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Abstract. First, we study a question we encountered while explor-

ing order-types of models of arithmetic. We prove that if M � PA is

resplendent and the lower cofinality of M rN is uncountable then (M,<)

is expandable to a model of any consistent theory T ⊇ PA whose set

of Gödel numbers is arithmetic. This leads to the following character-

ization of Scott sets closed under jump: a Scott set X is closed under

jump if and only if X is the set of all sets of natural numbers definable

in some recursively saturated model M � PA with lcf(M rN) > ω. The

paper concludes with a generalization of theorems of Kossak, Kotlarski

and Kaye on automorphisms moving all nondefinable points: a count-

able model M � PA is arithmetically saturated if and only if there is an

automorphism h : M → M moving every nondefinable point and such

that for all x ∈M , N < x < Cl∅ r N, we have h(x) > x.
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1. Introduction

Peano Arithmetic (PA) is the first-order theory in the language LPA =

{+,×, <, 0, 1} consisting of the following axioms: associativity and com-

mutativity of + and ×, their neutral elements are 0 and 1 respectively,

distributivity, discrete linear order axioms for <, adding 1 gives a suc-

cessor, and the Induction Scheme:

∀y[ ϕ(0, y) ∧ ∀x(ϕ(x, y)→ ϕ(x + 1, y))→ ∀xϕ(x, y) ]

for every LPA-formula ϕ(x, y).

Peano Arithmetic is an extremely powerful theory. A folklore knowl-

edge among logicians is that all of classical analysis, number theory and

combinatorics can be done within tiny subsystems of Peano Arithmetic.

In pre-Gödelean era it was believed that PA comprises an axiomatization

of the set of all “truths” about natural numbers and finite sets.

Thus, a model of Peano Arithmetic (that is, a set with operations +

and × defined on it so that the above axioms of PA hold) resemble the

natural numbers as much as any working mathematician would hope for

(all of his concrete mathematics can be conducted inside a model of PA

and nobody would notice the difference). As usually for such theories,

there are 2λ non-isomorphic models of PA in every infinite cardinality λ.

The structure of models of first-order Peano Arithmetic (PA) has been

extensively studied since the 1960s. Due to unclassifyability of the diverse

mass of models (even in the countable case) and the elusive nature of

completions of PA (especially the ‘true arithmetic’ Th N = {ϕ | ϕ ∈

LPA, N � ϕ}), models of PA are among the most difficult to deal with

in the whole of model theory.

Certain classes of models were studied that could be to some extent

tackled: countable models, κ-like models (for a cardinal κ), models cod-

ing certain sets, realizing certain types. Among the most important

notions introduced is recursive saturation. A model M is recursively

saturated if it realizes every type (with parameters from M) whose set

of Gödel numbers is recursive. Recursively saturated models naturally

occur in model theory of arithmetic. For instance, every model of PA

obtained from a nonstandard model of PA by an application of the arith-

metized completeness theorem is recursively saturated.

A recursively saturated model of PA is uniquely determined by its

complete theory and the collection of subsets of N definable (coded) in

the model: if M � PA, N � PA are two recursively saturated models of

the same completions of PA and code the same subsets of N then M ∼= N .
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Other notions were also introduced, isolating important subclasses of

the class of all recursively saturated models: the most important being

resplendency and arithmetic saturation. Resplendent models and arith-

metically saturated models will be the main objects we study in this

paper.

A model M is resplendent if for every a ∈ M , and any statement

ϕ(a) containing additional relation symbols R1, . . . , Rn, if Th(M, a) +

ϕ(a) is consistent then there are relations R1, . . . , Rn on M such that

(M, R1, . . . , Rn) � ϕ(a). Resplendency implies existence of many auto-

morphisms of a model, recursive saturation of a model and many other

pleasant properties. Resplendent models are a plentiful class of very

‘regular’ models we can deal with.

A model M � PA is arithmetically saturated if it is recursively satu-

rated and the class of subsets of N definable in M is closed under jump.

