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6 The Countable Ordinals

In this section, we gather some definitions and results about the countable ordinals needed
to explain what Γ0 is. This ordinal plays a central role in proof theoretic investigations of
a subsystem of second-order arithmetic known as “predicative analysis”, which has been
studied extensively by Feferman [13] and Schütte [46]. Schütte’s axiomatic presentation of
the countable ordinals ([46], chapters 13, 14) is particularly convenient (and elegant), and
we follow it. Most proofs are omitted. They can be found in Schütte [46].

6.1 A Preview of Γ0

Proof theorists use (large) ordinals in inductive proofs establishing the consistency of cer-
tain theories. In order for these proofs to be as constructive as possible, it is crucial to
describe these ordinals using systems of constructive ordinal notations. One way to obtain
constructive ordinal notation systems is to build up inductively larger ordinals from smaller
ones using functions on the ordinals. For example, if O denotes the set of countable or-
dinals, it is possible to define two functions + and α 7→ ωα (where ω is the least infinite
ordinal) generalizing addition and exponentiation on the natural numbers. Due to a result
of Cantor, for every ordinal α ∈ O, if α > 0, there are unique ordinals α1 ≥ . . . ≥ αn,
n ≥ 1, such that

α = ωα1 + · · ·+ ωαn . (∗)

This suggests a constructive ordinal notation system. Define C to be the smallest set of
ordinals containing 0 and closed under + and α 7→ ωα.

Do we have C = O? The answer is no. Indeed, strange things happen with infinite
ordinals. For some ordinals α, β such that 0 < α < β, we can have α + β = β, and even
ωα = α!

An ordinal β > 0 such that α + β = β for all α < β is called an additive principal
ordinal . It can be shown that an ordinal is an additive principal ordinal iff it is of the form
ωη for some η.

The general phenomenon that we are witnessing is the fact that if a function f : O → O
satisfies a certain continuity condition, then it has fixed points (an ordinal α is a fixed point
of f iff f(α) = α).

The least ordinal such that ωα = α (the least fixed point of α 7→ ωα) is denoted by ε0,
and C provides a constructive ordinal notation system for the ordinals < ε0. The main point
here, is that for every ordinal α < ε0, we can guarantee that αi < α in the decomposition
(∗).



6 The Countable Ordinals 19

Unfortunately ε0 is too small for our purpose (which is to relate the embedding relation
� on finite trees with the ordering on Γ0). To go beyond ε0, we need functions more powerful
than α 7→ ωα. Such a hierarchy (ϕα)α∈O can be defined inductively, starting from α 7→ ωα.

We let ϕ0 be the function α 7→ ωα, and for every α > 0, ϕα : O → O enumerates the
common fixed points of the functions ϕβ , for all β < α (the ordinals η such that ϕβ(η) = η

for all β < α).

Then, we have a function ϕ : O × O → O, defined such that ϕ(α, β) = ϕα(β) for all
α, β ∈ O. Note, ϕ(1, 0) = ε0!

The function ϕ has lots of fixed points. We can have ϕ(α, β) = β, in which case β
is called an α-critical ordinal , or ϕ(α, 0) = α (but we can’t have ϕ(α, β) = α for β > 0).
Ordinals such that ϕ(α, 0) = α are called strongly critical .

It can be shown that for every additive principal ordinal γ = ωη, there exist unique
α, β with α ≤ γ and β < γ, such that γ = ϕ(α, β). But we can’t guarantee that α < γ,
because ϕ(α, 0) = α when α is a strongly critical ordinal. This is where Γ0 comes in!

The ordinal Γ0 is the least ordinal such that ϕ(α, 0) = α (the least strongly critical
ordinal). It can be shown that for all α, β < Γ0, we have α+ β < Γ0 and ϕ(α, β) < Γ0, and
also that for every additive principal ordinal γ < Γ0, γ = ϕ(α, β) for unique ordinals such
that both α < γ and β < γ. This fact together with the Cantor normal form (∗) yields a
constructive ordinal notation system for the ordinals < Γ0 described in the sequel.

The reason why we were able to build the hierarchy (ϕα)α∈O is that these functions
satisfy certain conditions: they are increasing and continuous. Such functions are called
normal functions. What is remarkable is that the function ϕ(−, 0) is also a normal function,
and so, it is possible to repeat the previous hierarchy construction, but this time, starting
from ϕ(−, 0). But there is no reason to stop there, and we can continue on and on . . .!

We have what is called a Veblen hierarchy [53]. However, this is going way beyond
the scope of these notes (transfinitely beyond!). The intrigued reader is referred to a paper
by Larry Miller [34].

6.2 Axioms for the Countable Ordinals

Recall that a set A is countable iff either A = ∅ or there is a surjective (onto) function
f : N → A with domain N, the set of natural numbers. In particular, every finite set is
countable.

Given a set A and a partial order ≤ on A, we say that A is well-ordered by ≤ iff every
nonempty subset of A has a least element.
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This definition implies that a well-ordered set is totally ordered. Indeed, every subset
{x, y} of A consisting of two elements has a least element, and so, either x ≤ y or y ≤ x.

We say that a subset S ⊆ A of A is strictly bounded iff there is some b ∈ A such
that x < b for all x ∈ S (recall that x < y iff x ≤ y and x 6= y). A subset S of A that is
not strictly bounded is called unbounded . The set of countable ordinals is defined by the
following axioms.

Definition 6.1 A set O together with a partial order ≤ on O satisfies the axioms for the
countable ordinals iff the following properties hold:

(1) O is well-ordered by ≤.

(2) Every strictly bounded subset of O is countable.

(3) Every countable subset of O is strictly bounded.

