how to encode
as integers, statements about integers, and thereby showed the incompleteness of formal
systems. Turing showed how to encode operations on integers, by integers, and thereby
showed the undecidability of formal systems. Thus Turing had the vital perception that
operations and numerical data could be codified alike as a symbolic structure. This
perception was essential for his proofs, but it was not limited to the abstruse material of
the Entscheidungsproblem. For, in a remarkable application of that perception, Turing
showed that ‘it is possible to invent a single machine which can be used to compute any
computable sequence’. This invention was his universal machine.

2 Turing’s practical development of computability

Next we will briefly survey how Turing developed his own 1936 discovery, with an em-
phasis on the way he turned the logical into the physical. The most striking fact is that
he later turned the concept of the universal machine into a practical prospectus for the
digital computer. Turing had a conversation with his friend David Champernowne in
the 1936 period discussing the practicality (or impracticality) of the universal machine,
in the course of which the question of a machine the size of ‘the Albert Hall’ was raised.
It is reasonable to suppose that Turing saw right away that the very simple logical oper-
ations of his machines could in principle be realized physically, since they required only
operations such as were employed in contemporary teleprinters and automatic telephone
exchanges. But a great deal had to happen before the idea of the universal machine
could be made into a practical ambition.

In the period from 1937 to 1939, Turing followed many paths in parallel and no
observer at the time could have seen that they led towards the electronic computer.
We may note: (1) He did not not recast real analysis in terms of computable numbers

4For a recent example see (Chaitin 2006)
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as he hoped. The problem he addressed in (Turing 1937), viz. the non-uniqueness of
decimal expansions (.50000 . . . = .49999 . . .), is at first sight trivial, but in fact points to
a deep difficulty: that no characteristic function of a proper subset of R is computable.
The different description of R used by Turing (1937) makes the first step in modern
computable analysis, but Turing himself took this no further. (2) Turing’s Princeton
doctoral thesis work (Turing 1938a) was concerned with the much deeper theory of
uncomputable structures (now called Turing degrees), and not at all with physical or
practical developments. (3) His work on the Riemann zeta-function (Turing 1943) and
related questions in number theory was marked by an interest in actual computation.
But the machine he designed to assist calculation (Turing 1939) was an analogue device
with discrete approximations, not a development of his logical machine ideas. (4) His
work in group theory (Turing 1938b, 1938c) was probably what attracted the offer from
von Neumann of a post-doctoral position, which he declined. There is no reason to
suppose that he had any discussion of computation with von Neumann. (5) Although
joining Wittgenstein’s class on the philosophy of mathematics, Turing’s remarks did not
reflect his computational ideas, nor a philosophy of mind such as he later espoused.
(6) As a non-academic sideline, he built electric relay machinery to perform binary
multiplication. This was specifically intended for an advanced cipher system, which he
may have derived from considering the question of ‘the most general code or cipher’.
This offbeat amateur engineering was the closest Turing came to developing his ideas of
general computation in a practical direction.

As it turned out, it was also this eccentric hobby—as it would then have seemed—
that came to dominate his life from 1939 to 1945, and thereby arguably changed world
history. In 1948 Turing wrote of how machinery was generally considered as limited to
straightforward, repetitive tasks until ‘about 1940’, and it can hardly be doubted that by
citing that date he was alluding to the impact of the Turing-Welchman Bombe with its
stunning parallel logic for solving the plugboard complication of the Enigma enciphering
machine used for German military communications. From that time onwards, Turing
led the way at Bletchley Park in showing the power of computable operations. Some of
these were implemented on physical machines, others through people carrying out algo-
rithmic processes such as the ‘Banburismus’ that exploited his new Bayesian inference
methods (Good 1992, 1993, 2001). Turing’s mechanization of judgment through ‘weight
of evidence’ (anticipating statistical methods very popular in Artificial Intelligence sixty
years later) was perhaps a key step in persuading him of the boundless scope for the
mechanization of human intelligence. In 1943, he discussed such ideas with Shannon,
and in 1944 he was speaking of ‘building a brain’. The possibilities for actual engineer-
ing had been transformed since the ‘Albert Hall’ days of 1936, with the availability and
proved practicality of digital electronic techniques.