Thus, more subsets of N are definable in M than is expected from a

recursively saturated model. (A recursively saturated model is only ex-

pected to code its own complete theory, see Wilmer’s theorem below.)

In particular, an arithmetically saturated model codes the sets Πn Th N

of all true Πn-sentences for all n ∈ N. In addition, arithmetic satura-

tion implies more homogeneity than just recursive saturation. Recursive

saturation implies that the model is homogeneous (if tp(a1, . . . , an) =

tp(b1, . . . , bn) then there is an automorphism h : M → M such that for

all i = 1, 2, . . . , n, h(ai) = bi). Arithmetic saturation gives us extra con-

trol over this automorphism. E.g., if ai 6= bi for all i = 1, 2, . . . n then

it can be ensured that this automorphism moves all nondefinable points

(i.e., h(x) 6= x for all x 6∈ Cl∅).

Section 3 starts off with an investigation of a problem concerning order-

types of resplendent models of Peano arithmetic. The connection with

arithmetic saturation is studied in Section 4. Section 5 uses the methods

developed in Section 4 to produce a generalization of some well-known

results of Kossak, Kotlarski and Kaye.

2. Definitions

If A is a linearly ordered set then lcf(A), the lower cofinality of A, is

cf(A∗), where A∗ is A with the order reversed.

If B ⊆ M � PA then ClM(B) denotes the set of all elements of M

definable in M with parameters from B, that is a ∈ ClM(B)⇔ for some

b ∈ B and some LPA-formula ϕ(x, y),

M � ϕ(a, b) ∧ ∃!xϕ(x, b).
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A set Y ⊆ M is definable (with parameters b ∈ M) if for some LPA-

formula ϕ(x, y), Y = {y ∈M | M � ϕ(y, b)}.

Definition 1. Let M � PA. We define the Standard System of M as

SSy(M) = {X ⊆ N | there is a definable (with parameters) Y ⊆ M

such that X = Y ∩ N}. We say that a subset A of N is coded in M if

A ∈ SSy(M).

Definition 2. A Scott set X is a collection of subsets of N closed under⋃
,
⋂

, r, complement, relative recursion and such that if T ∈ X codes

an infinite finitely branching tree then there is B ∈ X, B ⊆ T which

codes an infinite path through T .

It is known that for every M � PA, SSy(M) is a Scott set. The

converse is known to hold for Scott sets of cardinalities ω and ω1.

Definition 3. A model M � PA is called resplendent if for every Σ1
1-

statement Φ(a), a ∈ M , consistent with Th(M, a), we have M � Φ(a).

Definition 4. A model M � PA is called recursively saturated if every

recursive type p(x, a) (that is, {pϕ(x, y)q) | ϕ(x, y) ∈ p} is recursive) is

realized.

It is also known (and we shall often use this fact) that a recursively

saturated model M realizes all types that are coded in M , i.e. such that

{pϕ(x, y)q | ϕ(x, a) ∈ p(x, a)} ∈ SSy(M).

Fact 1. (Kleene). Let L be a finite language and {ϕn(x)}n∈N be a re-

cursive set of formulas of L. Then there is a Σ1
1-formula Φ(x) such that

in all infinite L-structures M , M � ∀x (Φ(x)↔
∧

i∈N
ϕn(x)).

It follows from Fact 1 that resplendency implies recursive saturation.

Fact 2. (Wilmers). Let X be a countable Scott set, T ⊇ PA be a

consistent theory, T ∈ X. Then there is a countable recursively saturated

M � T such that SSy(M) = X.

Fact 3. ([4][7][5]). Let M � PA be recursively saturated. Then the

following are equivalent.

