Lindenbaum's Lemma As An Axiom For Infinitary Logic

Rob Goldblatt

Victoria University of Wellington
British Logic Colloquium, Nottingham, September 2008

Topics:

- Deduction systems for logics of coalgebras of certain measurable polynomial functors on the category Meas of measurable spaces.
- The role of Lindenbaum's Lemma in these infinitary logics.

Lindenbaum's Lemma: (1920’s)

Every consistent set of sentences can be enlarged to form a consistent and complete system.

Published by Tarski in 1930.

Stated for Finitary Consequence Operators:

if $\varphi \in C n(X)$, then $\varphi \in C n(Y)$ for some finite $Y \subseteq X$.

- implies: the union of a chain of consistent sets is consistent

Henkin 1953-1955:
Stone's representation of Boolean algebras is equivalent (without choice) to the Gödel-Malcev completeness theorem.

What is a coalgebra?

Let $T: \mathcal{C} \rightarrow \mathcal{C}$ be a functor.
T-coalgebra $(A, \alpha): \quad \alpha$ is a \mathcal{C}-arrow of the form

$$
A \xrightarrow{\alpha} T A
$$

$A=$ state set
$\alpha=$ transition structure

Morphism of T-Coalgebras

$$
\begin{aligned}
& (A, \alpha) \xrightarrow{f}(B, \beta) \\
& A \xrightarrow{f} B
\end{aligned}
$$

$$
\begin{aligned}
& \text { i.e. } \beta \circ f=T f \circ \alpha
\end{aligned}
$$

Example 1: Directed Graphs / Modal frames

(A, R) with $R \subseteq A \times A$.
Define $\alpha(x)=\{y: x R y\} \subseteq A$.
Then

$$
A \xrightarrow{\alpha} \mathcal{P} A
$$

is a \mathcal{P}-coalgebra, where

$$
\mathcal{P}: \text { Set } \rightarrow \text { Set }
$$

is the powerset functor.

$$
x R y \text { iff } y \in \alpha(x) .
$$

Example 2: Input-Output Automata

$T A=A^{I} \times O^{I}, \quad$ for some fixed sets
I (= inputs) and O (= outputs).
A T-coalgebra

$$
A \longrightarrow A^{I} \times O^{I}
$$

is a pair of functions

$$
A \longrightarrow A^{I}, \quad A \longrightarrow O^{I},
$$

or equivalently
$A \times I \longrightarrow A \quad$ state transition function, and
$A \times I \longrightarrow O \quad$ output function.

Other examples: data structures

lists, streams, stacks, trees,...
algebra constructs
coalgebra deconstructs

The Category Meas

Objects: measurable spaces

$$
\mathbb{X}=\left(X, \mathcal{A}_{\mathbb{X}}\right)
$$

where $\mathcal{A}_{\mathbb{X}}$ is a σ-algebra of measurable subsets of X.

Arrows $(X, \mathcal{A}) \xrightarrow{f}\left(X^{\prime}, \mathcal{A}^{\prime}\right)$:
measurable functions $X \xrightarrow{f} X^{\prime}$, i.e. $A \in \mathcal{A}^{\prime}$ implies $f^{-1}(A) \in \mathcal{A}$

Polynomial functors $\quad T:$ Meas \rightarrow Meas

are constructed from

- the identity functor $\quad I d: \mathbb{X} \longmapsto \mathbb{X}$
and
- constant functors (every $\mathbb{Y}) \longmapsto \mathbb{X}$
by forming
- products $T_{1} \times T_{2}: \mathbb{X} \longmapsto T_{1} \mathbb{X} \times T_{2} \mathbb{X}$,
- coproducts $T_{1}+T_{2}: \mathbb{X} \longmapsto T_{1} \mathbb{X}+T_{2} \mathbb{X}$,
and
- exponential functors $T^{E}: \mathbb{X} \longmapsto(T \mathbb{X})^{E}$ with fixed exponent E.

Measurable polynomial functors:

Constructible using also

$$
\Delta T: \mathbb{Y} \longmapsto \Delta(T \mathbb{Y})
$$

where $\Delta \mathbb{X}$ is the space of all probability measures on \mathbb{X}.
Measure: $\mu: \mathcal{A}_{\mathbb{X}} \rightarrow[0, \infty]$ is countably additive with $\mu(\emptyset)=0$.

- Countably additive: $\mu\left(\bigcup_{n} A_{n}\right)=\sum_{0}^{\infty} \mu\left(A_{n}\right)$ if A_{n} 's pairwise disjoint.
- Probability measure: $\mu(X)=1$.

The σ-algebra on $\Delta \mathbb{X}$ is generated by the sets

$$
\beta^{p}(A)=\{\mu \mid \mu(A) \geqslant p\}
$$

where $A \in \mathcal{A}_{\mathbb{X}}$ and $p \in[0,1] \cap \mathbb{Q}$.