The use of the word ‘brain’ indicated that at some point Turing had decided that
the scope of On computable numbers could and should be broadened. Whilst in 1936 he
had limited the discussion to that of a human being carrying out a mechanical process,
from 1945 onwards he took the view that all mental processes fell within the scope of
computable operations. The ground had already been laid in 1936, by the bold argument
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that a process need not actually be written down in ‘instruction notes’, but could be
embodied in ‘states of mind’. But Turing’s post-1945 views still marked a definite
shift. In particular they implied a rejection of the view that uncomputable ‘intuitive’
steps were needed for the recognition of true but formally unprovable Gödel statements.
Such uncomputable mental steps were implied by his 1938 analysis, and Gödel himself
certainly believed in them. One sentence in Turing’s proposal for the ACE computer
(Turing 1946) is evidence of this shift: it is a claim that a computer could play ‘very good
chess’ if ‘occasional serious mistakes’ were allowed. This cryptic reference to mistakes
was clarified by the argument of (Turing 1947) that once the possibility of mistakes
is allowed, Gödel’s theorem becomes irrelevant. In Turing’s post-war view, ‘seeing the
truth’ is done, imperfectly, by algorithms; and there is no reason why computers should
not do it as successfully as human beings. (Gödel, of course, rejected this post-war Turing
vision of machine intelligence, although he had endorsed Turing’s original definition of
computability.) Turing’s use of the word ‘brain’ also indicated an interest in its physical
nature, which we will discuss further below.

This deep interest in the nature of mental operations was Turing’s principal moti-
vation, but in 1945 he was fully alive to the practical aspects of digital computing and
his 1946 report gave a masterly survey of its potential. There is no doubt that Turing
saw himself in 1946 as effecting a practical implementation of his 1936 universal ma-
chine, emphasising its wide scope and ability to take on new tasks just by loading new
paperwork. In (Turing 1947), a lecture to the London Mathematical Society, he gave
an elegant account of the universal machine concept and in (Turing 1948) he used the
term ‘Practical Universal Computing Machine’ to characterize all the types of digital
computer then in construction. Yet those who wish to promote Turing’s claim as the
father of the computer, must face the difficulty that Turing himself made little of his
paternity. In his 1946 report, Turing advocated the reading of von Neumann’s recent
EDVAC report, but did not cite his own On computable numbers. Even when speak-
ing to mathematicians, in 1947, he made only brief allusion to the roots of the digital
computer in mathematical logic. The 1946 report, 1947 lecture, and 1948 report—which
all went unpublished—omitted to emphasize the principle of the modifiable internally
stored program, with data and instructions coded alike.

That a program is itself a form of data is the basis of modern computing. We can
now hardly imagine a world in which this idea was not familiar, and it is hard to read
On computable numbers without translating Turing machines into programs and the
universal machine into a computer running those programs. Turing’s 1936 construction
of the universal machine, by treating programs as data to be read in just the same way
as numerical or any other kind of symbolic data, defined a structure quite different from
that of Babbage and his successors up to the ENIAC. Yet Turing himself never identified
this as the key conceptual advance, let alone claimed it for himself.

This omission is striking, as Turing certainly saw from the very start that programs
were data and could be manipulated as such. On the first page of his 1946 report,
Turing explained that the management of a calculation would be ‘looked after by the
machine itself’, and this key reflexive word ‘itself’ goes back to Gödel’s insights; so did his
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proposals for having the machine compile its own machine code from instructions written
in a more user-friendly form. In this plan he gave a programmed version of conditional
branching, which he described by saying one could ‘pretend that the instructions were
really numbers’. Such ‘pretence’ lay at the heart of Turing’s concept, coming straight
from the ‘description numbers’ of 1936. But Turing did not expose it as such. Turing
also wrote in a most important passage that the future of software writing should be free
from drudgery because ‘any processes that are quite mechanical may be turned over to
the machine computer itself.’ This insight (going far beyond von Neumann) depended
on his perception of programs being themselves data-structures. In (Turing 1947) he
spoke of how a machine could be given instructions in ‘any symbolic logic’—yet never
expanded on what he himself had done in symbolic logic. In (Turing 1948), Turing
began a discussion of program modification, but cut it short with a curt reference to the
constitution of the United States—presumably meaning that the constitution contained
provisions for its own amendment—falling short of serious analysis. Thirty years later,
Douglas Hofstadter carried forward this fascination with Gödelian self-reference at all
levels, but in 1948 Turing let his insights go largely unrecorded.

Most oddly, Turing (1950) asserted that Babbage’s Analytical Engine ‘had all the
essential ideas’ of a universal machine. Yet a central argument of Turing in that paper
was that programs could be modified into forms unforeseen by the original programmer:
this was the thrust of his argument against ‘Lady Lovelace’s objection’ to machine
intelligence. Such program modification requires just that concept of program-as-data
which Babbage’s conception lacked. More generally, after moving to Manchester in
1948, Turing failed to explain and explore the intellectual history of the computer. The
first semi-popular account of digital computing in Britain, Faster than thought (Bowden
1953), put Babbage in the prime position, and gave Turing’s work a ‘glossary’ entry
thus:

Türing machines: In 1936 Dr Turing wrote a paper on the design and lim-
itations of computing machines. For this reason they are sometimes known
by his name. The umlaut is an unearned and undesirable addition, due,
presumably to an impression that anything so incomprehensible must be
Teutonic.

