
1

Gordana Dodig-Crnkovic

Department of Computer Science and Engineering
Mälardalen University, 23 January 2004

PHILOSOPHY
OF COMPUTER SCIENCE

CD5650

COMPUTABILITY

2

CONTENT
I

PROLOGUE
THE UNIVERSE AS A COMPUTER

PHILOSOPHICAL PROBLEMS OF COMPUTING
WHAT IS INFORMATION? WHAT IS COMPUTATION?

TURING MACHINES
II

UNIVERSAL TMS; DECIDABILITY
UNCOMPUTABLE FUNCTIONS

HILBERT’S PROGRAM [AND GÖDEL THEOREM]
TURING THESIS; CHURCH-TURING THESIS

III
OTHER MODELS OF COMPUTATION

NATURAL COMPUTATION
[BIOLOGICAL COMPUTING, QUANTUM COMPUTING]

CONCLUSIONS
3

PART I

PROLOGUE
THE UNIVERSE AS A COMPUTER

PHILOSOPHICAL PROBLEMS OF COMPUTING
WHAT IS INFORMATION? WHAT IS COMPUTATION?

TURING MACHINES

4

PROLOGUE

A Few Meta-Level Words
or

Lecture Use Instruction

5

“Real” Waterlilies

6

“Real” Waterlilies

7

“Real” Waterlilies

8

Claude Monet: Blue Waterlilies
Are They Real?

This lecture is more like an impressionist painting giving you
a general ideas with a very few details!

9

THE UNIVERSE AS A COMPUTER

10

The Medieval Universe
with Earth in the Centre

From Aristotle Libri de caelo (1519). 11

The Clockwork Universe

The mechanistic paradigm which systematically revealed physical structure in analogy
with the artificial.

The self-functioning automaton - basis and canon of the form of the Universe.
Newton Principia, 1687

12

THE UNIVERSE AS A COMPUTER

We are all living inside a
gigantic computer. No, not
The Matrix: the Universe.

Every process, every change
that takes place in the
Universe, may be
considered as a kind of
computation.

E Fredkin, S Wolfram

http://www.nature.com/nsu/020527/020527-16.html

13

THE WILDFIRE SPREAD OF
COMPUTATIONAL IDEAS

"Everyone knows that computational and information
technology has spread like wildfire throughout
academic and intellectual life. But the spread of
computational ideas has been just as impressive.

Biologists not only model life forms on computers;
they treat the gene, and even whole organisms, as
information systems. Philosophy, artificial
intelligence, and cognitive science don't just
construct computational models of mind; they take
cognition to be computation, at the deepest levels.

14

THE WILDFIRE SPREAD OF
COMPUTATIONAL IDEAS

Physicists don't just talk about the information carried by a
subatomic particle; they propose to unify the foundations
of quantum mechanics with notions of information.

Similarly for linguists, artists, anthropologists, critics,
etc. Throughout the university, people are using
computational and information notions -- such as
information, digitality, algorithm, formal, symbol, virtual
machine, abstraction, implementation, etc. -- as
fundamental concepts in terms of which to formulate their
theoretical claims."

Brian Cantwell Smith, 2003
15

THE UNIVERSE AS A COMPUTER

[Ontology What may be known about what may exist.]

http://physics.stanford.edu/linde

String formation – Andrei Linde A simulation of large-scale structure
formation

http://cfcp.uchicago.edu/lss/sims.html

16

PHILOSOPHICAL PROBLEMS OF
COMPUTING

17

Quantum Computer

IBM's quantum computer uses the
interactions of nuclear spins within a
specially designed molecule to
perform calculations in a manner that
is exponentially more powerful than
conventional computers.

The spins are programmed by a series
of radiofrequency pulses and the
answer is read from a nuclear
magnetic resonance spectrum.

WHAT IS COMPUTING? WHAT IS COMPUTER?

http://domino.research.ibm.com/comm/bios.nsf/pages/quantum.html
18

This molecule is currently the world's
most advanced quantum computer - a
7-qubit quantum that IBM researchers
used to conduct the first demonstration
of Shor's quantum factoring algorithm.

Each of the five fluorine and two
carbon-13 atoms in this molecule can
act as a quantum bit, or qubit, to solve
mathematical problems because their
spins can interact with each other as
well as be individually programmed
(by radiofrequency pulses) and
detected (by nuclear magnetic
resonance).

WHAT IS COMPUTING? WHAT IS COMPUTER?

http://domino.research.ibm.com/comm/bios.nsf/pages/quantum.html

19

Babbage's Difference Engine No
1, 1832. Front detail.

Science Museum London

WHAT IS COMPUTING? WHAT IS COMPUTER?

20

Code-breaking personnel
at Bletchley Park, 1943.

This shows one of the Hut 3
priority teams at Bletchley
Park, in which civilian and
service personnel worked
together at code- breaking.

WHAT IS COMPUTING? WHAT IS COMPUTER?

21

The computer presents itself as a culturally defining technology
and has become a symbol of the new millennium, playing a
cultural role far more influential than the mills in the Middle
Ages, mechanical clocks in the seventeenth century, or the
steam engine in the age of the industrial revolution.

(Bolter 1984)

WHAT IS COMPUTING? WHAT IS COMPUTER?

22

PHILOSOPHY OF COMPUTING
OR

PHILOSOPHY OF INFORMATION*?