(1) M is arithmetically saturated, i.e., SSy(M) is closed under jump;

(2) for any f ∈ M coding a set of pairs determining a function

f : N → M , there is c ∈ M r N such that for all n ∈ N,

f(n) > N⇔ f(n) > c;

(3) for every a ∈ M , {pθ(x, y)q | θ(x, y) is an LPA-formula in two

variables and min x θ(x, a) 6∈ Cl∅} ∈ SSy(M);

(4) there is g ∈ Aut(M) such that g(a) 6= a for every a ∈ Cl∅.
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3. A question about expanding order-types of resplendent

models to models of other theories

A question of H. Friedman [2] asks whether the classes of order-types of

uncountable models of T are the same for all T ⊇ PA. Having embarked

on this difficult question, I realized that probably there is some chance

of obtaining results in the case of resplendent models. For an up-to-date

account of the state of Friedman’s problem, see [1]. Among the results

is the following theorem.

Theorem 4. If M � PA is resplendent and c ∈ M codes a consistent

theory T ⊇ PA then (M, <) can be expanded to a model of T .

The theorem is proved by writing down a Σ1
1-statement expressing the

existence of N � T , (N, <) ∼= (M, <) and noticing that it is realized in

every countable submodel of M containing c.

Using a theorem by D.Richard and J.-F.Pabion [8] which says that

M � PA is ω1-saturated if and only if (M, <) is ω1-saturated, we obtain

the following corollary.

Corollary 5. If M � PA is resplendent and ω1-saturated then (M, <)

can be expanded to a model of any consistent extension of PA.

The hunt for conditions weaker than ω1-saturation implying expand-

ability of (M, <) to a model of T ⊃ PA led to the following theorem.

Theorem 6.

If M � PA is resplendent and lcf(M r N) > ω then for all n ∈ ω, (M, <)

is expandable to a model of PA + Πn Th N.

Proof. For any n ∈ ω, let us introduce ΣnDef = the set of all nonstandard

definable points of M defined by a Σn-formula.

As lcf(M r N) > ω, there is a > N such that Σ1Def > a. Define

A1 = {p∀xϕ(x)q | ϕ ∈ ∆0, M � ∀x < a ϕ(x)}. Now, A1 ⊆ Π1 Th N

because N ≺∆0
M . Also, Π1 Th N ⊆ A1 because if for some ϕ ∈ ∆0 such

that N � ∀xϕ(x) there existed x < a ¬ϕ(x) then min x¬ϕ(x) would be

a nonstandard Σ1-definable point less than a. Hence, A1 = Π1 Th N. A1

is definable, hence coded in M .

Suppose at stage n we already know that Πn Th N ∈ SSy(M). Let

b ∈M code Πn Th N. Consider the statement

Φn(b) = ∃⊕n,⊗n,�n, On, Sn

∀xy (x�n y ←→ x < y)
∧
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∧
“(⊕n,⊗n,�n, On, Sn) � PA + Πn Th N”

∧

∧
“SSy(M,⊕n,⊗n,�n, On, Sn) ⊆ SSy(M)”.

Let us show that the last line is expressible by a Σ1
1-sentence. Let

ϕm(x) = (x > m) & ∀ z ∃ y ∀ i < x ((z))i = (y)i, where ((z))i means (z)i

in the language {⊕n,⊗n,�n, On, Sn}. The set {ϕm(x)}m∈N is a recur-

sive set of formulas, hence, by Kleene’s Theorem, there is a Σ1
1-sentence

Θ(x) such that in any K � PA, K � ∀ x (
∧

m∈N
ϕm(x) ↔ Θ(x)). Then

SSy(M,⊕n,⊗n,�n, On, Sn) ⊆ SSy(M) is implied by the Σ1
1-sentence

∃ x Θ(x). Hence, Φn(b) is a Σ1
1-sentence.

Φn(b) is consistent because, by Wilmers’ Theorem, as (PA+Πn Th N) ∈

SSy(M), there is a countable model

N � PA + Πn Th N, SSy(N) = SSy(ClM(b)).

Hence, by resplendency, Φn(b) is already realized in M .

Denote the model (M,⊕n,⊗n,�n, On, Sn) by Mn. By construction,

Mn � PA + Πn Th N, (Mn, <) ∼= (M, <), SSy(Mn) ⊆ SSy(M).

Let (ΣnDef)Mn
> a > N. Consider

An+1 = {p∀xϕ(x)q | ϕ ∈ Σn, Mn � ∀x < a ϕ(x)}.