Turing made no counter-attack with the definitive book on The Theory and Practice of
Computing that he alone could have written, and which would have completely changed
the perceived history of the subject. He made no effort to promote Turing machines
in the new small but growing world of computer science. At the inaugural conference
for the Manchester computer he gave an absurdly low-level talk on machine code—‘local
conventions’, not deep principles (Turing 1951b). A similar missed opportunity occurs in
(Turing 1953), his paper on the calculation of the Riemann zeta-function. Even though
writing for mathematicians who would have appreciated an insider’s serious description
of the mathematical background to computing, he listed ephemeral machine-code trivia.
In his semi-popular article (Turing 1954a) he gave a serious account of computability in
pure mathematics, but even there the material was self-effacing.
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The one area where he certainly put himself forward, was in the philosophy of Arti-
ficial Intelligence. But this, ironically, established his reputation as a pure theorist and
commentator on computing, never giving the impression that digital computers owed
their principle to his logical ideas. Meanwhile, after 1950 Turing turned predominantly
to his work in mathematical biology, apparently content to use (in a rather low-level
manner) the universal machine rather than to explain and further develop it. All this
was, of course, cut off by his death in June 1954. In his last years, however, he gave
new attention to questions in physics which went back to concerns pre-dating his ac-
quaintance with logic. As put by Newman (1955), Turing was ‘at heart more an applied
than a pure mathematician’,5 and his intellectual life had begun when his grandfather
gave him a copy of Einstein’s book on the theory of relativity. His first encounter
with von Neumann was nothing to do with computers; it was through reading, in 1932,
von Neumann’s mathematical formalization of the foundations of quantum mechanics.
Mathematical physics leads us back to the question of the relation of Turing’s logical
ideas with physical embodiment.

3 Effective calculation

In 1937, introducing Turing’s ideas to logicians in the then new Journal of Symbolic
Logic, Church gave his own version of Turing’s definition of computability, endorsing it
as a proper and valuable elucidation of the concept of effective calculability as follows:

The author [Turing] proposes as a criterion that an infinite sequence of digits
0 and 1 be “computable” that it shall be possible to devise a computing
machine, occupying a finite space and with working parts of finite size, which
will write down the sequence to any number of terms if allowed to run for a
sufficiently long time. As a matter of convenience, certain further restrictions
are imposed in the character of the machine, but these are of such a nature as
obviously to cause no loss of generality—in particular, a human calculator,
provided with pencil and paper and explicit instructions, can be regarded as
a kind of Turing machine.6

Church’s summary was curiously inaccurate. Although Turing (1936a) had indeed stated
at the outset that according to his definition, ‘a number is computable if its decimal can
be written down by a machine’, he had not said anything about the finite space or

5A recent acquisition of the Turing Archive at King’s College, Cambridge, gives further illustration
of Turing’s underlying knowledge and interest in mathematical physics: it is work he did in 1953-4 on an
engineering problem, ’Minimum Weight Structures,’ solved by going back to the principles of Lagrangian
mechanics.

6By ‘computing machine’ Church could not possibly have meant his readers to understand ‘Turing
machine’ because the readers of this first review were, by definition, ignorant of Turing machines. Indeed
the expression ‘Turing machine’ was only coined in this review. The words ‘computing machine’ here
imply complete generality: as Church put it in his review of Post’s work, which appeared on the same
page of the journal, effective calculability is to be identified with computability by an arbitrary machine,
subject only to restrictions of finiteness.
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size of machines. He had modelled his construction on a human being when following
a rule—both the human working from explicit written instructions, and the more au-
dacious argument from ‘states of mind’, which Church did not mention. His finiteness
conditions were stated on this basis. Church’s definition was put in terms of machines—
machines with a finite physical characterization—and presented the human computer as
a particular case. But Turing apparently made no objection and indeed Church repeated
his summary in 1940, when he was more fully acquainted with Turing’s work, having su-
pervised Turing’s Ph. D. thesis. In that thesis, Turing simply characterized computable
operations as those ‘which could be carried out by a machine’, without alerting readers
to any difference between his own 1936 description and Church’s picture of computation
by an arbitrary machine. There is no reason to suppose that Turing objected to Church’s
characterization of his definition, or that anyone at that time attached great importance
to the distinction between human calculator and ‘arbitrary machine’.

But although Turing had given a detailed and careful analysis of the concept of a
human being carrying out a computation, neither Church nor Turing devoted any atten-
tion to what was involved in the concept of a machine ‘occupying a finite space’. Turing,
in particular, had a very good background in physics, and both of them, at Cambridge
and Princeton, were surrounded by the world’s most advanced work in quantum theory
and relativity. They were well-placed to see that nineteenth-century concepts of space,
time, and matter could longer be maintained, and that naive ideas of a ‘machine’ might
be inadequate. Yet no such question seems to have arisen at that time.