DICHOTOMY

INFORMATION – COMPUTATION
SUBSTANTIVE - VERB

DATA STRUCTURE – FUNCTION/ALGORITHM
PARTICLE – FORCE (FIELD)

Instructive analogy from physics:
PARTICLES are considered as the primary principle.

FIELDS/INTERACTIONS are defined in terms of particles, particle exchange.

*What ’s in a name? That which we call a rose by any other name would smell as sweet.
William Shakespeare (1564–1616), Romeo and Juliet. Act ii. Sc. 2. 1

23

WHAT IS INFORMATION?
Luciano Floridi

24

INFORMATION

There is no consensus yet on the definition of semantic
information.

The Standard Definition of declarative, objective and semantic
Information (SDI):

information = meaningful data

Floridi’s main thesis is that meaningful and well-formed data
constitute information only if they also qualify as contingently
truthful.

25

THE PHILOSOPHY OF INFORMATION (PI)
A new philosophical discipline, concerned with

a) the critical investigation of the conceptual nature and basic
principles of information, including its dynamics (especially
computation and flow), utilisation and sciences; and

b) the elaboration and application of information-theoretic and
computational methodologies to philosophical problems.

L. Floridi

"What is the Philosophy of Information?", Metaphilosophy, 2002
http://www.wolfson.ox.ac.uk/~floridi/papers.htm

26

WHAT IS COMPUTATION?

Brian Cantwell Smith

27

CONSTRUALS OF COMPUTATION
Brian Cantwell Smith

The Age of Significance

28

CONSTRUALS OF COMPUTATION

1. Formal symbol manipulation
the idea, derivative from a century’s work in formal logic and
meta-mathematics, of a machine manipulating symbolic or
meaningful expressions without regard to their interpretation or
semantic content;
Calculation of a function behavior that, when given as input an
argument to a (typically mathematical) function, produces as
output the value of that function on that argument;

2. Effective computability
what can be done mechanically, as it were, by, an abstract
analogue of a “mere machine”;

29

3. Rule-following or algorithm execution
what is involved, and what behavior is thereby produced, in
following a set of rules or instructions, such as when cooking
dessert;

4. Digital state machines
the idea of an automaton with a finite, disjoint set of internally
homogeneous states;

5. Information processing
what is involved in storing, manipulating, displaying, and otherwise
trafficking in “information,” whatever information might be; and

6. Physical symbol systems
the idea, made famous by Newell and Simon, that, somehow or
other, computers interact with and perhaps are also made of symbols
in a way that depends on their mutual physical embodiment.

30

TURING MACHINES

31

............
Tape

Read-Write head
Control Unit

A Turing Machine

32

............

Read-Write head

No boundaries -- infinite length

The head moves Left or Right

The Tape

33

............

Read-Write head

1. Reads a symbol
2. Writes a symbol
3. Moves Left or Right

The head at each time step:

34

Example
Time 0

............ a a cb

Time 1
............ a b k c

1. Reads a
2. Writes k
3. Moves Left

35

Head starts at the leftmost position
of the input string

............

Blank symbol

head

a b ca

Input string

The Input String

#####

36

1q 2qLba ,→

Read Write Move Left

1q 2qRba ,→

Move Right

States & Transitions

37

............ # a b ca
Time 1

1q 2qRba ,→

............ a b cb
Time 2

1q

2q

#

#

38

Determinism

1q

2qRba ,→

Allowed Not Allowed

3qLdb ,→

1q

2qRba ,→

3qLda ,→

No lambda transitions allowed in TM!

Turing Machines are deterministic

39

COMPUTING FUNCTIONS
WITH

TURING MACHINES

40

A function

)(wf
Domain

D

Dw∈
Range

S

Swf ∈)(

41

A function may have many parameters:

yxyxf +=),(

Example: Addition function

42

Integer Domain

Binary: 101

Decimal: 5

We prefer unary representation:

easier to manipulate

Unary: 11111

43

Definition

A function is computable if
there is a Turing Machine such that:

f
M

Initial configuration Final configuration

Dw∈ Domain

fq

)(wf

final state0q

w

initial state

For all

#

44

Example (Addition)

The function yxyxf +=),(is computable

Turing Machine:

Input string: yx0 unary

Output string: 0xy unary

yx, are integers

45

Start

Finish 0

fq

11

yx +

L 11

final state

0

0q

1 11 1

x y

1L L

initial state

#

#

46

0q 1q 2q 3qL,##→ L,01→

L,11→

R,##→

R,10→

R,11→

4q

R,11→

Turing machine for function yxyxf +=),(

47

Execution Example:

11=x

11=y

Time 0

0

0q

1 11 1
x y

Final Result

0

4q

1 11 1
yx +

(2)

(2)