An+1 ⊆ Πn+1 Th N because if Mn � ∀x < a ϕ(x) but N � ∃x ¬ϕ(x)

then for some k ∈ N, N � ¬ϕ(k), which is a Πn-statement. Hence, as

Mn � Πn Th N, Mn � ¬ϕ(k), contradiction.

Πn+1 Th N ⊆ An+1. Let N � ∀xϕ(x), where ϕ(x) ∈ Σn. If Mn �

∃x < a ¬ϕ(x) then c =: min x¬ϕ(x) is a Σn-definable point less than

a. If c ∈ N then Mn � ¬ϕ(c), which is a Πn-statement not belonging

to Πn Th N. Contradiction with Mn � Πn Th N. Hence N < c < a

contradicting the assumption that (ΣnDef) > a.

Therefore Πn+1 Th N = An+1, which is coded in Mn. As SSy(Mn) ⊆

SSy(M), Πn+1 Th N is coded also in M .

Now, by Theorem 4, (M, <) is expandable to a model of PA+Πn Th N

for every n ∈ ω. �

Now, let us study a corollary. A theory T is called arithmetic if it has

an axiomatization S such that S = {n ∈ N | N � θ(n)} for some formula

θ(x) ∈ LPA. Recursive extensions of PA are examples of arithmetic

theories. Also, there are complete arithmetic theories by the arithmetized

completeness theorem.

Corollary 7.

For any consistent arithmetic theory T ⊇ PA, if M � PA is resplendent

and lcf(M r N) > ω then there is N � T such that (N, <) ∼= (M, <).
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Proof.

Since T is arithmetic, T is recursive in the set Πn Th N for some n. Hence

T is coded in M . Hence, by Theorem 4, (M, <) is expandable to a model

of T . �

However there is a proof that Πn Th N is coded in M different from

the one above. Indeed, resplendency implies recursive saturation and

for any f : N → M there is a ∈ M such that ∀n ∈ N(f(n) > N ⇒

f(n) > a) because lcf(MrN) > ω. Hence, M is arithmetically saturated,

thus, applying the machinery of arithmetic saturation (Fact 3), we can

conclude that SSy(M) is closed under jump, hence contains Πn Th N for

all n ∈ ω.

In the next section we shall investigate whether recursive saturation

and uncountable lower cofinality give us more information about which

sets are coded in M than just arithmetic saturation. The answer will be

“No”.

We can also reformulate this question as follows. If M is recursively

saturated and lcf(M r N) > ω then SSy(M) is closed under jump. Does

every countable Scott set closed under jump occur in this way? The

answer will be “Yes”.

4. Do recursive saturation and uncountable lower

cofinality say more about coding than arithmetic

saturation?

Lemma 8. Let M � PA be recursively saturated. Then M is arithmeti-

cally saturated if and only if for all a ∈M , Cl(a) r N is bounded below

in M r N.

Proof. Suppose, for all a ∈ M , Cl(a) r N is bounded below. Let f ∈ M

code a function whose domain contains N. For every n ∈ N, f(n) ∈ Cl(f).

If b ∈ M r N is such that Cl(f) > b then for all n ∈ N, (f(n) > N ⇔

f(n) > b).

Let M be arithmetically saturated, c > N. The type which says: F ∈

M codes a function F : [0, c] −→M with F (pθq) = tθ(a) (where θ ranges

over all formulas of LPA with two variables and tθ is the Skolem term

defined by θ) is recursive, hence realized. But if Cl(a) r N is unbounded

below then {F (pθq)} ∩ (M r N) is not separated from N contradicting

arithmetic saturation. �

Let E = {x ∈ M | there are no nonstandard definable points below

x}. If a ∈ M r Cl∅, Ea = {x ∈ M | for all c ∈ Cl∅, c < x ↔ c < a }.
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By Lemma 8, E 6= ∅ and for any a such that N < a < Cl∅ r N,

Ea = E. The following lemma establishes some homogeneity properties

of Ea which will be important in the rest of this section.