Applying axiom (3) to the empty set (which is a subset of O), we see that O is
nonempty. Applying axiom (1) to O, we see that O has a least element denoted by 0.
Repeating this argument, we see that O is infinite. However, O is not countable. Indeed if
O was countable, by axiom (3), there would be some α ∈ O such that β < α for all β ∈ O,
which implies α < α, a contradiction.

It is possible to show that axioms (1)-(3) define the set of countable ordinals up to
isomorphism. From now on, the elements of the set O will be called ordinals (strictly
speaking, they should be called countable ordinals).

Given a property P (x) of the set of countable ordinals, the principle of transfinite
induction is the following:

• If P (0) holds, and

• for every α ∈ O such that α > 0, ∀β(β < α ⊃ P (β)) implies P (α), then

• P (γ) holds for all γ ∈ O.

We have the following fundamental metatheorem.

Theorem 6.2 The principle of transfinite induction is valid for O.

Proof . Assume that the principle of transfinite induction does not hold. Then, P (0)
holds, for every α ∈ O such that α > 0, ∀β(β < α ⊃ P (β)) implies P (α), but the set
W = {α ∈ O | P (α) = false} is nonempty. By axiom (1), this set has a least element γ.
Clearly, γ 6= 0, and P (β) must hold for all β < γ, since otherwise γ would not be the least
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element of W . Hence, ∀β < γP (β) holds, and from above, this implies that P (γ) holds,
contradicting the definition of γ.

By axioms (1) and (3), for every ordinal α, there is a smallest ordinal β such that
α < β. Indeed, the set {α} is countable, hence by axiom (3) the set {β ∈ O | α < β} is
nonempty, and by axiom (1), it has a least element. This ordinal is denoted by α′, and is
called the successor of α. We have the following properties:

α < α′

α < β ⇒ α′ ≤ β

α < β′ ⇒ α ≤ β.

An ordinal β is called a successor ordinal iff there is some α ∈ O such that β = α′. A limit
ordinal is an ordinal that is neither 0 nor a successor ordinal.

Given any countable subset M ⊆ O, by axiom (3), the set {α ∈ O | ∀β ∈M(β ≤ α)}
is nonempty, and by axiom (1), it has a least element. This ordinal denoted by

⊔
M is the

least upper bound of M , and it satisfies the following properties:

α ∈M ⇒ α ≤
⊔
M

α ≤ β for all α ∈M ⇒
⊔
M ≤ β

β <
⊔
M ⇒ ∃α ∈M such that β < α.

We have the following propositions.

Proposition 6.3 If M is a nonempty countable subset of O and M has no maximal
element, then

⊔
M is a limit ordinal.

Proposition 6.4 For all α, β ∈ O, if γ < β for all γ < α, then α ≤ β.

Proof . The proposition is clear if α = 0. If α is a successor ordinal, α = δ′ for some δ,
and since δ < α, by the hypothesis we have δ < β, which implies α = δ′ ≤ β. If α is a
limit ordinal, we prove that α =

⊔
{γ ∈ O | γ < α}, which implies that α ≤ β, since by the

hypothesis β is an upper bound of the set {γ ∈ O | γ < α}. Let δ =
⊔
{γ ∈ O | γ < α}.

First, it is clear that α is an upper bound of the set {γ ∈ O | γ < α}, and so δ ≤ α. If
δ < α, since α is a limit ordinal, we have δ′ < α, contradicting the fact that δ is the least
upper bound of the set {γ ∈ O | γ < α}. Hence, δ = α.

Definition 6.5 The set N of finite ordinals is the smallest subset of O that contains 0
and is closed under the successor function.

It is not difficult to show that N is countable and has no maximal element. The least
upper bound of N is denoted by ω.
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Proposition 6.6 The ordinal ω is the least limit ordinal. For every α ∈ O, α < ω iff
α ∈ N.

It is easy to see that limit ordinals satisfy the following property: For every limit
ordinal β

α < β ⇒ α′ < β.

6.3 Ordering Functions

Given any ordinal α ∈ O, let O(α) be the set {β ∈ O | β < α}. Clearly, O(0) = ∅,
O(ω) = N, and by axiom (2), each O(α) is countable.

Definition 6.7 A subset A ⊆ O is an O-segment iff for all α, β ∈ O, if β ∈ A and α < β,
then α ∈ A.

The set O itself is an O-segment, and an O-segment which is a proper subset of O is
called a proper O-segment . It is easy to show that A is a proper O-segment iff A = O(α)
for some α ∈ O.

We now come to the crucial concept of an ordering function.

Definition 6.8 Given a subset B ⊆ O, a function f : A→ B is an ordering function for
B iff:

(1) The domain of f is an O-segment.

(2) The function f is strictly monotonic (or increasing), that is, for all α, β ∈ O, if α < β,
then f(α) < f(β).

(3) The range of f is B.

Intuitively speaking, an ordering function f of a set B enumerates the elements of
the set B in increasing order. Observe that an ordering function f is bijective, since by
(3), f(A) = B, and by (2), f is injective. Note that the ordering function for the empty
set is the empty function. The following fundamental propositions are shown by transfinite
induction.

Proposition 6.9 If f : A→ B is an ordering function, then α ≤ f(α) for all α ∈ A

Proof . Clearly, 0 ≤ f(0). Given any ordinal α > 0, for every β < α, by the induction
hypothesis, β ≤ f(β). Since f is strictly monotonic, f(β) < f(α). Hence, β < f(α) for all
β < α, and by proposition 6.4, this implies that α ≤ f(α).
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Proposition 6.10 Every subset B ⊆ O has at most one ordering function f : A→ B.