Theorem [L. Moss and I. Viglizzo, Inform. \& Comp. 2006]

For any measurable polynomial T, there exists a final
T-coalgebra $\mathbb{X}_{\text {final }}$
for each T-coalgebra \mathbb{Y} there is a unique morphism

$$
\mathbb{Y} \xrightarrow{!} \mathbb{X}_{\text {final }}
$$

Motivation: "universal type spaces" in game-theoretic economics.
Moss-Viglizzo Construction: model-theoretic

Syntax for fixed T

(cf. B. Jacobs, Many-sorted coalgebraic modal logic, 2001)

- Ingredient: any functor involved in formation of T, or $I d$.
- $\operatorname{Ing} T$: the graph of ingredients of T (multi-edged labelled directed)
(1) $S_{1} \times S_{2} \stackrel{\mathrm{pr}_{j}}{\rightsquigarrow} S_{j}$ for $j \in\{1,2\}$;
(2) $S_{1}+S_{2} \stackrel{\mathrm{in}_{j}}{\leadsto} S_{j}$;
(3) $S^{E} \xrightarrow{\text { eve }} S$ for all $e \in E$;
(4) $\Delta S \xrightarrow[\rightsquigarrow]{\geqslant>} S$ for $p \in[0,1]_{\mathbb{Q}}$;
(5) $I d \stackrel{\text { next }}{\rightsquigarrow} T$.

Many-sorted formulas

Notation: $\varphi: S$ means φ is a formula of sort $S \in \operatorname{lng} T$
(1) $\perp_{S}: S$
(2) If $\varphi_{1}: S$ and $\varphi_{2}: S$, then $\varphi_{1} \rightarrow \varphi_{2}: S$
(3) $A: \mathbb{X}$ if $A \in \mathcal{A}_{\mathbb{X}}$ or A is a singleton subset of \mathbb{X}
(9) If $S \stackrel{\kappa}{\rightsquigarrow} S^{\prime}$ in $\operatorname{lng} T$ with $\kappa \neq(\geqslant p)$, and $\varphi: S^{\prime}$, then $[\kappa] \varphi: S$
(6) If $\Delta S \in \operatorname{lng} T$ and $\varphi: S$, then $[\geqslant p] \varphi: \Delta S$ for any $p \in[0,1] \cap \mathbb{Q}$

Probability modality: $[\geqslant p] \varphi$ is read "the probability is at least p that φ ".

Satisfaction relation

For a T-coalgebra (\mathbb{X}, α), define

$$
\alpha, x \mid=S \varphi
$$

for $x \in S \mathbb{X}$, and $\varphi: S$. Put $\llbracket \varphi \rrbracket_{S}^{\alpha}=\left\{x \mid \alpha, x=_{S} \varphi\right\}$.

$$
\begin{aligned}
& \alpha, x \not \models_{S} \perp_{S} \\
& \alpha, x=_{S} \varphi_{1} \rightarrow \varphi_{2} \quad \text { iff } \quad \alpha, x \models_{S} \varphi_{1} \text { implies } \alpha, x \models_{S} \varphi_{2} \\
& \alpha, x \models_{\mathbb{Y}} A \\
& \alpha, x \models S_{1 \times S_{2}}\left[\mathrm{pr}_{j}\right] \varphi \quad \text { iff } \quad \alpha, \pi_{j}(x) \models{ }_{S_{j}} \varphi \\
& \alpha, x \models S_{1}+S_{2}\left[\mathrm{in}_{j}\right] \varphi \quad \text { iff } \quad x=i n_{j}(y) \text { implies } \alpha, y=_{S_{j}} \varphi \\
& \alpha, f \vDash{ }_{S^{E}}\left[\mathrm{ev}_{e}\right] \varphi \quad \text { iff } \quad \alpha, f(e) \models_{S} \varphi \\
& \alpha, x \models_{I d}[\text { next }] \varphi \quad \text { iff } \quad \alpha, \alpha(x) \models_{T} \varphi \\
& \alpha, \mu \models \Delta S[\geqslant p] \varphi \quad \text { iff } \quad \mu\left(\llbracket \varphi \rrbracket_{S}^{\alpha}\right) \geqslant p
\end{aligned}
$$

Semantic Consequence Relations

- Local
$\Gamma \models_{S}^{\alpha} \varphi: \quad \alpha, x \models_{S} \Gamma$ implies $\alpha, x \models_{S} \varphi, \quad$ all $x \in S \mathbb{X}$.
- Global
$\Gamma \not{ }_{S} \varphi: \quad \Gamma \models_{S}^{\alpha} \varphi \quad$ for all T-coalgebras α
- Conseq $q_{T}^{\alpha}=\left\{\models_{S}^{\alpha} \mid S \in \operatorname{Ing} T\right\}$
- Conseq $_{T}=\left\{\models_{S} \mid S \in \operatorname{Ing} T\right\}$

Role of Proof Theory

to give a syntactic characterisation of the many-sorted system

$$
\text { Conseq }_{T}=\left\{\models_{S} \mid S \in \operatorname{Ing} T\right\} .
$$

Should depend only on

- syntactic shape of formulas
- basic set-theoretic properties of sets of formulas.