Lemma 9. Let M be recursively saturated, a ∈M r Cl∅.

(1) If p(x, b) is realized by c ∈ Ea, c > Cl(b) ∩Ea then for all x ∈ Ea

there is y > x such that p(y, b).

(2) If p(x, b) is realized by c ∈ Ea, c < Cl(b) ∩Ea then for all x ∈ Ea

there is y < x such that p(y, b).

Proof. 1. Let Aupper = {x ∈ M | ∃ y ∈ Cl∅, a < y < x}. For an

arbitrary e ∈ Ea, let us find d > e such that p(d, b). Let us show that for

all θ(x, b) ∈ p(x, b), M � θ(y, b) for unboundedly-many y ∈ Ea. Consider

the two cases. If A = {x ∈ Aupper | M � θ(x, b)} is unbounded below

then M � θ(y, b) for unboundedly-many y ∈ Ea by overspill. Otherwise,

let k ∈ Cl∅, a < k < A. Define g = max x < k θ(x, b). We observe that

g ∈ Cl(b), while c ≤ g < Aupper, which is a contradiction.

Thus for any e ∈ E, p(x, b)∪ {x > e} is finitely satisfied. By recursive

saturation, p(x, b) ∪ {x > e} is coded, hence realized.

2. Analogous proof. �

Lemma 10. Let M � PA be a countable arithmetically saturated model,

N < e < Cl∅ r N. Then there is an elementary embedding h : M →M

such that for all x > N, h(x) > e.

Proof.

A forth-argument. Let us enumerate M as {a1, a2, . . . , ai, . . .}i<ω and

build inductively a sequence {b1, b2, . . . , bi, . . .}i<ω with tp(b1, . . . , bi) =

tp(a1, . . . , ai) and bi > e ⇔ bi > N for all i and define h(ai) = bi.

Suppose at stage i we already have tp(a1, . . . , ai) = tp(b1, . . . bi), e <

Cl(b1, . . . , bi) r N. By Lemma 8, Cl(a1, . . . , ai+1) r N is bounded below.

Let c < Cl(a1, . . . , ai+1) r N. By Lemma 9 (2),

p(x, a1, . . . , ai, c) = {θ(a1, . . . , ai, x) | M � θ(b1, . . . , bi, e)} ∪ {x < c}

is satisfied, say, by e∗ ∈ E.

As tp(a1, . . . , ai, e
∗) = tp(b1, . . . , bi, e), by recursive saturation, there

is an elementary embedding (actually, an automorphism) h : M → M

such that h(a1) = b1, . . . , h(ai) = bi, h(e∗) = e. Put bi+1 = h(ai+1). By

construction, e < Cl(b1, . . . , bi+1). �

Hence, M has an elementary extension N � M , N ∼= M and there

is a ∈ N r M such that N < a < M . Since a union of an elementary
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chain of recursively saturated models is recursively saturated, we can

repeat this extension ω1 times to obtain the following Theorem, which

was promised earlier.

Theorem 11.

Let X be a countable Scott Set. Then X is closed under jump if and only

if there is a recursively saturated M � PA, lcf(MrN) > ω, SSy(M) = X.

The countability assumption cannot be dropped yet because for Scott

sets X with card X > ω1, the existence of a model M � PA such that

SSy(M) = X is still an open problem.

5. Automorphisms moving all nondefinable points

Now, as we are discussing arithmetic saturation, let us turn to auto-

morphism groups where arithmetic saturation has profound consequences.

We shall employ lemmas and methods of the previous section.

Fact 12. (Kaye, Kossak, Kotlarski [3]) If M � PA is countable and

arithmetically saturated then M has an automorphism which moves ev-

ery nondefinable point.

Fact 13. (Kossak [6]) If M � Th N is countable and arithmetically sat-

urated then there exists h ∈ Aut(M) such that for all x > N, h(x) > x,

i.e. h moves every nonstandard point upwards.

Fact 14. (Kossak, Schmerl [7]) If M is countable and arithmetically

saturated then there is an automorphism f of M such that for every

x > Cl∅, f(x) < x.

