Lindenbaum's Lemma As An Axiom For Infinitary Logic

Rob Goldblatt

Victoria University of Wellington

British Logic Colloquium, Nottingham, September 2008

 Deduction systems for logics of coalgebras of certain measurable polynomial functors on the category Meas of measurable spaces.

• The role of Lindenbaum's Lemma in these infinitary logics.

Lindenbaum's Lemma: (1920's)

Every consistent set of sentences can be enlarged to form a consistent and complete system.

Published by Tarski in 1930.

Stated for Finitary Consequence Operators:

if $\varphi \in Cn(X)$, then $\varphi \in Cn(Y)$ for some finite $Y \subseteq X$.

• implies: the union of a chain of consistent sets is consistent

Henkin 1953 –1955:

Stone's representation of Boolean algebras is equivalent (without choice) to the Gödel-Malcev completeness theorem.

What is a coalgebra ?

Let $T : \mathcal{C} \to \mathcal{C}$ be a functor.

T-coalgebra (A, α) : α is a *C*-arrow of the form

 $A \xrightarrow{\alpha} TA$

A =state set

 α = transition structure

Morphism of *T*-Coalgebras

i.e.
$$\beta \circ f = Tf \circ \alpha$$

Example 1: Directed Graphs / Modal frames

(A, R) with $R \subseteq A \times A$. Define $\alpha(x) = \{y : xRy\} \subseteq A$.

Then

$$A \xrightarrow{\alpha} \mathcal{P}A$$

is a \mathcal{P} -coalgebra, where

$$\mathcal{P}:\mathbf{Set}\to\mathbf{Set}$$

is the powerset functor.

 $xRy \text{ iff } y \in \alpha(x).$

Example 2: Input-Output Automata

 $TA = A^I \times O^I$, for some fixed sets

I (= inputs) and O (= outputs).

A T-coalgebra

$$A \longrightarrow A^I \times O^I$$

is a pair of functions

$$A \longrightarrow A^I , \qquad A \longrightarrow O^I ,$$

or equivalently

 $A \times I \longrightarrow A$ state transition function, and $A \times I \longrightarrow O$ output function.

Other examples: data structures

lists, streams, stacks, trees,...

algebra constructs

coalgebra deconstructs

The Category Meas

Objects: measurable spaces

$$\mathbb{X} = (X, \mathcal{A}_{\mathbb{X}}),$$

where $\mathcal{A}_{\mathbb{X}}$ is a σ -algebra of measurable subsets of X.

Arrows $(X, \mathcal{A}) \xrightarrow{f} (X', \mathcal{A}')$:

measurable functions $X \xrightarrow{f} X'$, i.e. $A \in \mathcal{A}'$ implies $f^{-1}(A) \in \mathcal{A}$

Polynomial functors $T: Meas \rightarrow Meas$

are constructed from

- the identity functor $Id: \mathbb{X} \longmapsto \mathbb{X}$ and
- constant functors (every \mathbb{Y}) $\longmapsto \mathbb{X}$ by forming
- products $T_1 \times T_2 : \mathbb{X} \longmapsto T_1 \mathbb{X} \times T_2 \mathbb{X}$,
- coproducts $T_1 + T_2 : \mathbb{X} \longmapsto T_1 \mathbb{X} + T_2 \mathbb{X}$, and
- exponential functors $T^E : \mathbb{X} \longmapsto (T\mathbb{X})^E$ with fixed exponent *E*.

Measurable polynomial functors:

Constructible using also

 $\Delta T: \mathbb{Y} \longmapsto \Delta(T\mathbb{Y})$

where ΔX is the space of all probability measures on X.

Measure: $\mu : \mathcal{A}_{\mathbb{X}} \to [0, \infty]$ is countably additive with $\mu(\emptyset) = 0$.

• Countably additive:

 $\mu(\bigcup_n A_n) = \sum_0^\infty \mu(A_n)$ if A_n 's pairwise disjoint.

• Probability measure: $\mu(X) = 1$.

The σ -algebra on ΔX is generated by the sets

$$\beta^p(A) = \{\mu \mid \mu(A) \ge p\}$$

where $A \in \mathcal{A}_{\mathbb{X}}$ and $p \in [0,1] \cap \mathbb{Q}$.

Theorem [L. Moss and I. Viglizzo, Inform. & Comp. 2006]

For any measurable polynomial T, there exists a final T-coalgebra X_{final}

for each T-coalgebra \mathbb{Y} there is a unique morphism

 $\mathbb{Y} \xrightarrow{!} \mathbb{X}_{final}$

Motivation: "universal type spaces" in game-theoretic economics.