Answer: Conseq $_{T}$ is the least Lindenbaum deduction system for T

Strategy

(1) Axiomatically define the notion of a T-deduction system :

$$
D=\left\{\vdash_{S}^{D} \mid S \in \operatorname{lng} T\right\}
$$

(2) Define D to be Lindenbaum if every \vdash_{S}^{D}-consistent set of formulas can be enlarged to a \vdash_{S}^{D}-maximal one.
(3) Observe that

- Each local system $\operatorname{Conseq} q_{T}^{\alpha}=\left\{\models_{S}^{\alpha} \mid S \in \operatorname{lng} T\right\}$ is a Lindenbaum deduction system.
- The global system Conseq $_{T}=\left\{\models_{S} \mid S \in \operatorname{lng} T\right\}$ is a Lindenbaum deduction system, hence extends the least one.
(4) If D is Lindenbaum, construct a "canonical" T-coalgebra $\left(\mathbb{X}^{D}, \alpha^{D}\right)$ such that

$$
\Gamma \not \models_{S}^{\alpha^{D}} \varphi \quad \text { iff } \quad \Gamma \vdash{ }_{S}^{D} \varphi
$$

i.e. $\operatorname{Conseq}_{T}^{\alpha^{D}}=D$.

Conclusion

(1) The local semantic consequence systems $\operatorname{Conseq}_{T}^{\alpha}$ are exactly the Lindenbaum T-deduction systems.
(2) The global semantic consequence system Conseq $_{T}$ is the least Lindenbaum T-deduction system.

When D is Conseq $_{T},\left(\mathbb{X}^{D}, \alpha^{D}\right)$ is a final T-coalgebra.

Rules for Deduction Systems

- Assumption Rule: $\varphi \in \Gamma \cup A x_{S}$ implies $\Gamma \vdash_{S} \varphi$.
- Modus Ponens: $\{\varphi, \varphi \rightarrow \psi\} \vdash_{S} \psi$.
- Cut Rule: If $\Gamma \vdash_{S} \psi$ for all $\psi \in \Sigma$ and $\Sigma \vdash_{S} \varphi$, then $\Gamma \vdash_{S} \varphi$.
- Deduction Rule: $\Gamma \cup\{\varphi\} \vdash_{S} \psi$ implies $\Gamma \vdash_{S} \varphi \rightarrow \psi$.
- Constant Rule: If $\mathbb{X} \in \operatorname{Ing} T, \quad\{\neg\{c\} \mid c \in X\} \vdash_{\mathbb{X}} \perp_{\mathbb{X}}$.
- Definite Box Rule: For each edge $S \stackrel{\kappa}{\rightsquigarrow} S^{\prime}$ in $\operatorname{lng} T$ with κ definite, $\Gamma \vdash_{S^{\prime}} \psi$ implies $\{[\kappa] \varphi \mid \varphi \in \Gamma\} \vdash_{S}[\kappa] \psi$.
- Archimedean Rule: If $\Delta S \in \operatorname{Ing} T, \quad\{[\geqslant q] \varphi \mid q<p\} \vdash_{\Delta S}[\geqslant p] \varphi$.
- Countable Additivity Rule: $\left\{\varphi_{0}, \ldots, \varphi_{n}, \ldots\right\} \vdash_{S} \psi$ implies $\left\{[\geqslant p]\left(\varphi_{0} \wedge \cdots \wedge \varphi_{n}\right) \mid n<\omega\right\} \vdash_{\Delta S}[\geqslant p] \psi$.

Failure of Lindenbaum's Lemma

- $\mathbb{N}=$ the constant functor for the discrete space $\omega=\{0,1,2, \ldots\}$
- $T=$ the exponential functor $\mathbb{N}^{\mathbb{R}}$
- $\operatorname{Ing} T$ looks like $I d \xrightarrow{\text { next }} T \xrightarrow[\rightsquigarrow]{\mathrm{ev}_{r}} \mathbb{N}$
- $(r \mapsto n)$ is the formula $[$ next $]\left[\operatorname{ev}_{r}\right]\{n\}$, of sort $I d$
- A T-coalgebra (\mathbb{X}, α) has a transition function $\alpha: X \rightarrow \omega^{\mathbb{R}}$, with

$$
\alpha, x \models_{I d}(r \mapsto n) \text { iff } \alpha(x)(r)=n .
$$

- $\Gamma_{\mathbb{R}}=\{(r \mapsto n) \rightarrow \neg(s \mapsto n) \mid r, s \in \mathbb{R}, r \neq s, n \in \omega\}$.
- $I_{\mathbb{R}}$ is unsatisfiable:
if $\alpha, x \models_{I d} \Gamma_{\mathbb{R}}$, then $\alpha(x): \mathbb{R} \rightarrow \omega$ is injective \dot{Q}°
- There is a T-deduction system D for which $\Gamma_{\mathbb{R}}$ is $\vdash_{I d}^{D}$-consistent.
- If D was Lindenbaum, then $\Gamma_{\mathbb{R}} \subseteq x$ with x being $\vdash_{I d}^{D}$-maximal. But then $\alpha^{D}, x \models_{I d} \Gamma_{\mathbb{R}} \quad \odot$

Reference

Deduction Systems for Coalgebras Over Measurable Spaces.
J. Logic \& Computation, to appear
http://www.mcs.vuw.ac.nz/~rob

