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Abstract

This paper is concerned with metamathematical properties of intuitionistic set theories with
choice principles. It is proved that the disjunction property, the numerical existence prop-
erty, Church’s rule, and several other metamathematical properties hold true for Constructive
Zermelo-Fraenkel Set Theory and full Intuitionistic Zermelo-Fraenkel augmented by any combi-
nation of the principles of Countable Choice, Dependent Choices and the Presentation Axiom.
Also Markov’s principle may be added. Moreover, these properties hold effectively. For instance
from a proof of a statement ∀n ∈ ω ∃m ∈ ω ϕ(n,m) one can effectively construct an index e of a
recursive function such that ∀n ∈ ω ϕ(n, {e}(n)) is provable. Thus we have an explicit method
of witness and program extraction from proofs involving choice principles.

As for the proof technique, this paper is a continuation of [32]. [32] introduced a self-
validating semantics for CZF that combines realizability for extensional set theory and truth.

MSC:03F50, 03F35
Keywords: Constructive set theory, intuitionistic set theory, realizability, metamathematical
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1 Introduction

The objective of this paper is to investigate several metamathematical properties of Constructive
Constructive Zermelo-Fraenkel Set Theory, CZF, and Intuitionistic Zermelo-Fraenkel Set theory,
IZF, augmented by choice principles, and to provide an explicit method for extracting computa-
tional information from proofs of such theories.

IZF and CZF have the same language as ZF. Both theories are based on intuitionistic logic.
While IZF is squarely built on the idea of basing Zermelo-Fraenkel set theory on intuitionistic
logic, CZF is a standard reference theory for developing constructive predicative mathematics (cf.
[1, 2, 3, 4]).

The axioms of IZF comprise Extensionality, Pairing, Union, Infinity, Separation, and Powerset.
Instead of Replacement IZF has Collection

∀x ∈ a∃y ϕ(x, y) → ∃z ∀x ∈ a ∃y ∈ z ϕ(x, y)

and rather than Foundation it has the Set Induction scheme

∀x [∀y ∈ x ψ(y) → ψ(x)] → ∀xψ(x).
∗This material is based upon work supported by the National Science Foundation under Award No. DMS-0301162.
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The set theoretic axioms of CZF are Extensionality, Pairing, Union, Infinity, the Set Induction
scheme, and the following:
Restricted Separation scheme ∀a∃x∀y (y ∈ x ↔ y ∈ a ∧ ϕ(y)), for every restricted formula
ϕ(y), where a formula ϕ(x) is restricted, or ∆0, if all the quantifiers occurring in it are restricted,
i.e. of the form ∀x∈b or ∃x∈b;
Subset Collection scheme

∀a∀b∃c∀u [∀x∈a ∃y∈b ψ(x, y, u) →
∃d∈c (∀x∈a ∃y∈d ψ(x, y, u) ∧ ∀y∈d∃x∈a ψ(x, y, u))]

Strong Collection scheme

∀x∈a ∃y ϕ(x, y) → ∃b [∀x∈a∃y∈b ϕ(x, y) ∧ ∀y∈b∃x∈a ϕ(x, y)]

for all formulae ψ(x, y, u) and ϕ(x, y).
There are well-known metamathematical properties such as the disjunction and the numerical

existence property that are often considered to be hallmarks of intuitionistic theories. The next
definition gives a list of the well-known and some of the lesser-known metamathematical properties
that intuitionistic theories may or may not have.

Definition 1.1 Let T be a theory whose language, L(T ), encompasses the language of set theory.
Moreover, for simplicity, we shall assume that L(T ) has a constant ω denoting the set of von
Neumann natural numbers and for each n a constant n̄ denoting the n-th element of ω.1

1. T has the disjunction property, DP, if whenever T ` ψ ∨ θ holds for sentences ψ and θ of T ,
then T ` ψ or T ` θ.

2. T has the numerical existence property, NEP, if whenever T ` (∃x∈ω)φ(x) holds for a formula
φ(x) with at most the free variable x, then T ` φ(n̄) for some n.

3. T has the existence property, EP, if whenever T ` ∃xφ(x) holds for a formula φ(x) having at
most the free variable x, then there is a formula ϑ(x) with exactly x free, so that

T ` ∃!x [ϑ(x) ∧ φ(x)].

4. T has the weak existence property, wEP, if whenever

T ` ∃xφ(x)

holds for a formula φ(x) having at most the free variable x, then there is a formula ϑ(x) with
exactly x free, so that

T ` ∃!xϑ(x),
T ` ∀x [ϑ(x) → ∃uu ∈ x],
T ` ∀x [ϑ(x) → ∀u ∈ xφ(x)].

1The usual language of set theory does not have numerals, strictly speaking. Instead of adding numerals to the
language one could take ϕ(n̄) to mean ∃x [ηn(x) ∧ ϕ(x)], where ηn is a formula defining the natural number n in a
canonical way.
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5. T is closed under Church’s rule, CR, if whenever T ` (∀x∈ ω)(∃y∈ω)φ(x, y) holds for some
formula of T with at most the free variables shown, then, for some number e,

T ` (∀x∈ω)φ(x, {ē}(x)),

where {e}(x) stands for the result of applying the e-th partial recursive function to x.

6. T is closed under the Extended Church’s rule, ECR, if whenever

T ` (∀x∈ ω)[¬ψ(x) → (∃y∈ω)φ(x, y)]

holds for formulae of T with at most the free variables shown, then, for some number e,

T ` (∀x∈ω)[¬ψ(x) → {ē}(x) ∈ ω ∧ φ(x, {ē}(x))].

Note that ¬ψ(x) could be replaced by any formula which is provably equivalent in T to its
double negation. This comprises arithmetic formulae that are both ∨-free and ∃-free.

7. Let f : ω → ω convey that f is a function from ω to ω. T is closed under the variant of
Church’s rule, CR1, if whenever T ` ∃f [f : ω → ω ∧ ψ(f)] (with ψ(f) having no variables
but f), then, for some number e, T ` (∀x ∈ ω)(∃y ∈ ω)({ē}(x) = y) ∧ ψ({ē}).

8. T is closed under the Unzerlegbarkeits rule, UZR, if whenever T ` ∀x[ψ(x) ∨ ¬ψ(x)], then

T ` ∀xψ(x) or T ` ∀x¬ψ(x).

9. T is closed under the Uniformity rule, UR, if whenever T ` ∀x (∃y ∈ ω)ψ(x, y), then

T ` (∃y ∈ ω)∀xψ(x, y).

Slightly abusing terminology, we shall also say that T enjoys any of these properties if this, strictly
speaking, holds only for a definitional extension of T .

Actually, DP follows easily from NEP, and conversely, DP implies NEP for systems containing
a modicum of arithmetic (see [13]).

Also note that ECR entails CR, taking ψ(x) to be x 6= x.

A detailed historical account of metamathematical properties of intuitionistic set theories can
be found in [32]. However, for the reader’s convenience we will quote from the preface to [32]:

“Realizability semantics are of paramount importance in the study of intuitionistic theories.
They were first proposed by Kleene [17] in 1945. It appears that the first realizability definition for
set theory was given by Tharp [33] who used (indices of) Σ1 definable partial (class) functions as
realizers. This form of realizability is a straightforward extension of Kleene’s 1945 realizability for
numbers in that a realizer for a universally quantified statement ∀xφ(x) is an index e of a Σ1 partial
function such that {e}(x) is a realizer for φ(x) for all sets x. In the same vein, e realizes ∃xφ(x)
if e is a pair 〈a, e′〉 with e′ being a realizer for φ(a). A markedly different strand of realizability
originates with Kreisel’s and Troelstra’s [21] definition of realizability for second order Heyting
arithmetic and the theory of species. Here, the clauses for the realizability relation ° relating to
second order quantifiers are: e ° ∀Xφ(X) ⇔ ∀X e ° φ(X), e ° ∃Xφ(X) ⇔ ∃X e ° φ(X). This
type of realizability does not seem to give any constructive interpretation to set quantifiers; realizing
numbers “pass through” quantifiers. However, one could also say that thereby the collection of sets
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of natural numbers is generically conceived. On the intuitionistic view, the only way to arrive at
the truth of a statement ∀Xφ(X) is a proof. A collection of objects may be called generic if no
member of it has an intensional aspect that can make any difference to a proof.