Moss-Viglizzo Construction: model-theoretic

Syntax for fixed T

(cf. B. Jacobs, Many-sorted coalgebraic modal logic, 2001)

- Ingredient: any functor involved in formation of *T*, or *Id*.
- $\ln g T$: the graph of ingredients of T (multi-edged labelled directed)

$$2 S_1 + S_2 \stackrel{\mathsf{in}_j}{\rightsquigarrow} S_j;$$

$$I S^E \stackrel{\mathsf{ev}_e}{\leadsto} S for all e \in E;$$

- $Id \stackrel{\mathsf{next}}{\leadsto} T.$

Many-sorted formulas

Notation: $\varphi: S$ means φ is a formula of sort $S \in \log T$

$$\bigcirc \ \bot_S : S$$

- 2 If $\varphi_1 : S$ and $\varphi_2 : S$, then $\varphi_1 \to \varphi_2 : S$
- **③** $A : \mathbb{X}$ if $A \in \mathcal{A}_{\mathbb{X}}$ or A is a singleton subset of \mathbb{X}
- If $S \stackrel{\kappa}{\rightsquigarrow} S'$ in $\operatorname{Ing} T$ with $\kappa \neq (\geq p)$, and $\varphi : S'$, then $[\kappa]\varphi : S$
- **6** If $\Delta S \in \text{Ing } T$ and $\varphi : S$, then $[\geqslant p]\varphi : \Delta S$ for any $p \in [0,1] \cap \mathbb{Q}$

Probability modality: $[\ge p]\varphi$ is read "the probability is at least *p* that φ ".

Satisfaction relation

For a $T\text{-coalgebra}\ (\mathbb{X},\alpha),$ define

$$\alpha, x \models_S \varphi$$

for $x \in S\mathbb{X}$, and $\varphi : S$. Put $\llbracket \varphi \rrbracket_S^{\alpha} = \{x \mid \alpha, x \models_S \varphi\}.$

$$\begin{array}{lll} \alpha, x \not\models_{S} \bot_{S} \\ \alpha, x \not\models_{S} \varphi_{1} \rightarrow \varphi_{2} & \text{iff} & \alpha, x \not\models_{S} \varphi_{1} \text{ implies } \alpha, x \not\models_{S} \varphi_{2} \\ \alpha, x \not\models_{Y} A & \text{iff} & x \in A \\ \alpha, x \not\models_{S_{1} \times S_{2}} [\operatorname{pr}_{j}] \varphi & \text{iff} & \alpha, \pi_{j}(x) \not\models_{S_{j}} \varphi \\ \alpha, x \not\models_{S_{1} + S_{2}} [\operatorname{in}_{j}] \varphi & \text{iff} & x = in_{j}(y) \text{ implies } \alpha, y \not\models_{S_{j}} \varphi \\ \alpha, f \not\models_{S^{E}} [\operatorname{ev}_{e}] \varphi & \text{iff} & \alpha, f(e) \not\models_{S} \varphi \\ \alpha, x \not\models_{Id} [\operatorname{next}] \varphi & \text{iff} & \alpha, \alpha(x) \not\models_{T} \varphi \\ \alpha, \mu \not\models_{\Delta S} [\geqslant p] \varphi & \text{iff} & \mu(\llbracket \varphi \rrbracket_{S}^{\alpha}) \geqslant p \end{array}$$

Semantic Consequence Relations

• Local

$$\Gamma \models_{S}^{\alpha} \varphi : \quad \alpha, x \models_{S} \Gamma \text{ implies } \alpha, x \models_{S} \varphi, \quad \text{all } x \in S \mathbb{X}.$$

• Global $\Gamma \models_S \varphi : \quad \Gamma \models_S^{\alpha} \varphi \quad \text{for all } T\text{-coalgebras } \alpha$

• $Conseq_T^{\alpha} = \{ \models_S^{\alpha} \mid S \in \log T \}$

• $Conseq_T = \{ \models_S | S \in lng T \}$

Role of Proof Theory

to give a syntactic characterisation of the many-sorted system

$$Conseq_T = \{ \models_S \mid S \in \log T \}.$$

Should depend only on

- syntactic shape of formulas
- basic set-theoretic properties of sets of formulas.

