ON GODEL’S SECOND INCOMPLETENESS THEOREM

THOMAS JECH

ABSTRACT. A short proof of Godel’s Second Incompleteness Theorem

Godel’s Second Incompleteness Theorem states that no sufficiently strong consistent
mathematical theory can prove its own consistency ([1]). In this note we give a short proof

of the theorem.

Theorem. It is unprovable in set theory (unless it is inconsistent) that there exists a

model of set theory.

Proof. Assume that set theory is consistent and that it proves that a model of set theory
exists. Let X be a finite set of axioms sufficiently strong to formulate the concepts “model”
and “satisfies”, and to prove the existence of a model of set theory. For the rest of the
proof, a model means a model of ¥, and letters M, N denote models. If m is a set with a
binary relation, €™ denotes that relation. If N |= (E is a relation), then E* is the relation
consisting of all pairs (z,y) such that N | zEy.

If M and N are models we define

M < N if there exists some m € N such that €Y= (e™)*.

Informally, M < N means that M is, in the real world, the structure that N thinks m is.

If this is the case then for every sentence o,

(1) MEo ifandonlyif N[ (mEo).
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In particular, N |= (m is a model). Also, if N |= (m is a model), then (€™)* is the &-

relation of some model M < N. It follows that
(2) if My < My and My < My then My < M.

Let us consider some fixed coding of formulas by numbers (Goédel numbering), and let
S, be the name for the nth definable set of numbers.

Definition. S is the set of all numbers n with the property that there is a model M
such that M =n ¢ 5,.

Let k be the Godel number of S and let A be the sentence “k € S”. Then the following

equivalence is provable in 3;
(3) A & IM(M |z -A).

By (1), if M is any model then

(4) MEA ¢ IN < M(N = —A).

We say that M is positive if M = A, and negative otherwise. As a consequence of (4), if
M is negative then all N < M are positive.

Since ¥ is consistent and proves that a model exists, we have
(5) there exists a model
and also (using (1))
(6) for every model M there exists a model N < M.

Toward a contradiction, let M3 be a model, by (5). If M; is positive, there is, by (4),
a negative model My < Mj; otherwise let My = Mj. By (6) there is a model M5 < M,

and since Mj is negative, M3 is positive. By (4) there is a negative My < Ms and we have
M,y < M by (2). A contradiction.

Remark 1. The sentence A in (3) is the analog of Godel’s “I am unprovable”. Another

way to obtain A is as follows: A property is a formula of the language of set theory with
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one free variable. Let p be the property (of properties ¢) IM M |= —¢(q), and let A = p(p).
Then (3) holds.

Remark 2. Even though our proof of Godel’s Theorem uses the Completeness The-
orem, it can be modified to apply to weaker theories such as Peano Arithmetic (PA). To
prove that PA does not prove its own consistency (unless it is inconsistent), we argue as
follows:

Assume that PA is consistent and that “PA is consistent” is provable in PA. There is a
conservative extension , of PA in which the Completeness Theorem is provable ([2], The-
orem 5.5, page 443) and moreover, PA F (, is a conservative extension of PA). Therefore
, F (, is a conservative extension of a consistent theory) and thus proves its own consis-
tency. Consequently, , proves that , has a model.

Now let X be a sufficiently strong finite subset of , that proves that X has a model; the

proof above leads to a contradiction.
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