Since then, many leading figures have raised just such questions about the physical
embodiment of computation. Indeed, a fundamental question for modern computer
science is whether Church’s characterization of computability holds good for machines
constructed from any kind of physical matter, working in any possible way. Thus the
leading computer scientist A. C.-C. Yao (2003), in a series of review articles marking fifty
years of the Association for Computing Machinery, summarized the Church-Turing thesis
as asserting that ‘any conceivable hardware system’ would yield only the same functions
as can be computed by Turing machines. Yao comments that this ‘may not have been
the belief of Church and Turing,’ but that it has become the ‘common interpretation.’
Judging by Church’s 1937 description of computability in terms of an ‘arbitrary machine’,
he was indeed broadly on this track. However, it should be noted that Church was
careful to state conditions of finiteness, which Yao’s statement omits. Such a condition is
obviously necessary, for one could ‘conceive of’ an infinite universe containing an infinite
register holding an uncomputable number, thus trivially defeating the statement. We
should also note that Yao regards the Church-Turing thesis as a scientific hypothesis
which may or may not be true, and requires empirical testing. It is not evident that
Church or Turing had so clear a view.

In fact, we should see Turing’s views not as frozen in a completed thesis but as
undergoing continual evolution. The expression ‘Church’s thesis’ was not used by anyone
until 1952, and Turing never cited any formulation of it as definitive. Instead, he gave
various different paraphrases of the general idea, often using rather vague expressions
like ‘rule of thumb.’ In the late 1940s, influenced by his practical work on computing,
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and looking at the question of how far computing could go, Turing wrote more on
the relationship between computability and physical processes. His report ‘Intelligent
machinery’ (Turing 1948) sketched a systematic treatment. It is notable that in this
report, Turing moved seamlessly between descriptions of mechanical processes as applied
by human beings and by physical objects, without drawing any distinction. Thus, when
describing humanly-effected algorithms, he described them as ‘paper machines’. And
in a reversal of the 1936 picture, he emphasised that any calculating machine could be
imitated by a human being working to a rule. The focal point of his discussion was ‘man
as a machine,’ and the themes of human and physical computation were drawn together
in the question of simulating the human brain.

In (Turing 1950), the computational simulation of the physical brain was not set out
quite explicitly, but it featured implicitly in (1) his estimate of the storage capacity of
the brain, pointless unless its simulation is being considered and (2) the very important
discussion of the ‘argument from continuity of the nervous system’, which would be
irrelevant if the physical nature of the brain were not a central part of his philosophy. It
is important also that in both 1948 and 1950, Turing gave short shrift to what he called
‘the mathematical argument’, declaring uncomputable functions irrelevant. The whole
point of his arguments about learning and program modification was that computable
operations could be capable not only of those tasks hitherto considered ‘mechanical’, but
of features such as ‘initiative’. There is no trace of his 1938 identification of ‘intuition’
with uncomputable steps: as indicated above, he had made a shift of view since then.
The thrust of these post-war papers, putting forward what he called a ‘heretical theory’
of the mind, was to put forward a wholly computable model. Penrose, summarizing
Turing’s position in 1950, says that ‘It seems likely that he viewed physical action in
general—which would include the action of a human brain—to be always reducible to
some kind of Turing-machine action’ (Penrose 1994, p. 21). This goes a little further
than what Turing explicitly wrote in 1950, but reflects what is implicit in the entire
framework. With this in mind, we can consider the more detailed statements about
physical machines which Turing offered in this period, the nearest thing to the analysis
of the human computer he had given in 1936.

4 Physical action, continuity and randomness

The brain was the centre of Turing’s interest in machines. And as he famously re-
marked, the fact that the brain has the consistency of cold porridge is not central to the
analysis of ‘intelligent machinery’. It is not the physical mass or chemical composition
of the brain that we must analyse, but its logical function. In his 1948 report, Turing
made a distinction between ‘active’ and ‘controlling’ machinery, using ‘a bulldozer’ as
an example of the former. It is controlling or information-theoretic machinery that we
are concerned with. This is in one sense a trivial remark—in discussing computation we
are only interested in machines qua calculating machines. But it does open up a deeper
perspective: what physical properties must a system possess to be capable of storing
and operating on information? Turing did not tackle this general question, but as we
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shall see, the physical embodiment of information-theoretic machines was ever-present
in his discussion.

In particular, he wished to relate the continuous world of physics and the discrete
world of Turing machines. In this 1948 report he explicitly made a distinction between
discrete and continuous machines. The main point of making this distinction lay in
Turing’s classification of the brain as a machine which is continuous, but in such a way
that the continuity is not relevant to its function.