#

#

48

Time 0 0

0q

1 11 1

0q 1q 2q 3qL,01→

L,11→

R,10→

R,11→

4q

R,11→

#

L,##→

R,##→

yxyxf +=),(

49

0q

01 11 1Time 1

0q 1q 2q 3qL,01→

L,11→

R,10→

R,11→

4q

R,11→

#

L,##→

R,##→

yxyxf +=),(

50

0

0q

1 11 1Time 2

0q 1q 2q 3qL,01→

L,11→

R,10→

R,11→

4q

R,11→

#

L,##→

R,##→

yxyxf +=),(

51

1q

1 11 11Time 3

0q 1q 2q 3qL,01→

L,11→

R,10→

R,11→

4q

R,11→

#

L,##→

R,##→

yxyxf +=),(

52

1q

1 11 11Time 4

0q 1q 2q 3qL,01→

L,11→

R,10→

R,11→

4q

R,11→

#

L,##→

R,##→

yxyxf +=),(

53

1q

1 11 11Time 5

0q 1q 2q 3qL,01→

L,11→

R,10→

R,11→

4q

R,11→

#

L,##→

R,##→

yxyxf +=),(

54

2q

1 11 11Time 6

0q 1q 2q 3qL,01→

L,11→

R,10→

R,11→

4q

R,11→

#

L,##→

R,##→

yxyxf +=),(

55

3q

1 11 01Time 7

0q 1q 2q 3qL,01→

L,11→

R,10→

R,11→

4q

R,11→

#

L,##→

R,##→

yxyxf +=),(

56

3q

1 11 01Time 8

0q 1q 2q 3qL,01→

L,11→

R,10→

R,11→

4q

R,11→

#

L,##→

R,##→

yxyxf +=),(

57

3q

1 11 01Time 9

0q 1q 2q 3qL,01→

L,11→

R,10→

R,11→

4q

R,11→

#

L,##→

R,##→

yxyxf +=),(

58

3q

1 11 01Time 10

0q 1q 2q 3qL,01→

L,11→

R,10→

R,11→

4q

R,11→

#

L,##→

R,##→

yxyxf +=),(

59

3q

1 11 01Time 11

0q 1q 2q 3qL,01→

L,11→

R,10→

R,11→

4q

R,11→

#

L,##→

R,##→

yxyxf +=),(

60

4q

1 11 01

0q 1q 2q 3qL,01→

L,11→

R,10→

R,11→

4q

R,11→

HALT & accept

Time 12 # #

L,##→

R,##→

yxyxf +=),(

61

Formal Definitions
for

Turing Machines

62

Transition Function

1q 2qRba ,→

),,(),(21 Rbqaq =δ

63

Turing Machine

),#,,,,,(0 FqQM δΓΣ=

Transition
function

Initial
state

blank

Final
states

States

Input
alphabet

Tape
alphabet

64

PART II

UNIVERSAL TM’S; DECIDABILITY
UNCOMPUTABLE FUNCTIONS

HILBERT’S PROGRAM [AND GÖDEL THEOREM]
TURING THESIS; CHURCH-TURING THESIS

65

A limitation of Standard Turing Machines:
A Standard Turing Machine is “hardwired”

it executes
only one program

UNIVERSAL TURING MACHINE

66

Solution: Universal Turing Machine

• Reprogrammable machine

• Simulates any other Turing Machine

Characteristics:

67

Universal Turing Machine

Input of Universal Turing Machine

• Description of transitions of M
• Initial tape contents of M

68

Universal
Turing
Machine

Description of
Three tapes

MTape Contents of

Tape 2

State of M

Tape 3

M

Tape 1

69

We describe Turing machine
as a string of symbols:

We encode as a string of symbols

M

M

Description of M

Tape 1

70

Alphabet Encoding

Symbols: a b c d K

Encoding: 1 11 111 1111

71

State Encoding

States: 1q 2q 3q 4q K

Encoding: 1 11 111 1111

Head Move Encoding

Move:

Encoding:

L R

1 11
72

Transition Encoding

Transition:),,(),(21 Lbqaq =δ

Encoding: 10110110101

separator

73

Machine Encoding

Transitions:
),,(),(21 Lbqaq =δ

Encoding:

10110110101

),,(),(32 Rcqbq =δ

110111011110101100

separator 74

Decidability

75

A problem is decidable if some Turing machine
solves (decides) the problem, i.e. comes up with
answer YES or NO.

Decidable problems:

• Does machine have three states ?M
• Is string a binary number? w
• Does DFA* accept any input? M

* DFA = Deterministic Finite Automaton

76

Turing Machine
Input
problem
instance

YES

NO

The Turing machine that decides a problem
answers YES or NO for each instance.

77

The machine that decides a problem:

• If the answer is YES
then halts in a yes state

• If the answer is NO
then halts in a no state

78

Turing Machine that decides a problem

YES and NO states are halting states

YES

NO

79

Some problems are undecidable:

There is no Turing Machine that
solves all instances of the problem.

80

A famous undecidable problem:

The halting problem

81

The Halting Problem

Input: • Turing Machine M
• String w

Question: Does halt on ? M w

82

Theorem

The halting problem is undecidable.

Proof (by contradiction)

Assume to the contrary that
the halting problem is decidable.

83

There exists Turing Machine
that solves the halting problem

H

H
M

w

YES

NO
M halts on w

84

H

wwM 0q
yq

nq

Input:
initial tape contents

Encoding
of M w

String

YES

NO

Construction of H

85

Construct machine H ′

returns YES then loop forever.HIf

returns NO then halt.HIf

86

H

wwM 0q
yq

nq NO

aq bq

H ′

Loop forever

YES

87

ĤConstruct machine

Input:

If M halts on input Mw

Then loop forever

Else halt

Mw (machine)M

88

Mw MM wwcopy

Mw H ′

Ĥ

89

ĤRun machine with input itself

Input:

If halts on input

Then loop forever

Else halt

Hw ˆ (machine)Ĥ

Ĥ Hw ˆ

90

on input Ĥ Hw ˆ

If halts then loops forever.