Answer: $Conseq_T$ is the least Lindenbaum deduction system for T

Strategy

• Axiomatically define the notion of a T-deduction system :

$$D = \{ \vdash^D_S \mid S \in \log T \}$$

- **2** Define *D* to be Lindenbaum if every \vdash_S^D -consistent set of formulas can be enlarged to a \vdash_S^D -maximal one.
- Observe that
 - ► Each local system $Conseq_T^{\alpha} = \{ \models_S^{\alpha} | S \in Ing T \}$ is a Lindenbaum deduction system.
 - ▶ The global system $Conseq_T = \{ \models_S | S \in Ing T \}$ is a Lindenbaum deduction system, hence extends the least one.
- If D is Lindenbaum, construct a "canonical" T-coalgebra (\mathbb{X}^D, α^D) such that

$$\Gamma \models^{\alpha^D}_S \varphi \quad \text{iff} \quad \Gamma \vdash^D_S \varphi,$$

i.e.
$$Conseq_T^{\alpha^D} = D.$$

Conclusion

• The local semantic consequence systems $Conseq_T^{\alpha}$ are exactly the Lindenbaum *T*-deduction systems.

2 The global semantic consequence system $Conseq_T$ is the least Lindenbaum *T*-deduction system.

When D is $Conseq_T$, (\mathbb{X}^D, α^D) is a final T-coalgebra.

Rules for Deduction Systems

- Assumption Rule: $\varphi \in \Gamma \cup Ax_S$ implies $\Gamma \vdash_S \varphi$.
- Modus Ponens: $\{\varphi, \varphi \to \psi\} \vdash_S \psi$.
- Cut Rule: If $\Gamma \vdash_S \psi$ for all $\psi \in \Sigma$ and $\Sigma \vdash_S \varphi$, then $\Gamma \vdash_S \varphi$.
- Deduction Rule: $\Gamma \cup \{\varphi\} \vdash_S \psi$ implies $\Gamma \vdash_S \varphi \to \psi$.
- Constant Rule: If $X \in \operatorname{Ing} T$, $\{\neg\{c\} \mid c \in X\} \vdash_X \bot_X$.
- Definite Box Rule: For each edge $S \stackrel{\kappa}{\leadsto} S'$ in $\operatorname{Ing} T$ with κ definite, $\Gamma \vdash_{S'} \psi$ implies $\{ [\kappa] \varphi \mid \varphi \in \Gamma \} \vdash_S [\kappa] \psi$.
- Archimedean Rule: If $\Delta S \in \operatorname{Ing} T$, $\{ [\geqslant q] \varphi \mid q .$
- Countable Additivity Rule: $\{\varphi_0, \ldots, \varphi_n, \ldots\} \vdash_S \psi$ implies $\{[\geqslant p](\varphi_0 \land \cdots \land \varphi_n) \mid n < \omega\} \vdash_{\Delta S} [\geqslant p]\psi.$

Failure of Lindenbaum's Lemma

- \mathbb{N} = the constant functor for the discrete space $\omega = \{0, 1, 2, \dots\}$
- T = the exponential functor $\mathbb{N}^{\mathbb{R}}$
- $\operatorname{Ing} T$ looks like $Id \stackrel{\operatorname{next}}{\leadsto} T \stackrel{\operatorname{ev}_T}{\leadsto} \mathbb{N}$
- $(r \mapsto n)$ is the formula $[next][ev_r]\{n\}$, of sort Id
- A *T*-coalgebra (X, α) has a transition function $\alpha : X \to \omega^{\mathbb{R}}$, with $\alpha, x \models_{Id} (r \mapsto n) \text{ iff } \alpha(x)(r) = n.$
- $\bullet \ \varGamma_{\mathbb{R}} = \{ (r \mapsto n) \to \neg (s \mapsto n) \mid r, s \in \mathbb{R}, \ r \neq s, \ n \in \omega \}.$
- $\Gamma_{\mathbb{R}}$ is unsatisfiable:

if $\alpha, x \models_{Id} \Gamma_{\mathbb{R}}$, then $\alpha(x) : \mathbb{R} \to \omega$ is injective \bigcirc

- There is a *T*-deduction system *D* for which $\Gamma_{\mathbb{R}}$ is \vdash_{Id}^{D} -consistent.
- If *D* was Lindenbaum, then $\Gamma_{\mathbb{R}} \subseteq x$ with *x* being \vdash_{Id}^{D} -maximal. But then $\alpha^{D}, x \models_{Id} \Gamma_{\mathbb{R}}$ $\textcircled{\odot}$

Reference

Deduction Systems for Coalgebras Over Measurable Spaces. *J. Logic & Computation*, to appear

http://www.mcs.vuw.ac.nz/~rob