It is important to note that he was experienced in theory and practice with continu-
ous systems and their relationship to the discrete. Turing’s example of ‘a telephone’ to
illustrate what he meant by a continuous machine hardly conveyed the depth of knowl-
edge he brought to this analysis. Nor could he have done—official secrecy would have
prevented it. In early 1943 he had privileged access, as the representative of the British
government, to the most secret American research in secure speech systems. These
methods used advanced sampling theory and encipherment through partly digital and
partly analogue electronic techniques. From May 1943 onwards he devised and built
his own speech encipherment system, ‘Delilah’ (Turing 1944). But this is only one of
multifarious examples throughout his work. The mathematical work that attracted von
Neumann’s attention in 1938 was his work on the discrete approximation of continu-
ous groups; his morphogenetic work centred on the evolution of discrete structure from
non-linear partial differential equations. His 1946 computer proposals were in no way
limited to the discrete work of a logician. He included from the start a discussion of
floating-point storage, and applications to traditional applied mathematical questions
such as potential theory and physical chemistry. In (Turing 1948b) he pioneered im-
portant new numerical methods in matrix inversion—for a recent detailed discussion see
(Higham 1996, p. 188)—essential to the use of digital computing in serious physical and
engineering problems. Most importantly, his most mathematical lecture (Turing 1947)
began by advancing the view that discrete computation offered an improvement on ana-
logue machines such as differential analysers. In an argument based on the principle of
the universal machine, he explained that instead of building bigger or better analogue
machines, one could gain increased accuracy, without limit, by the use of programming
and greater storage capacity alone. Very considerable effort had been put into devising
differential analysers by leading figures in mathematical physics, and in short, Turing
had to know what he was talking about.

So it is worthwhile to note what Turing (1950) gave as the reason why the brain
was effectively discrete. He did not mention the features of neurons that had inspired
McCulloch and Pitts to model them with logical gates. Instead, he started with a
statement that would apply to all non-trivial continuous dynamical systems:

The displacement of a single electron by a billionth of a centimetre at
one moment might make the difference between a man being killed by an
avalanche a year later, or escaping. It is an essential property of the me-
chanical systems which we have called discrete state machines that this phe-
nomenon does not occur.

Out of all his knowledge in mathematics, physics and engineering, this phenomenon—
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often called the ‘butterfly effect’—was the aspect of the relation between Z and R that he
chose to emphasise. In this paper, Turing apparently took for granted the argument for
approximation by use of finite-difference methods such as he had explained in (Turing
1947). Instead, he jumped ahead to answer an objection which few of his readers in
1950 would have thought of posing: that such approximation fails when chaotic effects
dominate. This insight could have be used as an important opening into the modern
study of non-linear dynamical systems. But that was not how he treated it. In the
context of computing, he held such chaotic phenomena to be irrelevances, of no functional
significance at all.7

Turing explained that the continuity of the brain meant that it would have such
‘avalanche’ effects, which a discrete system would not. ‘A small error in the information
about the size of a nervous impulse impinging on a neuron, may make a large difference
to the size of the outgoing impulse.’ But, he stated, the functional effect could be
imitated by a discrete system if random choices were added to the actions of the discrete
machine. The argument was sketchy and he referred to randomness very vaguely, saying
that the digits of π would do as a source of random input. It is mildly surprising that
he did not take more interest in defining and analysing randomness, considering his
long-standing interest in the analysis of probability and statistics, including the study
of normal numbers we have already noted, and the fact that his war work had largely
turned on the problem of distinguishing pseudo-random from random. This is a subject
he might well have taken up later, had he lived. A late-1950s Turing might also, in the
light of his work in morphogenesis, seeing discrete structures emerging out of non-linear
equations, have taken more interest in exploring the relationship of computability with
continuous dynamical systems. There is now great interest in theories of computable
analysis and analogue computing which seek to address this gap. But in 1950 at least,
Turing seems to have considered it quite sufficient to consider computation as a discrete
process, with the addition of rather cursorily considered random elements.

We may contrast Turing’s approach with that of some modern theorists, who seek
to outdo discrete computation by exploiting the very elements that Turing made little
of. Thus Siegelmann (1999) has suggested ‘computing beyond the Turing limit’ by
harnessing a system with an uncomputable element of R as a physical parameter. In
her construction, a precise knowledge of that parameter is vital. Such proposals, however,
have an infinite difficulty attached to them, which follows simply from the nature of real
numbers as equivalent to an infinite set of discrete data. For uncomputable numbers
there is no possibility of expressing this infinite set in terms of a finite package of data.

The problem is that every uncomputable number can be approximated arbitrarily
closely by a computable number, and indeed by a rational number. Thus infinite preci-
sion is needed to distinguish the computable from the uncomputable. Yet gravitational
waves from a neutrino collision in a faraway galaxy will wipe out all but the first few
decimal places of any physical measurement, and this would seem to make an uncom-
putable parameter, even if it could be supplied, impossible to exploit. As a general rule,

7Penrose (1989, p. 173) gives an argument to the same effect, that chaotic dynamics are ‘useless’ to
the brain.
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real numbers are used in physics to express quantities in such a way that the successive
digits can be assumed to become less and less significant. But if the uncomputability of a
real number is the object of attention, rather than its magnitude, this assumption fails,
for uncomputability lies in that infinite tail of ‘least significant’ digits. This contradicts
the standard idea of a mathematical model of a physical system, which is meaningless
without stability and robustness in the face of infinitesimal perturbations.