If doesn’t halt then it halts.

:

Ĥ

Ĥ

CONTRADICTION !

91

This means that

The halting problem is undecidable.

END OF PROOF
92

Uncomputable Functions

93

Uncomputable Functions

A function is uncomputable if it cannot
be computed for all of its domain.

Domain Range
f

94

An uncomputable function:

=)(nf
maximum number of moves until
any Turing machine with states
halts when started with the blank tape.

n

Example

95

Theorem
Function is uncomputable.)(nf

If it is so, then the blank-tape halting problem
is decidable.

Proof
Assume to the contrary that

is computable.)(nf

96

HILBERT’S PROGRAM

97

HILBERT’S PROGRAM
FOR MATHEMATICS

1900 Paris International Congress of Mathematicians
(23 mathematical problems for the century to
come).

Hilbert’s hope was that mathematics would be
reducible to finding proofs (manipulating the
strings of symbols) from a fixed system of axioms,
axioms that everyone could agree were true.

http://aleph0.clarku.edu/~djoyce/hilbert/problems.html

http://mathworld.wolfram.com/HilbertsProblems.html 98

HILBERT’S PROGRAM
FOR MATHEMATICS

Can all of mathematics be made algorithmic, or will
there always be new problems that outstrip any
given algorithm, and so require creative acts of
mind to solve?

99

GÖDEL: TRUTH AND PROVABILITY

Kurt Gödel actually proved two related fundamental
theorems. They have revolutionized mathematics, showing
that mathematical truth is more than logic and
computation.

Gödel has been called the most important logician since
Aristotle. His two theorems changed logic and
mathematics as well as the way we look at truth and proof.

100

GÖDEL: TRUTH AND PROVABILITY

Gödels first theorem proved that any formal system strong
enough to support number theory has at least one
undecidable statement. Even if we know that the statement
is true, the system cannot prove it. This means the system
is incomplete. For this reason, Gödel's first proof is called
"the incompleteness theorem".

101

GÖDEL: TRUTH AND PROVABILITY

Gödel's second theorem is closely related to the first. It says
that no one can prove, from inside any complex formal
system, that it is self-consistent.

102

GÖDEL: TRUTH AND PROVABILITY

"Gödel showed that provability is a weaker notion than truth,
no matter what axiomatic system is involved."

In other words, we simply cannot prove some things in
mathematics (from a given set of premises) which we
nonetheless can know are true. (D. Hofstadter)

103

TRUTH VS. PROVABILITY
ACCORDING TO GÖDEL

After: Gödel, Escher, Bach - an Eternal Golden Braid by Douglas Hofstadter.
104

A Post Script
Gödel theorem is built upon Aristotelian logic.
So it is true within the paradigm of Aristotelian logic.

TRUTH VS. PROVABILITY
ACCORDING TO GÖDEL

105

CHURCH-TURING THESIS*

*Source: Stanford Encyclopaedia of Philosophy
(B. Jack Copeland)

106

A Turing machine is an abstract
representation of a computing device.

It is more like a computer program (software)
than a computer (hardware).

107

LCMs [Logical Computing Machines:
Turing’s expression for Turing machines]
were first proposed by Alan Turing,
in an attempt to give
a mathematically precise definition
of "algorithm" or "mechanical procedure".

108

A method, M, is called ‘effective’ or ‘mechanical’ just in
case:

1. M is set out in terms of a finite number of exact
instructions (each instruction being expressed by means
of a finite number of symbols);

2. M will, if carried out without error, always produce the
desired result in a finite number of steps;

3. M can (in practice or in principle) be carried out by a
human being unaided by any machinery except for
paper and pencil;

4. M demands no insight or ingenuity on the part of the
human being carrying it out.

109

Turing’s thesis: LCMs [TMs] can do
anything that could be described as
"rule of thumb" or "purely
mechanical". (Turing 1948)

He adds: This is sufficiently well established
that it is now agreed amongst logicians that
"calculable by means of an LCM" is the
correct accurate rendering of such phrases.

110

Computer Science Law

A computation is mechanical/effective
if and only if
it can be performed by a Turing Machine.

111

Definition of Algorithm

An algorithm for function
is a Turing Machine which computes

)(wf
)(wf

112

When we say

There exists an algorithm

Algorithms are Turing Machines!

It means

There exists a Turing Machine.

113

Turing introduced his thesis in the course of
arguing that the Entscheidungsproblem,
or decision problem, for the predicate
calculus - posed by Hilbert (1928) - is
unsolvable.

114

Church’s account of the Entscheidungsproblem

By the Entscheidungsproblem of a system of
symbolic logic is here understood the
problem to find an effective method by
which, given any expression Q in the
notation of the system, it can be determined
whether or not Q is provable in the system.

115

The truth table test is such a method for
the propositional calculus.

Turing showed that, given his thesis,
there can be no such method for the
predicate calculus.

Predicate calculus formulas are of a type:

116

The truth table: AND Operator (&)
(propositional calculus)

dairy products AND export
AND europe

All terms are present

111
001
010
000

A&BBA

AND Gate
117

Church’s thesis: A function of positive
integers is effectively calculable
only if it is recursive.