Proof . Let fi : Ai → B, i = 1, 2, be two ordering functions for B. We show by transfinite
induction that, if α ∈ A1, then α ∈ A2 and f1(α) = f2(α). If B = ∅, then clearly
f1 = f2 : ∅ → ∅. Otherwise, since A1 and A2 are O-segments, 0 ∈ A1 and 0 ∈ A2. Since
f2 is surjective, there is some α ∈ A2 such that f2(α) = f1(0). By (strict) monotonicity
of f2, we have f2(0) ≤ f1(0). Similarly, since f1 is surjective, there is some β ∈ A1 such
that f1(β) = f2(0), and by (strict) monotonicity of f1, we have f1(0) ≤ f2(0). Hence
f1(0) = f2(0). Now, assume α > 0. Since f2 is surjective, there is some β ∈ A2 such
that f2(β) = f1(α). If β < α, since A1 is an O-segment, β ∈ A1, and by the induction
hypothesis, β ∈ A2 and f1(β) = f2(β). By strict monotonicity, f2(β) = f1(β) < f1(α), a
contradiction.

Hence, β ≥ α, and since A2 is an O-segment and β ∈ A2, we have α ∈ A2. Assume
β > α. By strict monotonicity, f2(α) < f2(β). Since f1 is surjective, there is some γ ∈ A1

such that f1(γ) = f2(α). Since f2(α) = f1(γ), f2(β) = f1(α), and f2(α) < f2(β), we
have f1(γ) < f1(α). By strict monotonicity, we have γ < α. By the induction hypothesis,
f1(γ) = f2(γ), and since f1(γ) = f2(α), then f2(γ) = f2(α). Since f2 is injective, we have
α = γ, a contradiction. Hence, α = β and f1(α) = f2(α). Therefore, we have shown that
A1 ⊆ A2 and for every α ∈ A1, f1(α) = f2(α). Using a symmetric argument, we can show
that A2 ⊆ A1 and for every α ∈ A2, f1(α) = f2(α). Hence, A1 = A2 and f1 = f2.

Given a set B ⊆ O, for every β ∈ B, let B(β) = {γ ∈ B | γ < β}. Sets of the form
B(β) are called proper segments of B. Observe that B(β) = B ∩ O(β). Using proposition
6.10, we prove the following crucial result.

Proposition 6.11 Every subset B ⊆ O has a unique ordering function f : A→ B.

Proof . First, the following claim is shown.

Claim: If every proper segment B(β) of a set B ⊆ O has an ordering function, then B has
an ordering function.

Proof of claim. The idea is to construct a function g : B → O and to show that g is strictly
monotonic and that its range is an O-segment. Then, the inverse of g is an ordering function
for B. By the hypothesis, for every β ∈ B, we have an ordering function fβ : Aβ → B(β) for
each proper segment B(β) of B. By axiom (2) (in definition 6.1), B(β) is countable. Since
fβ is bijective, Aβ is also countable, and therefore, it is a proper O-segment. Hence, for
every β ∈ B, there is a unique ordinal γ such that Aβ = O(γ), and we define the function
g : B → O such that g(β) = γ.

We show that g is strictly monotonic. Let β1 < β2, β1, β2 ∈ B. Since the function
fβ2 : O(g(β2)) → B(β2) is surjective and β1 ∈ B(β2) (since β1 < β2 and β2 ∈ B), there is
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some α < g(β2) such that fβ2(α) = β1. Observe that the restriction of fβ2 to O(α) is an
ordering function of B(β1). Since fβ1 : Aβ1 → B(β1) is also an ordering function for B(β1),
by proposition 6.10, O(α) = O(g(β1)), and therefore, g(β1) = α < g(β2).

We show that g(B) is an O-segment. We have to show that for every γ ∈ g(B), if
α < γ, then α ∈ g(B). Let β ∈ B such that γ = g(β). Since fβ : O(g(β)) → B(β) and
α < g(β), fβ(α) = β0 for some β0 ∈ B(β). The restriction of fβ to O(α) is an ordering
function of B(β0). Since fβ0 : O(g(β0)) → B(β0) is also an ordering function for B(β0), by
proposition 6.10, α = g(β0), and therefore α ∈ g(B).

Since the function g : B → O is strictly monotonic and g(B) is an O-segment, say A,
its inverse g−1 : A→ B is an ordering function for B. This proves the claim.

Let B ⊆ O. For every β ∈ B, note that every proper segment of B(β) is of the form
B(β0) for some β0 < β. Using the previous claim, it follows by transfinite induction that
every proper segment B(β) of B has an ordering function. By the claim, B itself has an
ordering function. By proposition 6.10, this function is unique.

An important property of ordering functions is continuity.

Definition 6.12 A subset B ⊆ O is closed iff for every countable nonempty set M ,

M ⊆ B ⇒
⊔
M ∈ B.

An ordering function f : A → B is continuous iff A is closed and for every nonempty
countable set M ⊆ A,

f(
⊔
M) =

⊔
f(M).

Proposition 6.13 The ordering function f : A → B of a set B is continuous iff B is
closed.

Proof . Let f : A → B be the ordering function of B. First, assume that f is continuous.
Since f is bijective, for every nonempty countable subset M ⊆ B, there is some nonempty
countable subset U ⊆ A such that f(U) = M . Since f is continuous, f(

⊔
U) =

⊔
f(U) =⊔

M , and therefore
⊔
M ∈ f(A) = B, and B is closed.

Conversely, assume that B is closed. Let U ⊆ A be a nonempty countable subset
of A. Since f is bijective, f(U) is a nonempty countable subset of B. Since B is closed,⊔
f(U) ∈ B. Since B = f(A), there is some α ∈ A such that f(α) =

⊔
f(U). Since

f(α) =
⊔
f(U), for every δ ∈ U , we have f(δ) ≤ f(α), and by strict monotonicity of f ,

this implies that δ ≤ α. Hence
⊔
U ≤ α. Since A is an O-segment,

⊔
U ∈ A. Hence, A is

closed. For all δ ∈ U , δ ≤
⊔
U , and so f(δ) ≤ f(

⊔
U). Then, f(

⊔
U) is an upper bound for
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f(U), and so
⊔
f(U) ≤ f(

⊔
U). Also, since

⊔
U ≤ α, we have f(

⊔
U) ≤ f(α) =

⊔
f(U).