Kreisel-Troelstra realizability was applied to systems of higher order arithmetic and set theory
by Friedman [12]. A realizability-notion akin to Kleene’s slash [18, 19] was extended to various
intuitionistic set theories by Myhill [26, 27]. [26] showed that intuitionistic ZF with Replacement
instead of Collection (dubbed IZFR henceforth) has the DP, NEP, and EP. [27] proved that
the constructive set theory CST enjoys the DP and the NEP, and that the theory without the
axioms of countable and dependent choice, CST−, also has the EP. It was left open in [27] whether
the full existence property holds in the presence of relativized dependent choice, RDC. Friedman
and Ščedrov [15] then established that IZFR + RDC satisfies the EP also. The Myhill-Friedman
approach [26, 27] proceeds in two steps. The first, which appears to make the whole procedure
non effective, consists in finding a conservative extension T ′ of the given theory T which contains
names for all the objects asserted to exist in T . T ′ is obtained by inductively adding names and
defining an increasing sequence of theories Tα through all the countable ordinals α < ω1 and letting
T ′ =

⋃
α<ω1

Tα.2 The second step consists in defining a notion of realizablity for T ′ which is a
variant of Kleene’s “slash”.

Several systems of set theory for the constructive mathematical practice were propounded by
Friedman in [14]. The metamathematical properties of these theories and several others as well
were subsequently investigated by Beeson [5, 6]. In particular, Beeson showed that IZF has the DP
and NEP. He used a combination of Kreisel-Troelstra realizability and Kleene’s [17, 18, 19, 20] q-
realizability. However, while Myhill and Friedman developed realizablity directly for extensional set
theories, Beeson engineered his realizability for non-extensional set theories and obtained results for
the extensional set theories of [14] only via an interpretation in their non-extensional counterparts.
This detour had the disadvantage that in many cases (where the theory does not have full Separation
or Powerset) the DP and NEP for the corresponding extensional set theory T -ext could only be
established for a restricted class of formulas; [5] Theorem 5.2 proves that NEP holds for T -ext
when T -ext ` (∃x ∈ ω)(x ∈ Q), where Q is a definable set of T . It appears unlikely that the Myhill-
Friedman techniques or Beeson’s detour through q-realizability for non-extensional set theories can
be employed to yield the DP and NEP for CZF. The theories considered by Myhill and Friedman
have Replacement instead of Collection and, in all probability, their approach is limited to such
theories, whereas Beeson’s techniques yield numerical explicit definability, not for all formulae ϕ(u),
but only for ϕ(u) of the form u ∈ Q, where Q is a specific definable set. But there was another
approach available. McCarty [23, 24] adapted Kreisel-Troelstra realizability directly to extensional
set theories. [23, 24], though, were concerned with realizability for intuitionistic Zermelo-Fraenkel
set theory (having Collection instead of Replacement), IZF, and employed transfinite iterations
of the powerset operation through all the ordinals in defining a realizability (class) structure.
Moreover, in addition to the powerset axiom this approach also availed itself of unfettered separation
axioms. At first blush, this seemed to render the approach unworkable for CZF as this theory lacks
the powerset axiom and has only bounded separation. Notwithstanding that, it was shown in [29]
that these obstacles can be overcome. Indeed, this notion of realizability provides a self-validating
semantics for CZF, viz. it can be formalized in CZF and demonstrably in CZF it can be verified
that every theorem of CZF is realized.” ([32], pp. 1234-1236)

The paper [32] introduced a new realizability structure V∗, which arises by amalgamating the
realizability structure with the universe of sets in a coherent, albeit rather complicated way. The
main semantical notion presented and utilized in [32] combines realizability for extensional set

2This type of construction is due to J.R. Moschovakis [25] §8&9.
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theory over V∗ with truth in the background universe V . A combination of realizability with truth
has previously been considered in the context of realizability notions for first and higher order
arithmetic. It was called rnt-realizability in [34]. The main metamathematical result obtained via
this tool were the following.

Theorem 1.2 The DP and the NEP hold true for CZF and CZF + REA. Both theories are
closed under CR, ECR, CR1, UZR, and UR, too.

Proof: [32], Theorem 1.2. 2

In the present paper presents another proof of Beeson’s result that IZF has the DP and the
NEP and a proof that IZF is closed under CR, ECR, CR1, UZR, and UR. There are a number
of further metamathematical results that can be obtained via this technology. For example, it will
be shown that Markov’s principle can be added to any of the foregoing theories. But the main
bulk of this paper is devoted to showing that the technology is particularly suited to the choice
principles of Countable Choice, Dependent Choices and the Presentation Axiom. In consequence
of that we are able to deduce that CZF augmented by any combination of these principles also has
the properties stated in Theorem 1.2. The same holds for IZF.

2 Choice principles

In many a text on constructive mathematics, axioms of countable choice and dependent choices
are accepted as constructive principles. This is, for instance, the case in Bishop’s constructive
mathematics (cf. [8]) as well as Brouwer’s intuitionistic analysis (cf. [35], Chap. 4, Sect. 2). Myhill
also incorporated these axioms in his constructive set theory [27].

The weakest constructive choice principle we shall consider is the Axiom of Countable Choice,
ACω, i.e. whenever F is a function with domain ω such that ∀i ∈ ω ∃y ∈ F (i), then there exists a
function f with domain ω such that ∀i ∈ ω f(i) ∈ F (i).

Let xRy stand for 〈x, y〉 ∈ R. A mathematically very useful axiom to have in set theory is the
Dependent Choices Axiom, DC, i.e., for all sets a and (set) relations R ⊆ a× a, whenever

(∀x∈a) (∃y∈a) xRy

and b0 ∈ a, then there exists a function f : ω → a such that f(0) = b0 and

(∀n ∈ ω) f(n)Rf(n + 1).

Even more useful in constructive set theory is the Relativized Dependent Choices Axiom, RDC.
It asserts that for arbitrary formulae φ and ψ, whenever

∀x[φ(x) → ∃y(φ(y) ∧ ψ(x, y))]

and φ(b0), then there exists a function f with domain ω such that f(0) = b0 and

(∀n ∈ ω)[φ(f(n)) ∧ ψ(f(n), f(n + 1))].

Let CZF− be CZF without Subset Collection.

Proposition 2.1 Provably in CZF− the following hold:
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(i) DC implies ACω.

(ii) RDC implies DC.

Proof: This is a well known fact. 2

The Presentation Axiom, PAx, is an example of a choice principle which is validated upon
interpretation in type theory. In category theory it is also known as the existence of enough
projective sets, EPsets (cf. [7]). In a category C, an object P in C is projective (in C) if for all

objects A,B in C, and morphisms A
f- B, P

g- B with f an epimorphism, there exists a
morphism P

h- A such that the following diagram commutes

A
f - B

¡
¡

¡
¡

¡

g

µ

P

h

6
.................