118

PART III

OTHER MODELS OF COMPUTATION
NATURAL COMPUTATION

[BIOLOGICAL COMPUTING, QUANTUM COMPUTING]

CONCLUSIONS

119

TURING EQUIVALENT (EFFECTIVE)
MODELS OF COMPUTATION

• Turing Machines
• Recursive Functions
• Post Systems
• Rewriting Systems
• …

120

All models of effective computation are
equivalent.

A computation is mechanical if and only if
it can be performed by a Turing Machine.

Turing’s Thesis

Church’s Thesis (extended)

121

Theorem:
A language is recursively enumerable
if and only if
- a Turing Machine / Post system

generates it.

122

REWRITING SYSTEMS

• Matrix Grammars

• Markov Algorithms

• Lindenmayer-Systems (L-Systems)

They convert one string to another

123

LINDENMAYER-SYSTEMS

They are parallel rewriting systems

Example: aaa →

aaaaaaaaaaaaaaa ⇒⇒⇒Derivation:

}0:{ 2 ≥= naL
n

124

Lindenmayer-Systems are not general
as recursively enumerable languages

Theorem:
A language is recursively enumerable
if and only if an
Extended Lindenmayer-System generates it.

Extended Lindenmayer-Systems: uyax →),,(

context

125

L-System Example: Fibonacci
numbers

Consider the following simple grammar:

variables : A B
constants : none

start: A
rules: A →B

B → AB
126

This L-system produces the following
sequence of strings ...

Stage 0 : A
Stage 1 : B
Stage 2 : AB
Stage 3 : BAB
Stage 4 : ABBAB
Stage 5 : BABABBAB
Stage 6 : ABBABBABABBAB
Stage 7 : BABABBABABBABBABABBAB

127

If we count the length of each string, we
obtain the Fibonacci sequence of numbers:

1 1 2 3 5 8 13 21 34

128

Example - Algal growth

The figure shows the pattern of cell lineages found in
the alga Chaetomorpha linum.

To describe this pattern, we must let the symbols
denote cells in different states, rather than different
structures.

129

This growth process can be generated from an
axiom A and growth rules

A → DB
B → C
C → D
D → E
E → A

130

Here is the pattern generated by this model.
It matches the arrangement of cells in the original alga.

Stage 0 : A
Stage 1 : D B
Stage 2 : E C
Stage 3 : A D
Stage 4 : D B E
Stage 5 : E C A
Stage 6 : A D D B
Stage 7 : D B E E C
Stage 8 : E C A A D
Stage 9 : A D D B D B E
Stage 10 : D B E E C E C A
Stage 11 : E C A A D A D D B

131

EXAMPLE - A COMPOUND LEAF (OR BRANCH)

Leaf1 { ; Name of the l-system, "{" indicates start
; Compound leaf with alternating branches,

angle 8 ; Set angle increment to (360/8)=45 degrees
axiom x ; Starting character string
a=n ; Change every "a" into an "n"
n=o ; Likewise change "n" to "o" etc ...
o=p
p=x
b=e
e=h
h=j
j=y
x=F[+A(4)]Fy ; Change every "x" into "F[+A(4)]Fy"
y=F[-B(4)]Fx ; Change every "y" into "F[-B(4)]Fx"
F=@1.18F@i1.18
} ; final } indicates end

132

http://www.xs4all.nl/~cvdmark/tutor.html
(Cool site with animated L-systems)

133

Here is a series of forms created by slowly changing the
angle parameter. lsys00.ls

Check the rest of the Gallery of L-systems:
http://home.wanadoo.nl/laurens.lapre/

134

A model of a horse chestnut tree
inspired by the work of Chiba
and Takenaka.

Here branches compete for light
from the sky hemisphere. Clusters
of leaves cast shadows on branches
further down. An apex in shade
does not produce new branches. An
existing branch whose leaves do not
receive enough light dies and is
shed from the tree. In such a
manner, the competition for light
controls the density of branches in
the tree crowns.

Reception

Internal processes

Response

Plant

Response

Internal processes

Reception

Environment

135

Reception

Internal processes

Response

Plant

Response

Internal processes

Reception

Environment

136

Apropos adaptive reactive systems:
"What's the color of a chameleon put onto a mirror?" -Stewart Brand

(Must be possible to verify experimentally, isn’t it?)

137

NATURAL COMPUTATION

138

COMPUTATION IN PHYSICAL AND
BIOLOGICAL SYSTEMS

Computation and information processing may be
studied in physical and biological systems that are
different from the operations performed by
electronic computers.

139

COMPUTATION IN PHYSICAL AND
BIOLOGICAL SYSTEMS

The goal is both of building better electronic
computers, by importing strategies used in other
devices, and of furthering our understanding of
natural processes, by using information-processing
principles to explain their behavior.

140

COMPUTATION IN PHYSICAL AND
BIOLOGICAL SYSTEMS

Principles of computation in biological and physical
systems have a different character from that of
present-day electronic computers.

For example, biological systems are massively
parallel and distributed, they use disposable
components, they are robust to perturbations in
their environment (as discussed earlier), they learn
innovative solutions in response to problems, and
their global structure and behavior is not directly
predictable by simple inspection.