But then,
⊔
f(U) = f(

⊔
U), and f is continuous.

An ordering function that is continuous and whose domain is the entire set O is called
a normal function. Normal functions play a crucial role in the definition of Γ0.

Proposition 6.14 The ordering function f : A→ B of a set B is a normal function iff B

is closed and unbounded.

Proof . By axiom (2) and (3) (in definition 6.1), a subset M of O is bounded iff it is
countable. Since an ordering function f : A→ B is bijective, it follows that B is unbounded
iff A is unbounded. But A is an O-segment, and O is the only unbounded O-segment (since
a proper O-segment is bounded). Hence, the ordering function f has domain O iff B is
unbounded. This together with proposition 6.13 yields proposition 6.14.

We now show that normal functions have fixed points.

Proposition 6.15 Let f : O → O be a continuous function. For every α ∈ O, let
f0(α) = α, and fn+1(α) = f(fn(α)) for all n ≥ 0. If α ≤ f(α) for every α ∈ O, then⊔

n≥0 f
n(α) is the least fixed point of f that is ≥ α, and

⊔
n≥0 f

n(α′) is the least fixed
point of f that is > α.

Proof . First, observe that a continuous function is monotonic, by applying the continuity
condition to each set {α, β} with α ≤ β. Since f is continuous,

f(
⊔
n≥0

fn(α)) =
⊔
n≥0

f(fn(α))

=
⊔
n≥0

fn+1(α)

=
⊔
n≥1

fn(α)

=
⊔
n≥0

fn(α),

since α ≤ f(α). Hence,
⊔

n≥0 f
n(α) is a fixed point of f that is ≥ α. Let β be any fixed

point of f such that α ≤ β. We show by induction that fn(α) ≤ β. For n = 0, this follows
from the fact that f0(α) = α and the hypothesis α ≤ β. If fn(α) ≤ β, since f is monotonic
we have, f(fn(α)) ≤ f(β), that is, fn+1(α) ≤ β, since fn+1(α) = f(fn(α)) and f(β) = β

(because β is a fixed point of f). Hence,
⊔

n≥0 f
n(α) ≤ β, which shows that

⊔
n≥0 f

n(α) is
the least fixed point of f that is ≥ α.

From above,
⊔

n≥0 f
n(α′) is the least fixed point of f that is ≥ α′, and since β ≥ α′

iff β > α, the second part of the lemma holds.
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Corollary 6.16 For every normal function f , for every α ∈ O,
⊔

n≥0 f
n(α) is the least

fixed point of f that is ≥ α, and
⊔

n≥0 f
n(α′) is the least fixed point of f that is > α.

Proof . Since a normal function is continuous and α ≤ f(α) for all α, the corollary follows
from proposition 6.15.

Using the concept of a normal function, we are going to define addition and exponen-
tiation of ordinals.

6.4 Addition and Exponentiation of Ordinals

For every α ∈ O, let Bα = {β ∈ O |α ≤ β}. Let fα be the ordering function of Bα given by
proposition 6.11. It is easy to see that Bα is closed and unbounded. Hence, by proposition
6.14, fα is a normal function. We shall write α + β for fα(β). The following properties of
+ can be shown:

α ≤ α+ β.

β < γ ⇒ α+ β < α+ γ (right strict monotonicity).

If α ≤ β, then there is a unique γ such that α+ γ = β.

For every limit ordinal β ∈ O,
⊔
O(β) = β, and α+ β =

⊔
{α+ γ | γ ∈ O(β)}.

α+ 0 = α.

α+ β′ = (α+ β)′.

β ≤ α+ β.

0 + β = β

(α+ β) + γ = α+ (β + γ).

α ≤ β ⇒ α+ γ ≤ β + γ (left weak monotonicity).

It should be noted that addition of ordinals is not commutative. Indeed, 0′ + ω =⊔
N = ω, but ω < ω + 0′ by right strict monotonicity. Also,

Definition 6.17 An ordinal α ∈ O is a principal additive ordinal iff α 6= 0 and for every
β < α, β + α = α.

Clearly, 1 = 0′ is the smallest additive principal ordinal, and it is not difficult to show
that ω is the least additive principal ordinal greater than 1. Note that α+ 1 = α′.

If α is an additive principal ordinal, then O(α) is closed under addition.
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Proposition 6.18 The set of additive principal ordinals is closed and unbounded.

Proof . First, we show unboundedness. Given any ordinal α, let β0 = α′, βn+1 = βn + βn,
M = {βn | n ∈ N}, and β =

⊔
M . Since β0 = α′ > 0, we have βn > 0 for all n ≥ 0,

and by right strict monotonicity of +, βn < βn + βn = βn+1. Hence, α < βn < β for all
n ≥ 0, and β > 0. If η < β, then there is some n ≥ 0 such that η < βn. Hence, for all
m ≥ n, η + βm ≤ βm + βm = βm+1 < β. Hence,

⊔
{η + βn | n ∈ N} ≤ β. But we also have

β ≤ η + β =
⊔
{η + βn | n ∈ N} ≤ β. Hence, η + β = β for all η < β. Therefore, β is an

additive principal ordinal.

Next, we show closure. Let M be a nonempty set of additive principal ordinals. Since
for every β ∈ M , β > 0, we have

⊔
M > 0. Let η <

⊔
M . Then, there is some α ∈ M

such that η < α. For every β ∈M , if β ≥ α, then η < β, and since β is additive principal,
η + β = β. Hence,

⊔
{η + β | β ∈ M} =

⊔
M for all η <

⊔
M , which shows that

⊔
M is

additive principal.

By proposition 6.14, the ordering function of the set of additive principal ordinals is
a normal function.