It easily follows that in the category of sets, a set P is projective if for any P -indexed family
(Xa)a∈P of inhabited sets Xa, there exists a function f with domain P such that, for all a ∈ P ,
f(a) ∈ Xa.

PAx (or EPsets), is the statement that every set is the surjective image of a projective set.
Alternatively, projective sets have also been called bases, and we shall follow that usage hence-

forth. In this terminology, ACω expresses that ω is a base whereas AC amounts to saying that
every set is a base.

Proposition 2.2 (CZF−) PAx implies DC.

Proof: See [1] or [7], Theorem 6.2. 2

The implications of Propositions 2.1 and 2.2 cannot be reversed, not even on the basis of ZF.

Proposition 2.3 ZF + DC does not prove PAx.

Proof: See [30] Proposition 5.2. 2

3 The partial combinatory algebra Kl

In order to define a realizability interpretation we must have a notion of realizing functions on hand.
A particularly general and elegant approach to realizability builds on structures which have been
variably called partial combinatory algebras, applicative structures, or Schönfinkel algebras. These
structures are best described as the models of a theory APP (cf. [10, 11, 6, 35]). The language of
APP is a first-order language with a ternary relation symbol App, a unary relation symbol N (for a
copy of the natural numbers) and equality, =, as primitives. The language has an infinite collection
of variables, denoted x, y, z, . . ., and nine distinguished constants: 0, sN ,pN ,k, s,d,p,p0,p1 for,
respectively, zero, successor on N , predecessor on N , the two basic combinators, definition by
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cases, pairing and the corresponding two projections. There is no arity associated with the various
constants. The terms of APP are just the variables and constants. We write t1t2 ' t3 for
App(t1, t2, t3).

Formulae are then generated from atomic formulae using the propositional connectives and the
quantifiers.

In order to facilitate the formulation of the axioms, the language of APP is expanded defini-
tionally with the symbol ' and the auxiliary notion of an application term is introduced. The set
of application terms is given by two clauses:

1. all terms of APP are application terms; and

2. if s and t are application terms, then (st) is an application term.

For s and t application terms, we have auxiliary, defined formulae of the form:

s ' t := ∀y(s ' y ↔ t ' y),

if t is not a variable. Here s ' a (for a a free variable) is inductively defined by:

s ' a is
{

s = a, if s is a term of APP,
∃x, y[s1 ' x ∧ s2 ' y ∧ App(x, y, a)]if s is of the form (s1s2).

Some abbreviations are t1t2 . . . tn for ((...(t1t2)...)tn); t ↓ for ∃y(t ' y) and φ(t) for ∃y(t ' y∧φ(y)).
Some further conventions are useful. Systematic notation for n-tuples is introduced as follows:

(t) is t, (s, t) is pst, and (t1, . . . , tn) is defined by ((t1, . . . , tn−1), tn). In this paper, the logic of
APP is assumed to be that of intuitionistic predicate logic with identity. APP’s non-logical
axioms are the following:

Applicative Axioms

1. App(a, b, c1) ∧ App(a, b, c2) → c1 = c2.

2. (kab) ↓ ∧ kab ' a.

3. (sab) ↓ ∧ sabc ' ac(bc).

4. (pa0a1) ↓ ∧ (p0a) ↓ ∧ (p1a) ↓ ∧ pi(pa0a1) ' ai for i = 0, 1.

5. N(c1) ∧ N(c2) ∧ c1 = c2 → dabc1c2 ↓ ∧ dabc1c2 ' a.

6. N(c1) ∧ N(c2) ∧ c1 6= c2 → dabc1c2 ↓ ∧ dabc1c2 ' b.

7. ∀x (N(x) → [sNx ↓ ∧ sNx 6= 0 ∧ N(sNx)]).

8. N(0) ∧ ∀x (N(x) ∧ x 6= 0 → [pNx ↓ ∧ sN (pNx) = x]).

9. ∀x [N(x) → pN (sNx) = x]

10. ϕ(0) ∧ ∀x[N(x) ∧ ϕ(x) → ϕ(sNx)] → ∀x[N(x) → ϕ(x)].

Let 1 := sN 0. The applicative axioms entail that 1 is an application term that evaluates to an
object falling under N but distinct from 0, i.e., 1 ↓, N(1) and 0 6= 1.

Employing the axioms for the combinators k and s one can deduce an abstraction lemma
yielding λ-terms of one argument. This can be generalized using n–tuples and projections.
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Lemma 3.1 (cf. [10]) (Abstraction Lemma) For each application term t there is a new appli-
cation term t∗ such that the parameters of t∗ are among the parameters of t minus x1, . . . , xn and
such that

APP ` t∗ ↓ ∧ t∗x1 . . . xn ' t.

λ(x1, . . . , xn).t is written for t∗.

The most important consequence of the Abstraction Lemma is the Recursion Theorem. It can
be derived in the same way as for the λ–calculus (cf. [10], [11], [6], VI.2.7). Actually, one can prove
a uniform version of the following in APP.

Corollary 3.2 (Recursion Theorem)

∀f∃g∀x1 . . . ∀xn g(x1, . . . , xn) ' f(g, x1, . . . , xn).

The “standard” applicative structure is Kl in which the universe |Kl| is ω and AppKl(x, y, z)
is Turing machine application:

AppKl(x, y, z) iff {x}(y) ' z.

The primitive constants of APP are interpreted over |Kl| in the obvious way. Thus there are
nine distinguished elements 0

Kl
, s

Kl

N
,p

Kl

N
,k

Kl
, s

Kl
,d

Kl
,p

Kl
,p0

Kl
,p1

Kl
of ω pertaining to the axioms

of APP. For details see [23], chap.3, sec.2 or [6], VI.2.7. In the following we will be solely
concerned with the standard applicative structure Kl. We will also be assuming that the notion of
an applicative structure and in particular the structure Kl have been formalized in CZF, and that
CZF proves that Kl is a model of APP. We will usually drop the superscript “Kl” when referring
to any of the special constants of Kl.

4 The general realizability structure

If a is an ordered pair, i.e., a = 〈x, y〉 for some sets x, y, then we use 1st(a) and 2nd(a) to denote
the first and second projection of a, respectively; that is, 1st(a) = x and 2nd(a) = y. For a class X
we denote by P(X) the class of all sets y such that y ⊆ X.

Definition 4.1 Ordinals are transitive sets whose elements are transitive also. As per usual, we
use lower case Greek letters to range over ordinals.

V∗α =
⋃

β∈α

{〈a, b〉 : a ∈ Vβ; b ⊆ ω × V∗β; (∀x ∈ b) 1st(2nd(x)) ∈ a} (1)

Vα =
⋃

β∈α

P(Vβ)

V∗ =
⋃
α

V∗α

V =
⋃
α

Vα.

As the power set operation is not available in CZF it is not clear whether the classes V and V∗ can
be formalized in CZF. However, employing the fact that CZF accommodates inductively defined
classes this can be demonstrated in the same vein as in [29], Lemma 3.4.
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The definition of V∗α in (1) is perhaps a bit involved. Note first that all the elements of V∗ are
ordered pairs 〈a, b〉 such that b ⊆ ω × V∗. For an ordered pair 〈a, b〉 to enter V∗α the first conditions
to be met are that a ∈ Vβ and b ⊆ ω × V∗β for some β ∈ α. Furthermore, it is required that a

contains enough elements from the transitive closure of b in that whenever 〈e, c〉 ∈ b then 1st(c) ∈ a.

Lemma 4.2 (CZF).

(i) V and V∗ are cumulative: for β ∈ α, Vβ ⊆ Vα and V∗β ⊆ V∗α.