Notice that Fact 14 generalizes Fact 13. We are going to prove a

theorem generalizing Fact 13 in a different direction and at the same

time fusing it somehow with Fact 12.

Recall the notation E = {x ∈M | there are no nonstandard elements of

Cl∅ below x}. In general, if Th(M) 6= Th N, there exists no h ∈ Aut(M)

such that for all x 6∈ Cl∅, h(x) > x.

Proof. Let a < b < e, e ∈ Cl∅ r N, h(a) = b. Then e− a > e− b, hence

h(e− a) > h(e− b), hence e− b > h(e− b). �

But what we can expect is the following Theorem.

Theorem 15.

If M � PA is countable and arithmetically saturated then there is h ∈

Aut(M) such that for all x ∈ E, h(x) > x and h moves every nondefinable

point.
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Since in the case of Th(M) = Th N, we have E = M rN, this Theorem

generalizes Fact 13. The proof uses Kossak’s method and the following

two lemmas.

Lemma 16. (Kaye, Kotlarski) If M is arithmetically saturated, tp(a) =

tp(b) and for any Skolem term t,

t(a) = t(b) ⇒ t(a) ∈ Cl∅

then for any c ∈ M there is d such that tp(a, c) = tp(b, d) and for any

Skolem term t,

t(a, c) = t(b, d) ⇒ t(a, c) ∈ Cl∅.

Notice that Fact 12 follows from Lemma 16 by a back-and-forth argu-

ment.

Lemma 17. Let M � PA be recursively saturated.

(1) If c < Cl(a) r N then for any b there is b′ such that tp(a, b) =

tp(a, b′),

c < Cl(a, b′) r N.

(2) If c > Cl(a) ∩ E then for any b there is b′ such that tp(a, b) =

tp(a, b′),

c > Cl(a, b′) ∩ E.

Proof. 1) By Lemma 9, (1), there is d < Cl(a, b) such that tp(a, c) =

tp(a, d). By recursive saturation, there is h : M →M, h(a) = a, h(d) =

c. Denote h(b) by b′. As h is elementary, tp(a, b) = tp(a, b′). As d <

Cl(a, b), c < Cl(a, b′).

2) Similar proof. �

Proof. We shall construct a string of points {di}i∈Z unbounded above and

below in E such that our future automorphism h takes di to di+1 which

will guarantee that each point of E moves upwards: if a ∈ (di, di+1) then

h(a) ∈ (hdi, hdi+1) = (di+1, di+2). Also, it obviously follows that there

will be no h-fixed initial segment in E other than sup E and N.

By Lemma 16 there are c0, c1 ∈ E such that tp(c0) = tp(c1) and

(t(c0) = t(c1) ⇒ t(c0) ∈ Cl∅), hence, considering the type {ϕ(x) | M �

ϕ(c1)} ∪ {t(x) 6= t(c1) | t(c1) 6∈ Cl∅}, we deduce, using Lemma 9, that

there are d0, d1 ∈ E such that

tp(d0) = tp(d1),

t(d0) = t(d1)⇒ t(d0) ∈ Cl∅,

Cl(d0) ∩ E < d1,
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Cl(d1) r N > d0.

Let {si}i∈ω be an enumeration of the whole of M r Cl∅. By stage n we

shall already have:

a = a0, . . . , a2n−1,

b = b0, . . . , b2n−1,

d = d−n, d−n+1, . . . , dn, dn+1

satisfying the following conditions:

tp(a, d−n, . . . , dn) = tp(b, d−n+1, . . . , dn+1),

d−n < Cl(b, d−n+1, . . . , dn+1) ∩ E,

dn+1 > Cl(a, d−n, . . . , dn) ∩ E,

t(a, d−n, . . . , dn) = t(b, d−n+1, . . . , dn+1) ⇒ t(a, d−n, . . . , dn) ∈ Cl∅.

(At stage n = 0, a and b are empty.)