Definition 6.19 The ordering function of the set of additive principal ordinals is a normal
function whose value for every ordinal α is denoted by ωα.

The following properties hold.

0 < ωα.

β < ωα ⇒ β + ωα = ωα.

α < β ⇒ ωα < ωβ .

For every additive principal ordinal β, there is some α such that β = ωα.

For every limit ordinal β, ωβ =
⊔
{ωα |α ∈ O(β)}.

α < β ⇒ ωα + ωβ = ωβ .

ω0 = 1.

ω1 = ω.

The following result known as the Cantor Normal Form for the (countable) ordinals
is fundamental.

Proposition 6.20 (Cantor Normal Form) For every ordinal α ∈ O, if α > 0 then there
are unique ordinals α1 ≥ . . . ≥ αn, n ≥ 1, such that

α = ωα1 + · · ·+ ωαn .
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Proof . First, we show the existence of the representation. We proceed by transfinite
induction. If α is an additive principal ordinal, then α = ωα1 for some α1 since γ 7→ ωγ

is the ordering function of the additive principal ordinals. Otherwise, there is some δ < α

such that δ + α 6= α. Then, since α ≤ δ + α (by proposition 6.9), δ > 0 and δ + α > α.
Since δ < α, there is some η > 0 such that α = δ+η. We must have η < α, since otherwise,
by right monotonicity, we would have δ + α ≤ δ + η = α, contradicting δ + α > α. Hence,
α = δ + η, with 0 < δ, η < α. By the induction hypothesis, δ = ωα1 + · · · + ωαm and
η = ωβ1 + · · · + ωβn , for some ordinals such that α1 ≥ . . . ≥ αm and β1 ≥ . . . ≥ βn. If we
had αi < β1 for all i, 1 ≤ i ≤ m, then we would have δ + η = η (using the fact that for
additive principal ordinals, if α < β, then ωα + ωβ = ωβ), that is, α = η, contradicting the
fact that η < α. Hence, there is a largest k, 1 ≤ k ≤ m such that αk ≥ β1. Consequently,
α1 ≥ . . . ≥ αk ≥ β1 ≥ . . . ≥ βn, and since ωαj + ωβ1 = ωβ1 for k + 1 ≤ j ≤ m, we have

α = δ + η

= ωα1 + · · ·+ ωαk + ωαk+1 + · · ·+ ωαm + ωβ1 + · · ·+ ωβn

= ωα1 + · · ·+ ωαk + ωβ1 + · · ·+ ωβn .

Assume α = ωα1 + · · · + ωαm = ωβ1 + · · · + ωβn . Uniqueness is shown by induction on
m. Note that α + ωα′

1 = ωα′
1 , which implies that α < ωα′

1 (by right strict monotonicity,
since ωα′

1 > 0), and similarly, α < ωβ′
1 . If we had β′1 ≤ α1, we would have ωβ′

1 ≤ ωα1 ≤ α,
contradicting the fact that α < ωβ′

1 . Hence, α1 < β′1. Similarly, we have β1 < α′1. But
then, α1 ≤ β1 and β1 ≤ α1, and therefore, α1 = β1. Hence, either m = n = 1, or m,n > 1
and ωα2 + · · ·+ ωαm = ωβ2 + · · ·+ ωβn . We conclude using the induction hypothesis.

As we shall see in the next section, there are ordinals such that ωα = α, and so, we
cannot ensure that αi < α. However, if n > 1, by right strict monotonicity of +, it is true
that ωαi < α, 1 ≤ i ≤ n. We are now ready to define some normal functions that will lead
us to the definition of Γ0.

6.5 α-Critical Ordinals

For each α ∈ O, we shall define a subset Cr(α) ⊆ O and its ordering function ϕα inductively
as follows.

Definition 6.21 For each α ∈ O, the set Cr(α) ⊆ O and its ordering function ϕα : Aα →
Cr(α) are defined inductively as follows.

(1) Cr(0) = the set of additive principal ordinals, A0 = O, and for every α ∈ O, ϕ0(α) =
ωα, the ordering function of Cr(0).



6 The Countable Ordinals 29

(2) Cr(α′) = {η ∈ Aα | ϕα(η) = η}, the set of fixed points of ϕα, and ϕα′ : Aα′ → Cr(α′)
is the ordering function of Cr(α′).

(3) For every limit ordinal β ∈ O,

Cr(β) = {η ∈
⋂

α<β

Aα | ∀α < β, ϕα(η) = η},

and ϕβ : Aβ → Cr(β) is the ordering function of Cr(β).

The elements of the set Cr(α) are called α-critical ordinals. The following proposition
shows that for α > 0 the α-critical ordinals are the common fixed points of the normal
functions ϕβ , for all β < α.

Proposition 6.22 For all α, η ∈ O, if α = 0 then η ∈ Cr(0) iff η is additive principal,
else η ∈ Cr(α) iff η ∈

⋂
β<αAβ and ϕβ(η) = η for all β < α.

Proof . We proceed by transfinite induction. The case α = 0 is clear since Cr(0) is defined
as the set of additive principal ordinals. If α is a successor ordinal, there is some β such
that α = β′. By the induction hypothesis, η ∈ Cr(β) iff η ∈

⋂
γ<β Aγ and ϕγ(η) = η for all

γ < β. By the definition of Cr(β′), η ∈ Cr(β′) = Cr(α) iff η ∈ Aβ and ϕβ(η) = η. Hence,
since α = β′, η ∈ Cr(α) iff η ∈

⋂
γ<αAγ and ϕγ(η) = η for all γ < α. If α is a limit ordinal,

the property to be shown is clause (3) of definition 6.21.

The following important result holds.

Proposition 6.23 Each set Cr(α) is closed and unbounded.

Proof . We show by transfinite induction that Cr(α) is closed and unbounded and that
Aα = O.