(ii) For all sets a, a ∈ V.

(iii) If a, b are sets, b ⊆ ω × V∗ and (∀x ∈ b) 1st(2nd(x)) ∈ a, then 〈a, b〉 ∈ V∗.

Proof: [32], Lemma 4.2. 2

5 Defining realizability

We now proceed to define a notion of realizability over V∗. We use lower case gothic letters
a, b, c, d, e, f, g, h, n, m, p, q . . . as variables to range over elements of V∗ while variables e, c, d, f, g, . . .
will be reserved for elements of ω. Each element a of V∗ is an ordered pair 〈x, y〉, where x ∈ V and
y ⊆ ω × V∗; and we define the components of a by

a◦ := 1st(a) = x

a∗ := 2nd(a) = y.

Lemma 5.1 For every a ∈ V∗, if 〈e, c〉 ∈ a∗ then c◦ ∈ a◦.

Proof: This is immediate by the definition of V∗. 2

If ϕ is a sentence with parameters in V∗, then ϕ◦ denotes the formula obtained from ϕ by replacing
each parameter a in ϕ with a◦.

Definition 5.2 Bounded quantifiers will be treated as quantifiers in their own right, i.e., bounded
and unbounded quantifiers are treated as syntactically different kinds of quantifiers.

We define e °rt φ for sentences φ with parameters in V∗. (The subscript rt is supposed to serve
as a reminder of “realizability with truth”.)

We shall use the abbreviations (x, y), (x)0, and (x)1 for pxy, p0x, and p1x, respectively.

e °rt a ∈ b iff a◦ ∈ b◦ ∧ ∃ c [〈(e)0, c〉 ∈ b∗ ∧ (e)1 °rt a = c]
e °rt a = b iff a◦ = b◦ ∧ ∀f∀c [〈f, c〉 ∈ a∗ → (e)0f °rt c ∈ b]

∧ ∀f∀c [〈f, c〉 ∈ b∗ → (e)1f °rt c ∈ a]
e °rt φ ∧ ψ iff (e)0 °rt φ ∧ (e)1 °rt ψ

e °rt φ ∨ ψ iff [(e)0 = 0 ∧ (e)1 °rt φ] ∨ [(e)0 6= 0 ∧ (e)1 °rt ψ]
e °rt ¬φ iff ¬φ◦ ∧ ∀f ¬f °rt φ

e °rt φ → ψ iff (φ◦ → ψ◦) ∧ ∀f [f °rt φ → ef °rt ψ]
e °rt (∀x ∈ a) φ iff (∀x ∈ a◦)φ◦ ∧
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∀f ∀b(〈f, b〉 ∈ a∗ → ef °rt φ[x/b])
e °rt (∃x ∈ a)φ iff ∃b (〈(e)0, b〉 ∈ a∗ ∧ (e)1 °rt φ[x/b])

e °rt ∀xφ iff ∀a e °rt φ[x/a]
e °rt ∃xφ iff ∃a e °rt φ[x/a]

Notice that e °rt u ∈ v and e °rt u = v can be defined for arbitrary sets u, v, viz., not just
for u, v ∈ V∗. The definitions of e °rt u ∈ v and e °rt u = v fall under the scope of definitions by
transfinite recursion.

Definition 5.3 By ∈-recursion we define for every set x a set xst as follows:

xst = 〈x, {〈0, ust〉 : u ∈ x}〉. (2)

Lemma 5.4 For all sets x, xst ∈ V∗ and (xst)◦ = x.

Proof: [32], Lemma 5.4. 2

Lemma 5.5 If ψ(b◦) holds for all b ∈ V∗ then ∀xψ(x).

Proof: [32], Lemma 5.5. 2

Lemma 5.6 If a ∈ V∗ and (∀b ∈ V∗)[b◦ ∈ a◦ → ψ(b◦)] then (∀x ∈ a◦)ψ(x).

Proof: [32], Lemma 5.6. 2

Lemma 5.7 If e °rt φ then φ◦.

Proof: [32], Lemma 5.7. 2

Our hopes for showing DP and NEP for CZF and related systems rest on the following results.

Lemma 5.8 If e °rt (∃x ∈ a)φ then

∃b (〈(e)0, b〉 ∈ a∗ ∧ φ◦[x/b◦]).

Proof: Obvious by 5.7. 2

Lemma 5.9 If e °rt φ ∨ ψ then

[(e)0 = 0 ∧ φ◦] ∨ [(e)0 6= 0 ∧ ψ◦].
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Proof: Obvious by 5.7. 2

Lemma 5.10 Negated formulae are self-realizing, that is to say, if ψ is a statement with parameters
in V∗, then

¬ψ◦ → 0 °rt ¬ψ.

Proof: Assume ¬ψ◦. From f °rt ψ we would get ψ◦ by Lemma 5.8. But this is absurd. Hence
∀f ¬f °rt ψ, and therefore 0 °rt ¬ψ. 2

Definition 5.11 Let t be an application term and ψ be a formula of set theory. Then t °rt ψ is
short for (∃e ∈ ω)[t ' e ∧ e °rt ψ].

Theorem 5.12 For every theorem θ of CZF, there exists a closed application term t such that

CZF ` (t °rt θ).

Moreover, the proof of this soundness theorem is effective in that the application term t can be
effectively constructed from the CZF proof of θ.

Proof: [32], Theorem 6.1. 2

Remark 5.13 Theorem 5.12 holds also for CZF augmented by other large set axioms such as
“Every set is contained in an inaccessible set” or “Every set is contained in a Mahlo set”. For
definitions of “inaccessible set” and “Mahlo set” see [4, 9]. For example, in the case of the so-called
Regular Extension Axiom this was carried out in [32], Theorem 7.2.

6 Extending the interpretation to IZF

In this section we address several extensions of earlier results. We show that in Theorem 5.12 CZF
can be replaced by IZF and also that Markov’s principle may be added.

Theorem 6.1 For every theorem θ of IZF, there exists an application term t such that

IZF ` (t °rt θ).

Moreover, the proof of this soundness theorem is effective in that the application term t can be
effectively constructed from the IZF proof of θ.

Proof: In view of Theorem 5.12 we only need to show that IZF proves that the Power Set Axiom
and the full Separation Axiom are realized with respect to °rt .

(Full Separation): Let ϕ(x) be an arbitrary formula with parameters in V∗. We want to find
e, e′ ∈ ω such that for all a ∈ V∗ there exists a b ∈ V∗ such that

(e °rt ∀x ∈ b [x ∈ a ∧ ϕ(x)]) ∧ (e′ °rt ∀x ∈ a[ϕ(x) → x ∈ b]). (3)

11



For a ∈ V∗, define

Sep(a, ϕ) = {〈pfg, c〉 : f, g ∈ ω ∧ 〈g, c〉 ∈ a∗ ∧ f °rt ϕ[x/c]},
b = 〈{x ∈ a◦ : ϕ◦(x)}, Sep(a, ϕ)〉.

Sep(a, ϕ) is a set by full Separation, and hence b is a set. To ensure that b ∈ V∗ let 〈h, c〉 ∈ Sep(a, ϕ).
Then 〈g, c〉 ∈ a∗ and f °rt ϕ[x/c] for some f, g ∈ ω. Thus c◦ ∈ a◦ and, by Lemma 5.7, ϕ◦[x/c◦],
yielding c◦ ∈ {x ∈ a◦ : ϕ◦(x)}. Therefore, by Lemma 4.2, we have b ∈ V∗.