A similar difficulty faces those who appeal to the theorem of a group including
Shannon (De Leeuw et al. 1956), which concerns the possible outputs of a Turing machine
with a random element—something that Turing, with his vague definition of randomness,
had left open. Their result states that if the parameter of the element is α, such a
machine can compute everything that is computable relative to α. Hence if α is an
uncomputable real number, such a machine can apparently outdo Turing computability.
But again, it is necessary for this that α is embodied in the system with infinite precision,
and this is as unphysical a demand for a probabilistic parameter as for any other. A
related idea, also currently popular, is that it should be possible to exploit the fact that
a random real number is, with probability 1, uncomputable. Again, a difficulty is that
it must be known as an infinite sequence for its uncomputability to play any role. But
there is a further difficulty for those who hope to use this property to transcend the
limitations of computability: how can adding randomness into a computation possibly
increase its predictive power? A confusion may perhaps have arisen from Chaitin’s very
interesting characterization of numbers like his Ω as random, in the sense that they
are totally patternless and unpredictable. Every 0-or-1 bit in Ω means something very
non-random, e.g. the truth of the Fermat-Wiles theorem. This is quite the opposite
situation to that of a number produced by a random process, where no 0-or-1 bit has
any significance. Thus using Ω as an oracle indeed is like being able to draw on infinite
wisdom, but having access to a random number gives no useful knowledge at all.

Turing never made any such suggestion about using random numbers as infinite
sources of information, and his discussion could hardly be more different from infinite-
precision proposals. In fact, Turing emphasised the error inevitable even in systems
demanding only finite precision. That is, he asserted the physical impossibility of em-
bodying even computable processes. His 1946 computer design showed his keen aware-
ness of hardware error problems, and in (Turing 1947) he gave a brief discussion of
how discrete states are identifiable with discrete regions of the configuration space of
a dynamical system—thus making allowance for the vagaries of a continuous hardware
system. But Turing noted that computations would still be subject to error when partic-
ularly large thermodynamic fluctuations occurred. In 1948 he came up with an estimate
that there was virtual certainty of error in 101017

years.
But we now turn towards a more surprising observation by Turing about physics

and computation. In (Turing 1948) he also pointed out the constraint on computation
imposed by the finite speed of light. We may be amused now by his assumption that
components would need a centimetre of spatial separation, but he was perfectly correct
in drawing attention to the physical fact which drives miniaturisation. Thus Turing
acknowledged the implications for computing of the basic reality of relativistic space-
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time. What about quantum mechanics, the other great twentieth-century development in
physical theory? In 1948 Turing made no reference to the limits imposed on computing
by the quantum-mechanical nature of the electron. In particular, he did not suggest
anything like the modern theory of quantum computing. But he did see another place
in which quantum mechanics might be important.

It came in 1951, in Turing’s radio talk ‘Can a digital computer think?’ (Turing
1951a). Here Turing mostly went over the content of his 1950 paper, but with a more
explicit statement of the problem of simulating on a computer the action of the brain,
thought of as a physical machine. When doing so, he added a quite new comment: such
simulation would only be possible for machines

. . . of the sort whose behaviour is in principle predictable by calculation.
We certainly do not know how any such calculation should be done, and
it has even been argued by Sir Arthur Eddington that on account of the
Indeterminacy Principle in Quantum Mechanics no such prediction is even
theoretically possible.

This sentence marks a change of view from 1950. He had made no mention then
of this problem when discussing the ‘continuity of the nervous system’, and the force
of his discussion was that any such effects could be simulated satisfactorily by random
elements. Turing only wrote this one sentence on the relationship of computation to
quantum mechanics, so we know no more of why he had decided that physics now had
to be taken more seriously. It should be noted that Turing does not actually state a view
of his own; he attributes the objection to Eddington and presents it as almost fanciful.
But we do know that Turing then went on to spend time trying to formulate ‘a new
quantum mechanics’. Most probably he was hoping to close this gap in computability,
by finding a response to this ‘Eddington argument’. But we cannot tell; his ideas might
have led in new directions. We do know that he focussed on the principle of wave-function
‘reduction’ that underlies the indeterminacy or uncertainty principle. In his last months
he came up with the ‘Turing Paradox’ (Gandy 1954)—that the standard axioms of
quantum mechanics imply that in the limit of continuous observation a quantum system
cannot evolve.

Turing’s reference to Eddington is particularly striking: it was from The nature of
the physical world (Eddington 1928) that Turing first learnt of quantum mechanics. Ed-
dington clearly influenced Turing’s youthful view that quantum-mechanical uncertainty
explained the apparent free will of the mind, rescuing it from Laplacian determinism
(Turing 1932?).