Back

Let b2n = sn. Let e < Cl(b2n, b, d−n, . . . , dn+1). By Lemma 16 (applied

to the tuples (b, d−n+1, . . . , dn+1) and (a, d−n, . . . , dn) and the new point

d−n), the set of formulas

p(x) = {ϕ(a, x, d−n, . . . , dn) | M � ϕ(b, d−n, d−n+1, . . . , dn+1)} ∪

∪ {t(a, x, d−n, . . . , dn) 6= t(b, d−n, d−n+1, . . . , dn+1) |

| t(b, d−n, d−n+1, . . . , dn+1) 6∈ Cl∅}

is realized, hence, by Lemma 9 (2), is realized by a point less than e,

hence, by Lemma 17 (2), is realized by a point d−n−1 < e such that

Cl(a, d−n−1, . . . , dn) ∩ E < dn+1.

Let q(x) = {ϕ(a, d−n−1, . . . , dn, x) | M � ϕ(b, d−n, . . . , dn+1, b2n} ∪

∪ {t(a, d−n−1, . . . , dn, x) 6= t(b, d−n, . . . , dn+1, b2n) |

| t(b, d−n, . . . , dn+1, b2n) 6∈ Cl∅}.

By Lemma 16, q(x) is realized, hence, by Lemma 17 (2), is realized by

some point a2n such that

Cl(a, d−n−1, . . . , dn, a2n) ∩ E < dn+1.

By construction,

t(a, d−n−1, . . . , dn, a2n) = t(b, d−n, . . . , dn+1, b2n)⇒

⇒ t(b, d−n, . . . , dn+1, b2n) ∈ Cl∅,
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i.e., every nondefinable point of Cl(b, d−n, . . . , dn+1, b2n) moves. Let us

show that if t(b, d−n, . . . , dn+1, b2n) ∈ E then

t(a, d−n−1, . . . , dn, a2n) < t(b, d−n, . . . , dn+1, b2n).

If t(b, d−n, . . . , dn+1, b2n) > dn+1 then t(a, d−n−1, . . . , dn, a2n) ∈ (dn, dn+1)

because Cl(a, d−n−1, . . . , dn, a2n) ∩ E < dn+1. If t(b, d−n, . . . , dn+1, b2n) ∈

(di, di+1), i = −n, . . . , n, then t(a, d−n−1, . . . , dn, a2n) ∈ (di−1, di).

If t(b, d−n, . . . , dn+1, b2n) < d−n then, by construction of d−n−1,

t(b, d−n, . . . , dn+1, b2n) ∈ (d−n−1, d−n), hence t(a, d−n−1, . . . , dn, a2n) <

d−n−1.

Forth

Let a2n+1 = sn. Using Lemmas 16, 9 (1), 17 (1), we choose dn+2 such

that

tp(b, b2n, d−n, . . . , dn+2) = tp(a, a2n, d−n−1, . . . , dn+1),

t(b, b2n, d−n, . . . , dn+2) = t(a, a2n, d−n−1, . . . , dn+1)⇒

⇒ t(a, a2n, d−n−1, . . . , dn+1 ∈ Cl∅,

dn+2 > Cl(a, a2n, a2n+1, d−n−1, . . . , dn+1) ∩ E,

d−n−1 < Cl(b, b2n, d−n, . . . , dn+2) ∩ E.

Now, using Lemmas 16 and 17 (1), we choose b2n+1 such that

tp(b, b2n, b2n+1, d−n, . . . , dn+2) = tp(a, a2n, a2n+1, d−n−1, . . . , dn+1),

t(b, b2n, b2n+1, d−n, . . . , dn+2) = t(a, a2n, a2n+1, d−n−1, . . . , dn+1)⇒

⇒ t(a, a2n, a2n+1, d−n−1, . . . , dn+1) ∈ Cl∅,

and d−n−1 < Cl(b, b2n, b2n+1, d−n, . . . , dn+2).

Having obtained the points ai, bi for all i ∈ ω, we observe that h : M →

M defined as h(ai) = bi for all i ∈ ω is an elementary isomorphism

possessing the required properties. �
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