141

COMPUTATION IN PHYSICAL AND
BIOLOGICAL SYSTEMS

Other kinds of physical systems share many of these
properties, depending on what level we choose to
model them (e.g., quantum, molecular, chemical,
or ecosystem).

142

HOW DOES NATURE COMPUTE?

Relevant questions:

• How is information processing embedded in dynamical behavior?

• How can we detect and then quantify structure in natural
processes?

In pursuing answers to this sort of question we've come to the
conclusion that the diverse model classes found in computation
theory are key tools in being explicit about how natural information
processing mechanisms can be represented and analyzed.

http://www.santafe.edu/sfi/research/focus/compPhysics/ (The Santa Fe Institute)
143

HOW DOES NATURE COMPUTE?

“However, we also have come to the conclusion that
contemporary notions of ``computation'' and of ``useful''
information processing --- colored as they are by the
recent history of digital computer technology --- must be
extended in order to be useful within empirical science.

Why?

Because the processes studied by natural scientists
involve systems that are continuous, stochastic,
spatially extended, or some combination of these and
other characteristics that fall strictly outside the
purview of discrete computation theory. “

http://www.santafe.edu/sfi/research/focus/compPhysics/
144

BIOLOGICAL COMPUTING

145

DNA BASED COMPUTING

Despite their respective complexities, biological and
mathematical operations have some similarities:

The very complex structure of a living being is the
result of applying simple operations to initial
information encoded in a DNA sequence (genes).

All complex math problems can be reduced to
simple operations like addition and subtraction.

146

For the same reasons that DNA was
presumably selected for living organisms as
a genetic material, its stability and
predictability in reactions.

DNA strings can also be used to encode
information for mathematical systems.

147

THE HAMILTONIAN PATH PROBLEM
(a "key into lock" problem)

The objective is to find a path from start
to end going through all the points
only once.

This problem is difficult for
conventional (serial logic) computers
because they must try each path one
at a time. It is like having a whole
bunch of keys and trying to see which
fits a lock.

148

DNA based computers can try all the keys at the
same time (massively parallel) and thus are very
good at key-to-lock problems, but much slower at
simple mathematical problems like multiplication.

The Hamiltonian Path problem was chosen because
every key-to-lock problem can be solved as a
Hamiltonian Path problem.

149

SOLVING THE HAMILTONIAN PATH
PROBLEM

1. Generate random paths through the graph.
2. Keep only those paths that begin with the start city

(A) and conclude with the end city (G).
3. Because the graph has 7 cities, keep only those

paths with 7 cities.
4. Keep only those paths that enter all cities at least

once.
5. Any remaining paths are solutions.

150

DNA

151

DNA – BASE MOLECULE

152

SOLVING THE HAMILTONIAN PATH
PROBLEM

The key to solving the problem was using DNA to
perform the five steps in the above algorithm.

These interconnecting blocks can be used to model
DNA:

•

153

DNA tends to form long double helices:

The two helices are joined by "bases", represented here by
coloured blocks. Each base binds only one other specific
base. In our example, we will say that each coloured block
will only bind with the same colour. For example, if we
only had red blocks, they would form a long chain like
this:

Any other colour will not bind with red:

SOLVING THE HAMILTONIAN PATH PROBLEM

154

PROGRAMMING WITH DNA

Step 1: Create a unique DNA sequence for
each city A through G. For each path, for
example, from A to B, create a linking piece
of DNA that matches the last half of A and
first half of B.

155

PROGRAMMING WITH DNA

Step 2: Because it is difficult to "remove"
DNA from the solution, the target DNA, the
DNA which started at A and ended at G was
copied over and over again until the test
tube contained a lot of it relative to the other
random sequences.

156

Step 3: Going by weight, the DNA sequences
which were 7 "cities" long were separated
from the rest.

PROGRAMMING WITH DNA

157

Step 4: To ensure that the remaining
sequences went through each of the cities,
"sticky" pieces of DNA attached to magnets
were used to separate the DNA.

PROGRAMMING WITH DNA

158

Step 5: All that was left was to sequence the DNA,
revealing the path from A to B to C to D to E to F
to G.

PROGRAMMING WITH DNA

159

ADVANTAGES

The above procedure took approximately one week
to perform. Although this particular problem could
be solved on a piece of paper in under an hour,
when the number of cities is increased to 70, the
problem becomes too complex for even a
supercomputer.

While a DNA computer takes much longer than a
normal computer to perform each individual
calculation, it performs an enormous number of
operations at a time (massively parallel).

160

DNA computers also require less energy and space
than normal computers. 1000 litres of water could
contain DNA with more memory than all the
computers ever made, and a pound of DNA would
have more computing power than all the
computers ever made.

161

THE FUTURE

DNA computing is about ten years old and for this
reason, it is too early for either great optimism or
great pessimism.

Early computers such as ENIAC filled entire rooms,
and had to be programmed by punch cards. Since
that time, computers have become much smaller
and easier to use.

162

Just as DNA cloning and sequencing were once
manual tasks, DNA computers will also become
automated.