To verify (3), first assume 〈h, c〉 ∈ b∗ and c◦ ∈ b◦. Then h = pfg for some f, g ∈ ω and
〈g, c〉 ∈ a∗ and f °rt ϕ[x/c]. Since c◦ ∈ b◦ holds, it follows that c◦ ∈ a◦. As a result, c◦ ∈
a◦ ∧ 〈g, c〉 ∈ a∗ ∧ ir °rt c = c, and consequently we have p(h)1ir °rt b ∈ a and (h)0 °rt ϕ[x/c],
where ir is the realizer of the identity axiom ∀xx = x (see [23], Chapter 2, sections 5 and 6).
Moreover, we have (∀x ∈ b◦)(x ∈ a◦ ∧ ϕ◦(x)). Therefore with e = p(p(λu.(u)1)ir)(λu.(u)0), we
get e °rt ∀x ∈ b [x ∈ a ∧ ϕ(x)].

Now assume 〈g, c〉 ∈ a, c◦ ∈ a◦ and f °rt ϕ[x/c]. Then 〈pfg, c〉 ∈ b∗ and also c◦ ∈ b◦ as ϕ◦[x/c◦]
is a consequence of f °rt ϕ[x/c] by Lemma 5.7. Therefore p(pfg)ir °rt c ∈ b. Finally, by the very
definition of b we have (∀x ∈ a◦)[ϕ◦(x) → x ∈ b◦], and hence with e′ = λu.λv.p(pvu)ir we get
e′ °rt (∀x ∈ a)[ϕ(x) → x ∈ b].

(Powerset): It suffices to find a realizer for the formula ∀x∃y ∀z [z ⊆ x → z ∈ y] as it implies
the Powerset Axiom with the aid of Separation. Let a ∈ V∗. Put A = {d : ∃g 〈g, d〉 ∈ a∗}. For
y ⊆ ω ×A let

ay := 〈{c◦ : ∃f 〈f, c〉 ∈ y}, y〉.
Note that ay ∈ V∗. The role of a set large enough to comprise the powerset of a in V∗ will be played
by the following set

p := 〈P(a◦), {〈0, ay〉 : y ⊆ ω ×A}〉.
p is a set in our background theory IZF. For 〈0, ay〉 ∈ p∗ we have a◦y ⊆ a◦, and thus a◦y ∈ P(a◦), so
it follows that p ∈ V∗.

Now suppose e °rt b ⊆ a. Put

yb := {〈(d, f), x〉 : d, f ∈ ω ∧ 〈(df)0, x〉 ∈ a∗ ∧ ∃c [〈d, c〉 ∈ b∗ ∧ (df)1 °rt x = c]}. (4)

(Recall that (x, y) stands for pxy.) By definition of yb, yb ⊆ ω ×A, and therefore 〈0, ayb
〉 ∈ p∗.

If 〈f, c〉 ∈ b∗ it follows that ef °rt c ∈ a since e °rt b ⊆ a; and hence there exists x such that
〈(ef)0, x〉 ∈ a∗ and (ef)1 °rt x = c; whence 〈(e, f), x〉 ∈ yb and therefore ((e, f), (ef)1) °rt c ∈ ayb

.
Thus we can infer that λf.((e, f), (ef)1) °rt b ⊆ ayb

.
Conversely, if 〈g, x〉 ∈ a∗yb

= yb, then there exist d, f and c such that g = (d, f), 〈d, c〉 ∈ b∗, and
(df)1 °rt c = x, which entails that ((g)0, ((g)0(g)1)1) °rt x ∈ b. As a result, η(e) °rt b = ayb

, where
η(e) = (λf.((e, f), (ef)1), λg.((g)0, ((g)0(g)1)1)). Hence (0, η(e)) °rt b ∈ p, so that

λe.(0, η(e)) °rt ∀y [y ⊆ a → y ∈ p],

and therefore, by the genericity of quantifiers,

λe.(0, η(e)) °rt ∀x∃y ∀z [z ⊆ x → z ∈ y]. (5)

2
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Theorem 6.2 IZF has the DP and NEP and IZF is closed under CR, ECR, CR1, UZR, and
UR, too.

Proof: This follows from Theorem 6.1 by the proof of [32], Theorem 1.2. 2

Remark 6.3 [32], Theorem 1.2 and 6.2 allow for generalizations to extensions of CZF,CZF +
REA, and IZF via “true” axioms that are of the form ¬ψ. This follows easily from the proofs
of these theorems and the fact that negated statements are self-realizing (see Lemma 5.10). As
a consequence we get, for example, that if ¬ϑ is a true sentence and CZF ` ¬ϑ → (φ ∨ ψ),
then CZF ` ¬ϑ → φ or CZF ` ¬ϑ → ψ. Likewise, CZF ` ¬ϑ → (∃x ∈ ω)θ(x) implies
CZF ` (∃x ∈ ω)[¬ϑ → θ(x)].

Next we extended our results to theories a classically valid principle. Markov’s Principle, MP, is
closely associated with the work of the school of Russian constructivists. The version of MP most
appropriate to the set-theoretic context is the schema

∀n ∈ ω [ϕ(n) ∨ ¬ϕ(n)] ∧ ¬¬∃n ∈ ω ϕ(n) → ∃n ∈ ωϕ(n).

The variant
¬¬∃n ∈ ω R(n) → ∃n ∈ ωR(n),

with R being a primitive recursive predicate, will be denoted by MPPR. Obviously, MPPR is
implied by MP.

Theorem 6.4 Let T be any of the theories CZF, CZF + REA, IZF, or IZF + REA. For every
theorem θ of T + MP, there exists an application term t such that

T + MP ` (t °rt θ).

Moreover, the proof of this soundness theorem is effective in that the application term t can be
effectively constructed from the T + MP proof of θ.

Proof: Arguing in T + MP, it remains to find realizing terms for MP. We assume that

(e)0 °rt (∀x∈ω) [ϕ(x) ∨ ¬ϕ(x)] (6)
(e)1 °rt ¬¬(∃x∈ω) ϕ(x). (7)

Let e′ = (e)0. Unravelling the definition of °rt for negated formulas, it is a consequence of (7)
that (∀d∈ω)¬ (∀f∈ω) ¬f °rt (∃x∈ω)ϕ(x), and hence ¬ (∀f∈ω) ¬f °rt (∃x∈ω)ϕ(x), which implies
¬¬(∃f ∈ ω)f °rt (∃x∈ω)ϕ(x) (just using intuitionistic logic), and hence

¬¬(∃f ∈ ω)(f)1 °rt ϕ[x/(f)0]. (8)

(6) yields that (∀n∈ω)e′n ↓ and

(∀n∈ω)([(e′n)0 = 0 ∧ (e′n)1 °rt ϕ[x/n]] ∨ [(e′n)0 6= 0 ∧ (e′n)1 °rt ¬ϕ[x/n]]).

Since (e′n)1 °rt ¬ϕ(n) entails that ¬(e′n)1 °rt ϕ(n) we arrive at

(∀n∈ω)[ψ(n) ∨ ¬ψ(n)], (9)
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where ψ(n) is the formula (e′n)0 = 0∧ (e′n)1 °rt ϕ[x/n]. Utilizing that MP holds in the background
theory, from (8) and (9) we can deduce that there exists a natural number m such that ψ(m) is
true, i.e., (e′m)0 = 0 and (e′m)1 °rt ϕ[x/m]. Then, with r := µn.(e′n)0 = 0,

(e′r)1 °rt ϕ[x/m].

r can be computed by a partial recursive function ζ from e′. Taking into account that for any
instance θ of MP with parameters in V∗, θ◦ is an instance of MP, too, the upshot of the foregoing
is that λe.(ζ((e)0), ((e)0ζ((e)0))1) is a realizer for MP. 2

Theorem 6.5 If is T any of the theories CZF, CZF+REA, IZF, or IZF+REA, then T +MP
has the DP and the NEP, and T + MP is closed under CR, ECR, CR1, UZR, and UR.