Proof of closure. For α = 0 this follows from the fact the the set of additive principal
ordinals is closed. Assume α > 0, and let M ⊆ Cr(α) be a nonempty countable subset
of Cr(α). By the induction hypothesis, for every β < α, Cr(β) is closed and Aβ = O.
Hence, by proposition 6.13, ϕβ is continuous. Hence, ϕβ(

⊔
M) =

⊔
M for all β < α. By

proposition 6.22, since we also have Aβ = O for all β < α, this implies that
⊔
M ∈ Cr(α).

Hence, Cr(α) is closed.

Proof of Unboundedness. For α = 0, this follows from the fact that the set of additive
principal ordinals in unbounded and that A0 = O. Assume α > 0. Given any ordinal β,
let γ0 = β′, γn+1 =

⊔
{ϕη(γn) | η < α}, M = {γn | n ∈ N}, and γ =

⊔
M . By the

induction hypothesis, for every δ < α, Cr(δ) is unbounded, and so γn is well defined for
all n ≥ 0. We have β < γ0 ≤ γ. For every δ < α, we have ϕδ(γn) ≤ γn+1 ≤ γ, and so
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{ϕδ(γn) |γn ∈M} ≤ γ. By the induction hypothesis, for every δ < α, Cr(δ) is closed and

unbounded and Aδ = O. Hence, ϕδ is continuous and

ϕδ(
⊔
M) =

⊔
{ϕδ(γn) |γn ∈M}.

Hence, ϕδ(γ) ≤ γ. By proposition 6.9, we also have γ ≤ ϕδ(γ). Hence, γ = ϕδ(γ) for all
δ < α. By proposition 6.22, we have γ ∈ Cr(α), and γ is an α-critical ordinal > β. Hence
Cr(α) is unbounded, and so Aα = O.

Proposition 6.23 has the following corollary.

Proposition 6.24 For every α ∈ O, Aα = O and ϕα is a normal function.

In view of proposition 6.24, since every function ϕα has domain O, we can define the
function ϕ : O ×O → O such that ϕ(α, β) = ϕα(β) for all α, β ∈ O. From definition 6.21
and proposition 6.24, we have the following useful properties.

Proposition 6.25 (1) η ∈ Cr(α′) iff ϕ(α, η) = η.

(2) For a limit ordinal β, Cr(β) =
⋂

α<β Cr(α).

Proposition 6.26 (1) If α < β then Cr(β) ⊆ Cr(α).

(2) Every ordinal ϕ(α, β) is an additive principal ordinal.

(3) ϕ(0, β) = ωβ .

An ordinal α such that α ∈ Cr(α) is particularly interesting. Actually, it is by no
means obvious that such ordinals exist, but they do, and Γ0 is the smallest. We shall
consider this property in more detail.

It is interesting to see what are the elements of Cr(1). By the definition, an ordinal
α is in Cr(1) iff ωα = α. Such ordinals are called epsilon ordinals, because their ordering
function is usually denoted by ε. The least element of Cr(1) is ε0. It can be shown that ε0
is the least upper bound of the set

{ω, ωω, ωωω

, . . . , ωω··
·ω

, . . .}.

This is already a rather impressive ordinal. What are the elements of Cr(2)? Well, denoting
the ordering function of Cr(1) by ε, α ∈ Cr(2) iff εα = α. We claim that the smallest of
these ordinals is greater than

ε0, ε1, . . . , εω, . . . , εε0 , . . . , εε1 , . . . , εεε0
, . . .
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Amazingly, the ordinal Γ0 dwarfs the ordinals just mentioned, and many more!

The following proposition gives a rather explicit characterization of ϕα′ in terms of
fixed points. It also shows that the first element of Cr(α′) is farther down than the first
element of Cr(α) on the ordinal line (in fact, much farther down).

Proposition 6.27 For each α, β ∈ O, let ϕ0
α(β) = β, and ϕn+1

α (β) = ϕα(ϕn
α(β)) for every

n ≥ 0. Then, we have

ϕα′(0) =
⊔
n≥0

ϕn
α(0),

ϕα′(β′) =
⊔
n≥0

ϕn
α(ϕα′(β) + 1),

ϕα′(β) =
⊔

γ<β

ϕα′(γ),

for a limit ordinal β. Furthermore, ϕα(0) < ϕα′(0) for all α ∈ O.

Proof . Since ϕα is a normal function, by proposition 6.15,
⊔

n≥0 ϕ
n
α(0) is the least fixed

point of ϕα, and for every β ∈ O,
⊔

n≥0 ϕ
n
α(ϕα′(β) + 1) is the least fixed point of ϕα that

is > ϕα′(β). Since ϕα′ enumerates the fixed points of ϕα, ϕα′(β′) =
⊔

n≥0 ϕ
n
α(ϕα′(β) + 1).

Assume that β is a limit ordinal. From the proof of proposition 6.4, we know that
β =

⊔
{γ | γ < β}. Since ϕα′ is continuous, we have

ϕα′(β) = ϕα′(
⊔
{γ | γ < β}) =

⊔
γ<β

ϕα′(γ).

Since 0 < ϕα(0), it is easily shown that ϕn
α(0) < ϕn+1

α (0) for all n ≥ 0 (using induction
and the fact that ϕα is strictly monotonic), and so, ϕn

α(0) < ϕα′(0). Since ϕ1
α(0) = ϕα(0),

the first element of Cr(α), we have ϕα(0) < ϕα′(0).

Proposition 6.27 justifies the claim we made about ε0, and also shows that the first
element of Cr(2) is the least upper bound of the set

{ε0, εε0 , εεε0
, . . . , εε···ε0

, . . .}

It is hard to conceive what this limit is! Of course, things get worse when we look at the
first element of Cr(3), not to mention the notational difficulties involved. Can you imagine
what the first element of Cr(ε0) is? Well, Γ0 is farther away on the ordinal line!