In addition to the direct benefits of using DNA
computers for performing complex computations,
some of the operations of DNA computers are
used in molecular and biochemical research.

http://www.cis.udel.edu/~dna3/DNA/dnacomp.html ; http://dna2z.com/dnacpu/dna.html;

http://www.liacs.nl/home/pier/webPagesDNA ;
http://www.corninfo.chem.wisc.edu/writings/DNAcomputing.html ;

http://www.comp.leeds.ac.uk/seth/ar35 /

163

QUANTUM COMPUTING

164

Today: fraction of micron (10-6 m) wide logic gates
and wires on the surface of silicon chips.

Soon they will yield even smaller parts and
inevitably reach a point where logic gates are so
small that they are made out of only a handful of
atoms.

1 nm = 10-9 m

165

On the sub-atomic scale matter obeys the rules of
quantum mechanics, which are quite different
from the classical rules that determine the
properties of conventional logic gates.

So if computers are to become smaller in the future,
new, quantum technology must replace or
supplement what we have now.

166

WHAT IS QUANTUM MECHANICS?

The deepest theory of physics; the framework within
which all other current theories, except the general
theory of relativity, are formulated. Some of its
features are:

Quantisation (which means that observable
quantities do not vary continuously but come in
discrete chunks or 'quanta').

167

Interference (which means that the outcome of a
quantum process in general depends on all the
possible histories of that process).

This is the feature that makes quantum computers
qualitatively more powerful than classical ones.

168

Entanglement (Two spatially separated and non-
interacting quantum systems that have interacted
in the past may still have some locally
inaccessible information in common –
information which cannot be accessed in any
experiment performed on either of them alone.)

This is the one that makes quantum cryptography
possible.

169

The discovery that quantum physics allows
fundamentally new modes of information
processing has required the existing theories of
computation, information and cryptography to be
superseded by their quantum generalisations.

170

The advantage of quantum computers arises from the
way they encode a bit, the fundamental unit of
information.

The state of a bit in a classical digital computer is
specified by one number, 0 or 1.

An n-bit binary word in a typical computer is
accordingly described by a string of n zeros and
ones.

171

A quantum bit, called a qubit, might be represented
by an atom in one of two different states, which
can also be denoted as 0 or 1.

Two qubits, like two classical bits, can attain four
different well-defined states (0 and 0, 0 and 1, 1
and 0, or 1 and 1).

172

But unlike classical bits, qubits can exist
simultaneously as 0 and 1, with the probability for
each state given by a numerical coefficient.

Describing a two-qubit quantum computer thus
requires four coefficients. In general, n qubits
demand 2n numbers, which rapidly becomes a
sizable set for larger values of n.

173

For example, if n equals 50, about 1015 numbers are
required to describe all the probabilities for all the
possible states of the quantum machine--a number
that exceeds the capacity of the largest
conventional computer.

A quantum computer promises to be immensely
powerful because it can be in multiple states at
once (superposition) -- and because it can act on
all its possible states simultaneously.

Thus, a quantum computer could naturally perform
myriad operations in parallel, using only a single
processing unit.

174

The most famous example of the extra power of a
quantum computer is Peter Shor's algorithm for
factoring large numbers.

Factoring is an important problem in cryptography;
for instance, the security of RSA public key
cryptography depends on factoring being a hard
problem.

Despite much research, no efficient classical
factoring algorithm is known.

175

However if we keep on putting quantum gates
together into circuits we will quickly run into some
serious practical problems.

The more interacting qubits are involved the harder it
tends to be to engineer the interaction that would
display the quantum interference.

Apart from the technical difficulties of working at
single-atom and single-photon scales, one of the
most important problems is that of preventing the
surrounding environment from being affected by
the interactions that generate quantum
superpositions.

176

The more components the more likely it is
that quantum computation will spread
outside the computational unit and will
irreversibly dissipate useful information to
the environment.

This process is called decoherence. Thus the
race is to engineer sub-microscopic systems
in which qubits interact only with
themselves but not with the environment.

177

But, the problem is not entirely new!

Remember STM?

(Scanning Tuneling Microscopy)

STM was a Nobel Prize winning invention by
Binning and Rohrer at IBM Zurich Laboratory
in the early 1980s

178

• Title : Quantum Corral
• Media : Iron on Copper (111) 179

The standing-wave patterns in the local density of states of the Cu(111)
surface. These spatial oscillations are quantum-mechanical interference
patterns caused by scattering of the two-dimensional electron gas off the
Fe adatoms and point defects. 180

WHAT WILL QUANTUM COMPUTERS BE
GOOD AT?

The most important applications currently known:

• Cryptography: perfectly secure communication.
• Searching, especially algorithmic searching

(Grover's algorithm).
• Factorising large numbers very rapidly

(Shor's algorithm).
• Simulating quantum-mechanical systems efficiently

181

FUNDAMENTAL LIMITS OF
COMPUTATION

MISUNDERSTANDINGS OF THE
CHURCH-TURING THESIS*

*Based on: The Blackwell Guide to Philosophy of Computing and
Information, Chapter 1: 1. Computation: B. Jack Copeland)

182

MISUNDERSTANDINGS OF THE
TURING THESIS

Turing did not show that his machines can
solve any problem that can be solved "by
instructions, explicitly stated rules, or
procedures" and nor did he prove that a
universal Turing machine "can compute any
function that any computer, with any
architecture, can compute".

183

Turing proved that his universal machine can
compute any function that any Turing
machine can compute; and he put forward,
and advanced philosophical arguments in
support of, the thesis here called Turing’s
thesis.