Proof: This follows from Theorem 6.4 and the proof of [32] Theorem 1.2. 2

7 Realizability for choice principles

The intent of this section is to show that °rt-realizability can be used to validate the choice principles
ACω, DC, RDC, and PAx, providing they hold in the background theory.

7.1 Internal pairing

As choice principles assert the existence of functions, the natural first step in the investigation of
choice principles over V∗ is the isolation of the V∗-internal versions of pairs and ordered pairs.

If ϕ is a formula with parameters from V∗ we shall frequently write ‘V∗ |= ϕ’ to convey that
there is a closed application term t such such that t °rt ϕ. It will be obvious from the context how
to construct t.

If SC is a scheme of formulas we take V∗ |= SC to mean that there is a closed application term
t such that t °rt ϕ holds for all instances ϕ of SC.
Definition 7.1 For a, b ∈ V∗, set

{a, b} := 〈{a◦, b◦}, {〈0, a〉, 〈1, b〉}〉,
{a} := {a, a},

〈a, b〉 := 〈〈a◦, b◦〉, {〈0, {a}〉, 〈1, {a, b}〉}〉.

Lemma 7.2 (i) {a, b} ◦ = {a◦, b◦}.

(ii) 〈a, b〉 ◦ = 〈a◦, b◦〉.
(iii) {a, b}, 〈a, b〉 ∈ V∗.

(iv) V∗ |= c ∈ {a, b} ↔ [c = a ∨ c = b].

(v) V∗ |= c ∈ 〈a, b〉 ↔ [c = {a} ∨ c = {a, b}].
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Proof: (i) and (ii) are obvious. To show (iii) we employ Lemma 4.2 (iii). Let x ∈ {a, b} ∗.
Then 2nd(x) ∈ {a, b} and thus 1st(2nd(x)) ∈ {a, b} ◦ by (i).

Now let y ∈ 〈a, b〉 ∗. Then 2nd(y) ∈ {{a}, {a, b}}, and hence, by (i), 1st(2nd(y)) ∈ {{a◦}, {a◦, b◦}};
thus 1st(2nd(y)) ∈ 〈a, b〉 ◦ by (ii).

One easily checks that (λx.x, λx.dx(1, (x)1)(x)00) provides a realizer for (iv).
In a similar vein one can construct a realizer for (v). 2

7.2 Axioms of choice in V∗

Theorem 7.3 (i) (CZF + ACω) V∗ |= ACω.

(ii) (CZF + DC) V∗ |= DC.

(iii) (CZF + RDC) V∗ |= RDC.

(iv) (CZF + PAx) V∗ |= PAx.

Proof: In the following proof we will frequently use the phrase that “e′ is (effectively) computable
from e1, . . . , ek”. By this we mean that there exists a closed application term q (which we can’t be
bothered to exhibit) such that qe1 . . . ek ' e′ holds in the partial combinatory algebra Kl.

Ad (i): Recall from the proof of [32] Theorem 6.1 that the set ω is represented in V∗ by ω, which
is given via an injection of ω into V∗:

n = 〈n, {〈k, k〉 : k < n}〉 (10)
ω = 〈ω, {〈n, n〉 : n ∈ ω}〉. (11)

Now suppose

e °rt ∀x ∈ ω ∃y ϕ(x, y).

Then ∀n ∈ ω [en ↓ ∧ en °rt ∃y ϕ(n, y)], and hence

∀n ∈ ω ∃a [ en ↓ ∧ en °rt ϕ(n, a)].

Invoking ACω in the background theory, there exists a function F : ω → V∗ such that ∀n ∈
ω en °rt ϕ(n, F (n)). Next, we internalize F . Letting F0 : ω → V and F1 : ω → V∗ be defined by
F0(n) := (F (n))◦ and F1(n) := 〈n, F (n)〉, respectively, put

f = 〈F0, F1〉.
Lemma 7.2 and Lemma 4.2 (iii) entail that f ∈ V∗.

First, because of the properties of internal pairing in V∗ discerned in Lemma 7.2, it will be
shown that, internally in V∗, f is a functional relation with domain ω and that this holds with a
witness obtainable independently of e. To see that f is realizably functional, assume that

h °rt 〈a, b〉 ∈ f and j °rt 〈a, c〉 ∈ f.

Then,

h1 °rt 〈a, b〉 = 〈h0, F (h0)〉 and j1 °rt 〈a, c〉 = 〈j0, F (j0)〉, (12)
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where h1 = (h)1 and j1 = (j)1. This holds strictly in virtue of the definition of f and the conditions
on statements of membership. (12) in conjunction with Lemma 7.2 implies that d °rt h0 = j0 for
some d, and hence (h0)◦ = (j0)◦ by Lemma 5.7. Thus, in view of the definition of n, we have
h0 = j0 and consequently F (h0) = F (j0). As a result, `(h, j) °rt b = c, with `(h, j) an application
term easily constructed from h and j.

Finally, we have to check on the realizability of ∀x ∈ ω ϕ(x, f(x)). Since ∀n ∈ ω en °rt ϕ(n, F (n))
we deduce by Lemma 5.7 that ∀n ∈ ω ϕ◦(n, (F (n))◦) and hence ∀n ∈ ω ϕ◦(n, f◦(n)) as f◦ = F0.
Since ∀n ∈ ω en °rt ϕ(n, F (n)) and f∗ = {〈n, 〈n, F (n)〉〉 : n ∈ ω} we can now also construct a q
independent of e such that ∀n ∈ ω (qe)n °rt ϕ(n, f(n)). So the upshot of the above is that we can
cook up a realizer r such that

r °rt ∀x ∈ ω ∃y ϕ(x, y) → ∃f [fun(f) ∧ dom(f) = ω ∧ ∀x ∈ ω ϕ(x, f(x))].

Ad (ii): Suppose

e ° ∀x ∈ a∃y ∈ a ϕ(x, y) and (13)
d ° b ∈ a. (14)

Then we have b◦ ∈ a◦ and there exists cb such that

〈(d)0, cb〉 ∈ a∗ ∧ (d)1 °rt b = cb. (15)

Moreover, (13) entails that ∀k ∀c (〈k, c〉 ∈ a∗ → ∃d [〈(ek)0, d〉 ∈ a∗ ∧ (ek)1 °rt ϕ(c, d)]), and hence

∀〈k, c〉 ∈ a∗ ∃〈m, d〉 ∈ a∗ ϕ°(〈k, c〉, 〈m, d〉), (16)

where ϕ°(〈n, c〉, 〈m, d〉) stands for en ↓ ∧ m = (en)0 ∧ (en)1 °rt ϕ(c, d).
By DC in the background theory, there are functions f : ω → ω and g : ω → V∗ such that

f(0) = (d)0, g(0) = cb, ∀n ∈ ω 〈f(n), g(n)〉 ∈ a∗, and

∀n ∈ ω ϕ°(〈f(n), g(n)〉, 〈f(n + 1), g(n + 1)〉). (17)

(17) implies that

∀n ∈ ω [f(n + 1) = (e(f(n)))0 ∧ (e(f(n)))1 °rt ϕ(g(n), g(n + 1))] . (18)

Now put

F := {〈n, (g(n))◦ 〉 : n ∈ ω},
G := {〈n, 〈n, g(n)〉 〉 : n ∈ ω},
g := 〈F, G〉.