5 Beyond Turing machines?

The word ‘hypercomputation’ has been coined to refer to processes supposed to be
capable, within a finite time, of effecting a procedure that no Turing machine could
carry out. There are many attempts to devise such processes and so defeat Church’s
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characterization of computability. For example, a simple observation is that an ‘accel-
erated’ Turing machine can solve a classically unsolvable problem in a finite time, if its
steps get faster and faster without limit as the computation proceeds. By summing an
elementary geometric series, infinitely many steps can be taken in a finite total time.
This is, however, a very large—indeed infinite—‘if’. It is easy to see that were such a
machine to exist, then given any time ε > 0, any computation, or indeed an infinite
sequence of computations, could be done in time less than ε. The unbounded small-
ness of ε is essential to the nature of uncomputability. The bland term ‘accelerated’ for
this imaginary concept is an infinite understatement of the completely different physical
world that would be required for it to exist.

Such a construct trades the infinite time required by a Turing machine computation
for the unbounded speed of this imaginary entity. A similar trade-off can be applied
by postulating that an infinite quantity of data can be stored in a finite space, and
similar difficulties ensue. Stannett (2004), for instance, suggests the encoding of infinite
data in a wire, by making use of the Fourier decomposition of its shape. Stannett
concedes that this procedure ‘may’ require wavelengths going below atomic size, and
would ‘probably not be possible using current technology’, but suggests using sound
waves instead, referring to wavelengths measured in ‘thousandths of a metre’. This is
again an infinite understatement of the proposition. Given any length ε > 0, almost all
the information must be encoded in wavelengths of less than ε. Somehow the bounds
imposed by the atomic nature of matter, and indeed the Planck length, would have to
be magically suspended. If the physical basis for such unboundedly high-pitched sounds
existed, it is hard to see why one should stop at storing one uncomputable number; one
might as well store infinitely many, and by the rules of Hilbert’s Hotel, there would be
plenty of room for infinitely more. This would indeed revolutionise computer storage.8

In contrast, the very interesting models of Warren D. Smith, cited by Yao (2003)
as important discussions of computability in physical theory, are highly non-trivial in
their mathematical analysis. They shed interesting new light on the non-linear equations
of physics. But, as Smith makes clear, and as Yao emphasises, the results depend on
infinite precision, typically assuming that equations such as the Navier-Stokes hold at all
length-scales and so ignoring the atomic basis of matter. In other proposals the infinite
resources demanded may be less clearly stated. The proposal of Kieu (2004, 2005) for
quantum computing, for instance, requires infinite precision and data density, but the
advanced nature of the material (and its confused argument) makes this opaque (Smith
2006, Hodges 2005). Kieu’s proposal is, incidentally, an example of a so-called ‘stochastic’
decision procedure, meaning that it offers only a certain probability of reaching a correct
decision. Thus an infinite time would still be taken to reach certainty, and it is not
obvious why this infinitude should be forgiven while the infinite time taken by a Turing
machine to solve the halting problem is not.

A very reasonable approach would be to extend or refine Church’s finiteness condi-
8It is of course questionable whether an infinite lookup table, even if such a thing existed, could really

be said to be ‘solving’ a problem. There is a serious problem concerning how such an oracle could ever
be verified, and therefore of why it should ever be believed.
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tion in such a way as to exclude such trade-offs which merely convert infinite time or
infinitely large data registers into requirements for unbounded speed, precision or data
density. Martin Davis, by asserting that ‘all that we experience is finite’, and ruling out
‘hypercomputation’ on those grounds, takes such an approach (Davis 2006). But experi-
ence does not tell us the fundamental physics of space, time and matter; indeed science
still lacks a complete theory. A viewpoint closer to Turing’s would be that discoveries in
physics and logic may influence each other, allowing understanding of the Church-Turing
thesis to evolve in unforeseen directions. There are already developments in quantum
computing which indicate the need for such evolution. Here are two: (1) Quantum gates
need to be understood as unitary operations, based on continuous unitary evolution in a
continuum of physical states. In an extreme case, the ‘adiabatic cooling’ method reduces
the whole of a computation to a single gate. This runs against the traditional assump-
tion of logicians that an effective calculation must be performed as a sequence of discrete
steps. (2) Quantum ‘teleporting’ depends on quantum entanglement, wave-function re-
duction, and space-time structure, in a way that is not wholly understood. While at
school, Turing (1929) commented on entanglement: ‘Of course [Schrödinger] does not
believe that there are really about 1070 dimensions, but that this theory will explain the
behaviour of an electron.’ The ontology of quantum field theory, and so of computations
done with it, is hardly better understood now than it was by the seventeen-year-old Alan
Turing.