184

A thesis concerning the extent of effective
methods - procedures that a human being
unaided by machinery is capable of carrying
out - has no implication concerning the extent
of the procedures that machines are capable of
carrying out, even machines acting in
accordance with ‘explicitly stated rules’.

185

Among a machine’s repertoire of atomic
operations there may be those that no human
being unaided by machinery can perform.

186

Turing’s "Machines". These machines are
humans who calculate. (Wittgenstein)

A man provided with paper, pencil, and rubber,
and subject to strict discipline, is in effect a
universal machine. (Turing)

187

The Entscheidungsproblem is the problem of
finding a humanly executable procedure of
a certain sort, and Turing’s aim was
precisely to show that there is no such
procedure in the case of predicate logic.

188

CONCLUSIONS

189

SYMBOLS, STRINGS, PROGRAMS

190

PROGRAM = STRING (syntactic way)

PROGRAM = FUNCTION Ν→Ν (semantic way)

PROGRAMstring string

PROGRAM
natural
number

n∈Ν

natural
number

n∈Ν

191

Theorem

The set of all finite strings is countable.

Proof

Find an enumeration procedure
for the set of finite strings

Any finite string can be encoded
with a binary string of 0’s and 1’s

192

Produce strings in Proper Order

length 2

length 3

length 1
0
1

00
01
10
11

000
001
….

0
1

2
3
4
5

6
7
….

String = program Natural number

193

Theorem

The set of all infinite strings is
uncountable.

We assume we have
an enumeration procedure
for the set of infinite strings.

Proof (by contradiction)

194

Infinite string: Encoding:

CANTOR’S DIAGONAL ARGUMENT

0w

1w

2w

...

...

...

...

00b

10b

20b

01b

11b

21b

02b

12b

22b

=

=

=

...

195

CANTOR’S DIAGONAL ARGUMENT

We can construct a new string
that is missing in our enumeration!

w

The set of all infinite strings is
uncountable!

Conclusion

196

There are some integer functions that
that cannot be described by finite strings
(programs/algorithms).

Conclusion

An infinite string can be seen as
FUNCTION Ν→Ν (n:th output is n:th bit
in the string)

197

Finite strings (algorithms): countable
Languages (power set of strings): uncountable

There are infinitely many more languages
than finite strings.

198

There are some languages
that cannot be described by finite strings
(algorithms).

Conclusion

199

DIFFERENT INFINITIES

• Cardinality of the simplest, ”smallest”
infinity (that of a set of natural numbers,
e.g.) is ℵ0.

• Cardinality of the set of real numbers,
points on a line/plane/body is ℵ1.

200

REPRESENTATIONAL POWER

Mapping
continuous variable ℵ1 → continuous variable ℵ1

is equivalent to a machine with an infinite symbol set and
infinite rule table (which exceeds TM capabilities).

201

BEYOND THE TURING LIMIT

HYPERCOMPUTATION

202

HYPERCOMPUTATION

Is computation without an algorithm possible?

The classical concept of an algorithm is a specification
of a process that is to take when the algorithm is
unrolled into time. [...] One might compare this to the
theory of evolution based on natural selection: this is
a process-level theory, for which the existence of
some a priori algorithm is problematic.”

Michael Manthey, Aalborg University in Denmark
203

HYPERCOMPUTATION
When we observe natural phenomena and we ascribe

them computational significance, it is not the
algorithm we are observing but the process, the
computation.

Hypercomputation means computation without a
program.

Some objects might be performing
hypercomputation around us: we observe... but we
can not describe step-by-step [algorithmically]
their computational process.

204

NEURAL NETWORKS AND ANALOG
COMPUTATION - BEYOND THE TURING LIMIT -

HAVA SIEGELMANN

Siegelmann-Sontag thesis of
'hypercomputation by analog systems'

analogously to the
Church-Turing thesis of
'computation by digital systems'

http://www.cs.umass.edu/~hava/advertisement.html

Neural Networks and Analog Computation: Beyond the Turing Limit

205

THESIS OF TIME BOUNDED ANALOG
COMPUTATION
Any ”reasonable analog computer” will have no
more power (up to polynomial speedup) than
ARNN (Analog Recurrent Neural Network).

(Siegelmann - Sontag thesis)

206

NEURAL NETWORKS AND ANALOG
COMPUTATION - BEYOND THE TURING LIMIT -

HAVA SIEGELMANN

All sets over finite alphabets can be represented as
reals that encode the families of Boolean circuits
that recognize them. Under efficient time
computation, these networks compute not only all
efficient computations by Turing machines but
also some non-recursive functions such as the
halting problem of Turing machines.

Note that while the networks can answer questions
regarding Turing machines computation, they still
can not answer questions regarding their own
halting and computation.

207

THEME OF THE SECOND AGE -
COMPUTING TRANSCENDS COMPUTERS

”Everything is up for grabs. Everything will
change. There is a magnificent sweep of
intellectual landscape right in front of us. ”

David Gelernter, The Second Coming — A Manifesto

http://www.edge.org/3rd_culture/gelernter/gelernter_p1.html

208

After all, this lecture might not be so close to the Blue Waterlilies of
Claude Monet (1840-1926) ….

EPILOGUE

209

…but instead more of a Landscape with Distant River and Bay of another
impressionist painter John M William Turner (1775-1851)!