Lemma 7.2 and Lemma 4.2 (iii) guarantee that g ∈ V∗. First, because of the properties of internal
pairing in V∗ discerned in Lemma 7.2, it will be shown that, internally in V∗, g is a functional
relation with domain ω and that this holds with a witness obtainable independently of e and d. To
see that g is realizably functional, assume that

h °rt 〈a, b〉 ∈ g and j °rt 〈a, c〉 ∈ g.
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Then,

h1 °rt 〈a, b〉 = 〈h0, F (h0)〉 and j1 °rt 〈a, c〉 = 〈j0, F (j0)〉, (19)

where h1 = (h)1 and j1 = (j)1. This holds strictly in virtue of the definition of g and the conditions
on statements of membership. (12) in conjunction with Lemma 7.2 implies that d °rt h0 = j0 for
some d, and hence (h0)◦ = (j0)◦ by Lemma 5.7. Thus, in view of the definition of n, we have
h0 = j0 and consequently F (h0) = F (j0). As a result, `(h, j) °rt b = c, with `(h, j) an application
term easily constructed from h and j.

Finally, we have to effectively calculate a realizer `(e, d) from e and d such that

`(e, d) °rt g(0) = b ∧ ∀x ∈ ω ϕ(g(x), g(x + 1)). (20)

Since d °rt b ∈ a and g(0) = cb it follows from (16) that we can construct a realizer d̃ from d such
that d̃ °rt g(0) = b. Moreover, in view of (19) the function f is recursive. Let ρ(n) := (e(f(n)))0.
The S-m-n theorem shows how to compute an index of the function ρ from e. Since

pnir °rt 〈n, g(n)〉 ∈ g

ρ(n) °rt ϕ(g(n), g(n + 1))

this shows that we can effectively construct an index `(e, d) from e and d such that (20) holds.

Ad (iii): RDC implies DC (see [28], Lemma 3.4) and, on the basis of CZF + DC, the scheme
RDC follows from the scheme:

∀x (ϕ(x) → ∃y [ϕ(y) ∧ ψ(x, y)]) ∧ ϕ(b) → (21)
∃z (b ∈ z ∧ ∀x ∈ z ∃y ∈ z [ϕ(y) ∧ ψ(x, y)]).

Thus, in view of part (ii) of this theorem it suffices to show that, working in CZF + RDC, V∗

validates (21). So suppose b ∈ V∗ and

e ° ∀x (ϕ(x) → ∃y [ϕ(y) ∧ ψ(x, y)]) and
d ° ϕ(b).

Then, for all k ∈ ω and a ∈ V∗ we have

(k ° ϕ(x)) → ∃c [(ek)0 °rt ϕ(c) ∧ (ef)1 °rt ψ(a, c)].

By applying RDC to the above, we can extract functions ı : ω → ω,  : ω → ω, and ` : ω → V∗

such that ı(0) = d, `(0) = b, and for all n ∈ ω:

ı(n) °rt ϕ(`(n)) and (n) °rt ψ(`(n), `(n + 1)), (22)
ı(n + 1) = (e(ı(n)))0 and (n) = (e(ı(n)))1. (23)

By the last line, ı and  are recursive functions whose indices can be effectively computed from e
and d. Now set

d = 〈{(`(n))◦ : n ∈ ω}, {〈n, `(n)〉 : n ∈ ω}〉 .
Obviously, d belongs to V∗. We have

p0ir °rt b ∈ d. (24)
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(22) entails that

∀n ∈ ω p(ı(n + 1))((n)) °rt ϕ(`(n)) ∧ ψ(`(n), `(n + 1))

and hence

∀n ∈ ω p(n + 1) (p(ı(n + 1))((n))) °rt ∃y ∈ d [ϕ(`(n)) ∧ ψ(`(n), y)] .

Thus choosing an index ẽ such that ẽn = p(n + 1) (p(ı(n + 1))((n))) we arrive at

ẽ °rt ∀x ∈ d ∃y ∈ d [ϕ(x) ∧ ψ(x, y)] . (25)

Note that ẽ can be effectively calculated from e and d. As a result, (24) and (25) entail that we
can construct a realizer q for (21).

Ad (iv): For the proof of V∗ |= PAx fix an arbitrary a in V∗. Since PAx holds in the background
theory we can find bases X and Y and surjections f : X → a◦ and g : Y → a∗. Define

X̃ := {〈0, v〉 : v ∈ X}, (26)
Ỹ := {〈g0(u) + 1, u〉 : u ∈ Y }, (27)

where g0 : Y → ω is defined by g0(u) := 1st(g(u)).
As X̃ is in one-one correspondence with X and Ỹ is in one-one correspondence with Y , X̃ and

Ỹ are bases, too. Moreover,

B := X̃ ∪ Ỹ (28)

is a basis as well because X̃ and Ỹ don’t have any elements in common and for an arbitrary x ∈ B
we can decide whether it belongs to X̃ or Ỹ by inspecting 1st(x) and determining whether 1st(x) = 0
or 1st(x) 6= 0 since 1st(x) ∈ ω. We thus may define a function F : B → a◦ by

F(x) =
{

f(2nd(x)) if x ∈ X̃(
2nd(g(2nd(x)))

)◦ if x ∈ Ỹ .
(29)

Since for u ∈ Y we have
(
2nd(g(2nd(〈g0(u) + 1, u〉))))◦ =

(
2nd(g(u))

)◦ ∈ a◦, F clearly takes its
values in a◦. Moreover, F is surjective as f is surjective. Now set

℘(u) := 〈g0(u) + 1, ust〉 for u ∈ Y , (30)

B+ := {〈 g0(u), ℘(u)〉 : u ∈ Y }, (31)
b := 〈B, B+〉. (32)

By Lemmata 7.2 and 5.4, and the fact that (n)◦ = n (see (10) for the definition of n), we see that

(℘(u))◦ =
(
〈g0(u) + 1, ust〉

)◦
= 〈g0(u) + 1, u〉 ∈ B for u ∈ Y , it follows that b ∈ V∗. The latter also

entails that ℘ is one-one and therefore u 7→ 〈 g0(u), ℘(u)〉 is a one-one correspondence between Y
and B+, showing that B+ is a base as well.

We shall verify that, internally in V∗, b is a base which can be surjected onto a. To define this
surjection, let

`(u) := 〈℘(u), 2nd(g(u))〉 for u ∈ Y (33)
G := {〈g0(u), `(u)〉 : u ∈ Y } (34)
h := 〈F ,G〉. (35)
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To see that h ∈ V∗, let x ∈ h∗. Then x ∈ G, so x = 〈g0(u), `(u)〉 for some u ∈ Y . Thus
1st(2nd(x)) = (`(u))◦ =

〈
(℘(u))◦ ,

(
2nd(g(u))

)◦〉 =
〈〈g0(u) + 1, u〉, (2nd(g(u))

)◦〉 ∈ F .
First, we aim at showing that

V∗ |= h is a surjection from b onto a. (36)

To verify V∗ |= h ⊆ b× a, suppose e °rt 〈c, d〉 ∈ h. Then there exists u ∈ Y such that (e)0 = g0(u)
and (e)1 °rt 〈c, d〉 = 〈℘(u), 2nd(g(u))〉. Hence, because of p(g0(u))ir °rt 2nd(g(u)) ∈ a, one can
effectively calculate an index e′ from e such that e′ °rt c ∈ b ∧ d ∈ a, showing that

V∗ |= h ⊆ b× a. (37)