The concept of ‘finite data’ in physics is not as simple as the structure of Z, because
‘quantum information’ involves wave-function and space-time geometry in a manner
that defeats our intuition. In a recent comment (Hodges 2004) on what Turing might
have done had he lived, attention was drawn to the counterfactual ‘bomb-testing’ use
of the quantum reduction process (Elizur and Vaidmann 1993), and since then there
has been more work on such ‘interaction-free measurement’, some bringing in what is
now called the ‘quantum Zeno effect’—which is just the prediction that Turing noted
in 1954. Overall, it would appear that the physical words in Church’s formulation of
computability in 1937—‘finite space’ and ‘sufficiently long time’ —point correctly to
what is necessary. We still need a full and fundamental understanding of space-time—or
more likely, of something beyond our current space-time picture, e.g. a super-string or
twistor geometry. Penrose (2004) gives a recent discussion of the quest for such deeper
structure, such as theoretical physicists now confidently expect to find.9

It would be unfortunate if rather trivial ‘hypercomputation’ schemes requiring un-
bounded speed or data density should draw attention away from the genuinely interesting
new models of computation arising from twentieth-century physics. Another unfortunate
aspect of the word ‘hypercomputation’, to which Martin Davis has drawn attention, is
that the term imparts a positive connotation of effective engineering. It suggests the
ability to pose a problem, classically unsolvable, to a hypercomputer which will correctly
answer it. Yet the term is used in contexts where it means nothing but the negative and
purely mathematical word ‘uncomputable’. Thus Stannett (2004) counts as ‘a hyper-

9Thus, in the treatment of the ‘gluon’ field holding the proton together, it can now be seen as very
helpful to frame the work in a twistor space, a complex-analytic extension of space-time (Hodges 2006a).
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computational model’ such things as Turing’s purely mathematical structures of ordinal
logics. Stannett also lists Penrose’s theory as such a ‘model’, but this overlooks a more
subtle difference. Penrose indeed believes that the physical function of the brain requires
some law of physics, as yet unknown, which cannot be approximated by a computable
function. He believes that the quantum-mechanical reduction process is not in fact ran-
dom but governed by some quite unknown law. It is striking that Penrose, like Turing, is
drawn to the physics of the brain and the question of its quantum-mechanical basis, and
sees the possibility of an element in wave-function reduction which cannot be simulated
by a computable process. But he does not propose building a machine for performing a
hypercomputation. Penrose emphasises that the unknown physics must be ‘something
completely different’ from an oracle supplying an uncomputable function.

Prominent proponents of ‘hypercomputation’ currently advise the general public of
a possible, even imminent revolution in technology. The largely crude and unphysi-
cal manifestos for this revolution make unconvincing economic forecasts. On the other
hand, there may be something very much more subtle yet to be discovered about the
fundamentals of physics, such as is suggested by Penrose’s theory of wave-function re-
duction, which will require a new logic of information, communication and computation
and perhaps indeed new insights into discrete and continuous structure. If so, Turing’s
return to mathematical physics was a good pointer to the way forward. In this paper
and in some other recent contributions (Hodges 2004, 2006b, 2007a, 2007b), the present
author urges that logic and physics should not be seen as wholly disjoint activities.

In looking back fifty years to Alan Turing, we can do well to look back a hundred
years to the birth of the Modern: the era of Planck’s constant, Hilbert’s problems,
Russell’s paradoxes and Einstein’s relativity. At the centre of the century, which Turing
did so much to shape, it was physics that took the front of the stage, with cryptology
and computers in comparative obscurity. Alan Turing’s life story was part of the secrecy
and obscurity of the logical world. Only some thirty years after his death did common
culture appreciate that computation might seriously impinge on human life. He was a
generation ahead, and it needed a generational shift to appreciate the issues of his life and
death. Only with the lifting of an immense secrecy could Alan Turing’s individualism be
seen as being both, in June 1944, vital to Anglo-American security, and in June 1954, a
threat to it.

Now, when computing is front-page news, physics has lost its 1950s status. But
computing requires both software and hardware, and the Church-Turing thesis, which
underlies computing, relates both to logic and to physics. What Turing analysed to
such great effect in 1936 was the idea of doing finitely many things at a time—but those
words ‘doing’, ‘finite’, ‘thing’, ‘at’, ‘a’, ‘time’, apparently so simple, are far from clear at
the level of fundamental physics. It is not just the relationship between the integers and
the reals that is involved: far more subtle features of the complex numbers and analytic
functions seem to enter in an essential way into physical reality, for reasons which are
far from clear. Alan Turing’s last postcard (Turing 1954b)—which should not be taken
as the thesis of any church!—is an appropriate ending. Or perhaps it is a starting-point
for the next fifty years:—
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Hyperboloids of wondrous Light
Rolling for aye through Space and Time
Harbour those waves that somehow Might
Play out God’s holy pantomime.
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