The following proposition characterizes the order relationship between ϕ(α1, β1) and
ϕ(α2, β2).
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Proposition 6.28 (i) ϕ(α1, β1) = ϕ(α2, β2) iff either

(1) α1 < α2 and β1 = ϕ(α2, β2), or

(2) α1 = α2 and β1 = β2, or

(3) α2 < α1 and ϕ(α1, β1) = β2.

(ii) ϕ(α1, β1) < ϕ(α2, β2) iff either

(1) α1 < α2 and β1 < ϕ(α2, β2), or

(2) α1 = α2 and β1 < β2, or

(3) α2 < α1 and ϕ(α1, β1) < β2.

Proof (sketch). We sketch the proof of (ii). By the definition of ϕ, ϕ(α2, β2) ∈ Cr(α2). If
α1 < α2, by proposition 6.22, ϕ(α2, β2) is a fixed point of ϕα1 , and so,

ϕ(α1, ϕ(α2, β2)) = ϕ(α2, β2).

Since ϕα1 is strictly monotonic, ϕ(α1, β1) < ϕ(α1, ϕ(α2, β2)) iff β1 < ϕ(α2, β2). The case
where α2 < α1 is similar. For α1 = α2, the assertion follows from the fact that ϕα1 is
strictly monotonic.

Using proposition 6.9, since each function ϕα is an ordering function, we have the
following useful property.

Proposition 6.29 For all α, β ∈ O, β ≤ ϕ(α, β).

By proposition 6.28 and 6.29, we also have the following.

Corollary 6.30 For all α1, α2, β1, β2 ∈ O, if α1 ≤ α2 and β1 ≤ β2, then ϕ(α1, β1) ≤
ϕ(α2, β2).

The following can be shown by transfinite induction.

Proposition 6.31 (i) For every α ∈ O, α ≤ ϕ(α, 0). Furthermore, if β ∈ Cr(α), then
α ≤ β.

(ii) If α ≤ β, then ϕ(α, β) ≤ ϕ(β, α).

Proof . We show α ≤ ϕ(α, 0) by transfinite induction. This is clear for α = 0. If α > 0, for
every β < α, by strict monotonicity and proposition 6.22, ϕ(β, 0) < ϕ(β, ϕ(α, 0)) = ϕ(α, 0),
since ϕ(α, 0) > 0 is a fixed point of ϕβ . By the induction hypothesis, we have β ≤ ϕ(β, 0),
and so β < ϕ(α, 0) for all β < α. By proposition 6.4, this implies that α ≤ ϕ(α, 0).
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β ∈ Cr(α) iff β = ϕ(α, η) for some η, and since α ≤ ϕ(α, 0), by monotonicity, we have
α ≤ ϕ(α, 0) ≤ ϕ(α, η) = β.

Assume α ≤ β. Since β ≤ ϕ(β, 0), we also have β ≤ ϕ(β, α). By proposition 6.28,
ϕ(α, β) ≤ ϕ(β, α), since α ≤ β and β ≤ ϕ(β, α).

Another key result is the following.

Proposition 6.32 For every additive principal ordinal γ, there exist unique α, β ∈ O
such that, α ≤ γ, β < γ, and γ = ϕ(α, β).

Proof . Recall that an additive principal ordinal is not equal to 0. By proposition 6.31,
γ ≤ ϕ(γ, 0). Since 0 < γ, by strict monotonicity of ϕγ , ϕ(γ, 0) < ϕ(γ, γ), and so γ < ϕ(γ, γ).
Since O is well-ordered, there is a least ordinal α ≤ γ such that γ < ϕ(α, γ). If α 6= 0, the
minimality of α implies that ϕ(η, γ) = γ for all η < α, and by proposition 6.22, γ ∈ Cr(α).
If α = 0, since γ is an additive principal ordinal, by the definition of Cr(0), α ∈ Cr(0).
Hence, γ ∈ Cr(α). Hence, there is some β such that γ = ϕ(α, β). Since γ < ϕ(α, γ), by
strict monotonicity of ϕα, we must have β < γ.

It remains to prove the uniqueness of α and β. If β1 < γ, β2 < γ, and γ = ϕ(α1, β1) =
ϕ(α2, β2), by proposition 6.28, we must have α1 = α2 and β1 = β2.

Observe that the proof does not show that α < γ, and indeed, this is not necessarily
true. Also, for an ordinal γ, γ = ϕ(γ, β) holds for some β iff γ ∈ Cr(γ). Such ordinals exist
in abundance, as we shall prove next.

Definition 6.33 An ordinal α ∈ O is a strongly critical ordinal iff α ∈ Cr(α).

Proposition 6.34 An ordinal α is strongly critical iff ϕ(α, 0) = α.

Proof . If α ∈ Cr(α), there is some β such that α = ϕ(α, β). By proposition 6.31, we have
α ≤ ϕ(α, 0), and by strict monotonicity of ϕα, we have β = 0. Conversely, it is obvious
that ϕ(α, 0) = α implies α ∈ Cr(α).

Let ψ : O → O be the function defined such that ψ(α) = ϕ(α, 0) for all α ∈ O. We
shall prove that ψ is strictly monotonic and continuous. As a consequence, ψ is a normal
function for the set {ϕ(α, 0) | α ∈ O}.

Proposition 6.35 The function ψ (also denoted by ϕ(−, 0)) defined such that ψ(α) =
ϕ(α, 0) for all α ∈ O is strictly monotonic and continuous.

Proof . First, we prove the following claim.
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Claim: ψ satisfies the following properties:

ψ(0) = ϕ(0, 0),

ψ(β′) =
⊔
n≥0

ϕn
β(ψ(β)),

ψ(β) =
⊔
δ<β

ψ(δ),

for a limit ordinal β.