To see that h is realizably total on b, assume that e °rt c ∈ b. Then there exists d such that
〈(e)0, d〉 ∈ b∗ and (e)1 °rt c = d. Moreover, by virtue of the definition of b∗, there exists u ∈ Y such
that 〈(e)0, d〉 = 〈g0(u), ℘(u)〉, and thus, by definition of h, (e)0ir °rt 〈d, 2nd(g(u))〉 ∈ h. Therefore
an ẽ can be computed from e such that ẽ °rt c is in the domain of h, so that with (37) we can
conclude that for some e+ effectively obtainable from e, e+ °rt b is in the domain of h. As a
result, V∗ |= b ⊆ dom(h), so that in view of (37) we have

V∗ |= dom(h) = b. (38)

To establish realizable functionality of h, suppose e °rt 〈c, d〉 ∈ h and d °rt 〈c, e〉 ∈ h. Then
there exist u, v ∈ Y such that (e)0 = g0(u), (d)0 = g0(v), (e)1 °rt 〈c, d〉 = 〈℘(u), 2nd(g(u))〉, and
(d)1 °rt 〈c, e〉 = 〈℘(v), 2nd(g(v))〉. Hence °rt ℘(u) = ℘(v), i.e. °rt 〈g0(u) + 1, ust〉 = 〈g0(v) + 1, vst〉,
and therefore °rt ust = vst, yielding u = (ust)◦ = (vst)◦ = v. As a result, q °rt d = e for some q
effectively computable from e and d. We have thus established that

V∗ |= h is a function. (39)

For (36) it remains to be shown that h realizably maps onto a. So let e °rt c ∈ a. Then 〈(e)0, d〉 ∈ a∗

and (e)1 °rt c = d for some d. As g maps Y onto a∗ there exists u ∈ Y such that g(u) =
〈(e)0, d〉 = 〈g0(u), 2nd(g(u))〉. Since 〈g0(u), ℘(u)〉 ∈ b∗ and

〈
g0(u), 〈℘(u), 2nd(g(u))〉

〉
∈ h∗ we have

p(e)0ir °rt ℘(u) ∈ b and p(e)0ir °rt 〈℘(u), d〉 ∈ h. Therefore we can effectively compute an index
ẽ from e such that ẽ °rt c is in the range of h. In consequence, V∗ |= h maps onto a. The
latter in conjunction with (37), (38), and (39) yields (36).

Finally, we have to verify that

V∗ |= b is a base. (40)

So assume that

e °rt ∀x ∈ b ∃y ϕ(x, y) (41)

for some formula ϕ(x, y) (parameters from V∗ allowed). To ensure (40) we have to describe how to
obtain an index e′ calculably from e satisfying

e′ °rt ∃G [fun(G) ∧ dom(G) ⊇ b ∧ ∀x ∈ bϕ(x,G(x))] . (42)

From (41) it follows that ∀x ∈ b◦ ∃y ϕ◦(x, y), and hence, since b◦ = B = X̃ ∪ Ỹ ,

∀x ∈ X̃ ∃y ϕ◦(x, y). (43)
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(41) also implies ∀ 〈n, c〉 ∈ b∗ ∃d en °rt ϕ(c, d), yielding

∀u ∈ Y ∃d e(g0(u)) °rt ϕ(℘(u), d). (44)

X̃ and Y being bases, there exist functions K and L such that dom(K) = X̃ and L : Y → V∗

satisfying

∀x ∈ X̃ ϕ◦(x,K(x)), (45)
∀u ∈ Y e(g0(u)) °rt ϕ(℘(u), L(u)). (46)

(46) implies that ∀u ∈ Y ϕ◦ (〈g0(u) + 1, u〉, (L(u))◦), so that ∀u ∈ Ỹ ϕ◦
(
x, (L(2nd(x)))◦

)
. Hence, for

the same reasons as in the definition of F (29) we can define a function M with domain B = X̃ ∪ Ỹ
by

M(x) =
{

K(x) if x ∈ X̃(
L(2nd(x))

)◦ if x ∈ Ỹ .
(47)

As a result,

∀x ∈ b◦ ϕ◦(x, M(x)). (48)

Next, to internalize M in V∗ put

M := {〈 g0(u), 〈℘(u), L(u)〉 〉 : u ∈ Y }, (49)
m := 〈M,M〉. (50)

For y ∈ m∗ = M we have y = 〈 g0(u), 〈℘(u), L(u)〉 〉 for some u ∈ Y , and thus 1st(2nd(y)) =
〈(℘(u))◦, (L(u))◦〉 = 〈 〈g0(u) + 1, u〉, (L(u))◦ 〉, so that with x := 〈g0(u) + 1, u〉 we have x ∈ Ỹ and
(L(u))◦ =

(
L(2nd(x))

)◦, showing that 1st(2nd(y)) ∈ M . In consequence, we see that m ∈ V∗.
It remains to show that

e′ °rt fun(m) ∧ dom(m) ⊇ b ∧ ∀x ∈ b ϕ(x,m(x)) (51)

for some index e′ that is calculable from e.
To establish realizable functionality of m, suppose a °rt 〈c, d〉 ∈ m and b °rt 〈c, e〉 ∈ m. Then

there exist u, v ∈ Y such that (a)0 = g0(u), (b)0 = g0(v), (a)1 °rt 〈c, d〉 = 〈℘(u), L(u)〉, and
(b)1 °rt 〈c, e〉 = 〈℘(v), L(v)〉. Hence °rt ℘(u) = ℘(v), i.e. °rt 〈g0(u) + 1, ust〉 = 〈g0(v) + 1, vst〉,
and therefore °rt ust = vst, yielding u = (ust)◦ = (vst)◦ = v. As a result, q °rt d = e for some q
effectively computable from a and b.

Next, we would like to verify that m is realizably defined on elements of b. An element of b∗

is of the form 〈g0(u), ℘(u)〉 for some u ∈ Y . As 〈 g0(u), 〈℘(u), L(u)〉 〉 ∈ m∗, it is obvious how to
construct q̃ such that q̃(g0(u)) °rt 〈g0(u), ℘(u)〉 ∈ dom(m), and hence

V∗ |= b ⊆ dom(m). (52)

Finally we have to ensure that

ẽ °rt ∀x ∈ bϕ(x,m(x)) (53)

for some ẽ computable from e. Now, each element of b∗ is of the form 〈g0(u), ℘(u)〉 for some u ∈ Y .
Since 〈 g0(u), 〈℘(u), L(u)〉 〉 ∈ m∗ and e(g0(u)) °rt ϕ(℘(u), L(u)) holds by (46), we can cook up an
index r such that (re)(g0(u)) °rt ϕ (℘(u),m(℘(u))) and therefore, noting that ∀x ∈ b◦ ϕ◦(x,m◦(x))
is true, we get ẽ °rt ∀x ∈ b ϕ(x,m(x)) for an index ẽ effectively computable from e. 2
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Theorem 7.4 If is T any of the theories CZF, CZF + REA, IZF, or IZF + REA, and S is
any combination of the axioms and schemes MP, ACω, DC, RDC, and PAx, then T + S has
the DP and the NEP, and T + S is closed under CR, ECR, CR1, UZR, and UR.

Proof: This follows from Theorems 7.3 and 6.4 and the proof of [32] Theorem 1.2. 2

Remark 7.5 Theorem 7.4 can be extended to include large set axioms such as “Every set is
contained in an inaccessible set” or “Every set is contained in a Mahlo set”. For definitions of
“inaccessible set” and “Mahlo set” see [4, 9]. The proofs are similar to the one for the so-called
Regular Extension Axiom which was carried out in [32], Theorem 7.2.
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