Proof of claim. By definition, ψ(0) = ϕ(0, 0), and the second identity follows from propo-
sition 6.15, since ϕ1

β(0) = ϕ(β, 0) = ψ(β), which implies that ϕn
β(ψ(β)) = ϕn+1

β (0) for all
n ≥ 0. By proposition 6.22, ψ(β) = ϕ(β, 0) = η0, where η0 is the least ordinal such that
ϕ(γ, η) = η for all γ < β. For every γ < β, since ϕγ is continuous,

ϕ(γ,
⊔
δ<β

ψ(δ)) =
⊔
δ<β

ϕ(γ, ψ(δ))

=
⊔
δ<β

ϕ(γ, ϕ(δ, 0)).

For δ > γ, we have ϕ(γ, ϕ(δ, 0)) = ϕ(δ, 0) = ψ(δ), and since ϕ is monotonic in both
arguments, ⊔

δ<β

ϕ(γ, ϕ(δ, 0)) =
⊔
δ<β

ψ(δ).

Hence,
ϕ(γ,

⊔
δ<β

ψ(δ)) =
⊔
δ<β

ψ(δ),

for all γ < β, which shows that η0 ≤
⊔

δ<β ψ(δ) (because η0 is the least such common
fixed point). On the other hand, ψ(δ) = ϕ(δ, 0) ≤ ϕ(δ, η0) = η0 for all δ < β. Hence,⊔

δ<β ψ(δ) ≤ η0. But then,
⊔

δ<β ψ(δ) = η0 = ψ(β).

We can now show that ψ is continuous. Let M be a nonempty countable subset of O,
and let β =

⊔
M . The case β = 0 is trivial. If β = α′ for some α, we must have β ∈M , since

otherwise β would not be the least upper bound of M (either γ ≤ α for all γ ∈M , or γ > α

for some γ ∈M , a contradiction in either case). But then, ψ(
⊔
M) = ψ(β) =

⊔
α∈M ψ(α),

since ψ is monotonic. If β =
⊔
M is a limit ordinal, then β =

⊔
M =

⊔
{δ | δ < β}. Hence,

for every α ∈ M , there is some δ < β such that α < δ, and conversely, for every δ < β,
there is some α ∈M such that δ < α. By monotonicity of ψ, this implies that⊔

α∈M

ψ(α) =
⊔
δ<β

ψ(δ).



6 The Countable Ordinals 35

By the claim,
ψ(

⊔
M) = ψ(β) =

⊔
δ<β

ψ(δ),

and therefore,
ψ(

⊔
M) =

⊔
α∈M

ψ(α),

showing that ψ is continuous.

Finally, we show that ψ is strictly monotonic. Since ϕ is monotonic in both arguments,
ψ = ϕ(−, 0) is monotonic. Assume α < β. Then α < α′ ≤ β and by proposition 6.27,
ψ(α) < ψ(α′) ≤ ψ(β).

Proposition 6.35 implies that there are plenty of strongly critical ordinals.

Proposition 6.36 The set of strongly critical ordinals is closed and unbounded.

Proof . First, we prove unboundedness. Since ψ = ϕ(−, 0) is a normal function, by proposi-
tion 6.22, for any arbitrary ordinal α, ψ has a least fixed point > α. Since such fixed points
are strongly critical ordinal, the set of strongly critical ordinals is unbounded.

Next, we prove that the set of strongly critical ordinals is closed. LetM be a nonempty
countable set of strongly critical ordinals. For each α ∈ M , we have ψ(α, 0) = α. Hence,
ψ(M) = M . Since ψ = ϕ(−, 0) is continuous, we have ψ(

⊔
M) =

⊔
ψ(M) =

⊔
M . This

shows that
⊔
M is a strongly critical ordinal, and therefore, the set of strongly critical

ordinals is closed.

From proposition 6.36, the ordering function of the set of strongly critical ordinals
is a normal function. This function is denoted by Γ, and Γ(0), also denoted Γ0, is the
least strongly critical ordinal. Γ0 is the least ordinal such that ϕ(α, 0) = α. The following
proposition shows that O(Γ0) is closed under + and ϕ.

Proposition 6.37 For all α, β ∈ O, if α, β < Γ0, then α+ β < Γ0, and ϕ(α, β) < Γ0.

Proof (sketch). Since Γ0 is an additive principal ordinal, closure under + is clear. Let γ0 = 0,
γn+1 = ϕ(γn, 0), U = {γn | n ∈ N}, and γ =

⊔
U . By proposition 6.15, we have γ = Γ0.

Now, if α, β < Γ0, since Γ0 =
⊔
U , there is some γn such that α, β < γn. By proposition

6.28, we have ϕ(α, β) < ϕ(γn, 0), because β < γn ≤ ϕ(γn, 0). Hence, ϕ(α, β) < γn+1 ≤ Γ0.

Proposition 6.37 shows that Γ0 cannot be obtained from strictly smaller ordinals in
terms of the function + and the powerful functions ϕα, α < Γ0. As Smoryński puts it in
one of his articles [50],
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“Γ0 is the first countable ordinal which cannot be described without reference
(if only oblique) to the uncountable.”

Indeed, referring to Γ0 as the least ordinal α satisfying α = ϕ(α, 0) is indirect and
somewhat circular – the word “least” involves reference to all ordinals, including Γ0. One
could claim that the definition of Γ0 as

⊔
{γn | n ∈ N}, as in proposition 6.37, is “construc-

tive”, and does not refer to the uncountable, but this is erroneous, although the error is
more subtle. Indeed, the construction of the function ϕ(−, 0) is actually an iteration of the
functional taking us from ϕ(α,−) to ϕ(α′,−), and therefore, presupposes as domain of this
functional a class of functions on ordinals and thus (on close examination) the uncountable.
As logicians say, the definition of the ordinal Γ0 is impredicative.


