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PART I 

PROLOGUE
THE UNIVERSE AS A COMPUTER

PHILOSOPHICAL PROBLEMS OF COMPUTING
WHAT IS INFORMATION? WHAT IS COMPUTATION?

TURING MACHINES 
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PROLOGUE

A Few Meta-Level Words 
or

Lecture Use Instruction

5

“Real” Waterlilies

6

“Real” Waterlilies

7

“Real” Waterlilies

8

Claude Monet: Blue Waterlilies
Are They Real?

This lecture is more like an impressionist painting giving you 
a general ideas with a very few details!
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THE UNIVERSE AS A COMPUTER
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The Medieval Universe 
with Earth in the Centre

From Aristotle Libri de caelo (1519). 11

The Clockwork Universe

The mechanistic paradigm which systematically revealed physical structure in analogy 
with the artificial. 

The self-functioning automaton - basis and canon of the form of the Universe. 
Newton Principia, 1687 
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THE UNIVERSE AS A COMPUTER

We are all living inside a 
gigantic computer. No, not 
The Matrix: the Universe. 

Every process, every change 
that takes place in the 
Universe, may be 
considered as a kind of 
computation. 

E Fredkin, S Wolfram

http://www.nature.com/nsu/020527/020527-16.html
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THE WILDFIRE SPREAD OF 
COMPUTATIONAL IDEAS

"Everyone knows that computational and information 
technology has spread like wildfire throughout
academic and intellectual life. But the spread of 
computational ideas has been just as impressive.

Biologists not only model life forms on computers; 
they treat the gene, and even whole organisms, as 
information systems. Philosophy, artificial
intelligence, and cognitive science don't just 
construct computational models of mind; they take
cognition to be computation, at the deepest levels. 
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THE WILDFIRE SPREAD OF 
COMPUTATIONAL IDEAS

Physicists don't just talk about the information carried by a 
subatomic particle; they propose to unify the foundations
of quantum mechanics with notions of information. 

Similarly for linguists, artists, anthropologists, critics, 
etc. Throughout the university, people are using
computational and information notions -- such as 
information, digitality, algorithm, formal, symbol, virtual
machine, abstraction, implementation, etc. -- as 
fundamental concepts in terms of which to formulate their
theoretical claims."

Brian Cantwell Smith, 2003
15

THE UNIVERSE AS A COMPUTER

[Ontology What may be known about what may exist.]

http://physics.stanford.edu/linde

String formation – Andrei Linde A simulation of large-scale structure 
formation 

http://cfcp.uchicago.edu/lss/sims.html
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PHILOSOPHICAL PROBLEMS OF 
COMPUTING

17

Quantum Computer

IBM's quantum computer uses the 
interactions of nuclear spins within a 
specially designed molecule to 
perform calculations in a manner that 
is exponentially more powerful than 
conventional computers. 

The spins are programmed by a series 
of radiofrequency pulses and the 
answer is read from a nuclear 
magnetic resonance spectrum.

WHAT IS COMPUTING? WHAT IS COMPUTER?

http://domino.research.ibm.com/comm/bios.nsf/pages/quantum.html
18

This molecule is currently the world's 
most advanced quantum computer - a 
7-qubit quantum that IBM researchers 
used to conduct the first demonstration 
of Shor's quantum factoring algorithm.

Each of the five fluorine and two 
carbon-13 atoms in this molecule can 
act as a quantum bit, or qubit, to solve 
mathematical problems because their 
spins can interact with each other as 
well as be individually programmed 
(by radiofrequency pulses) and 
detected (by nuclear magnetic 
resonance). 

WHAT IS COMPUTING? WHAT IS COMPUTER?

http://domino.research.ibm.com/comm/bios.nsf/pages/quantum.html
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Babbage's Difference Engine No 
1, 1832. Front detail. 

Science Museum London

WHAT IS COMPUTING? WHAT IS COMPUTER?
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Code-breaking personnel 
at Bletchley Park, 1943.

This shows one of the Hut 3 
priority teams at Bletchley 
Park, in which civilian and 
service personnel worked 
together at code- breaking. 

WHAT IS COMPUTING? WHAT IS COMPUTER?
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The computer presents itself as a culturally defining technology
and has become a symbol of the new millennium, playing a 
cultural role far more influential than the mills in the Middle 
Ages, mechanical clocks in the seventeenth century, or the 
steam engine in the age of the industrial revolution.

(Bolter 1984)

WHAT IS COMPUTING? WHAT IS COMPUTER?
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PHILOSOPHY OF COMPUTING 
OR

PHILOSOPHY OF INFORMATION*?

DICHOTOMY

INFORMATION – COMPUTATION
SUBSTANTIVE - VERB

DATA STRUCTURE – FUNCTION/ALGORITHM
PARTICLE – FORCE (FIELD)

Instructive analogy from physics: 
PARTICLES are considered as the primary principle.

FIELDS/INTERACTIONS are defined in terms of particles, particle exchange.

*What ’s in a name? That which we call a rose by any other name would smell as sweet. 
William Shakespeare (1564–1616), Romeo and Juliet. Act ii. Sc. 2. 1
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WHAT IS INFORMATION?
Luciano Floridi
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INFORMATION

There is no consensus yet on the definition of semantic 
information. 

The Standard Definition of declarative, objective and semantic 
Information (SDI):

information = meaningful data

Floridi’s main thesis is that meaningful and well-formed data 
constitute information only if they also qualify as contingently
truthful.

25

THE PHILOSOPHY OF INFORMATION (PI)
A new philosophical discipline, concerned with

a) the critical investigation of the conceptual nature and basic
principles of information, including its dynamics (especially
computation and flow), utilisation and sciences; and 

b) the elaboration and application of information-theoretic and 
computational methodologies to philosophical problems. 

L. Floridi

"What is the Philosophy of Information?", Metaphilosophy, 2002 
http://www.wolfson.ox.ac.uk/~floridi/papers.htm
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WHAT IS COMPUTATION?

Brian Cantwell Smith
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CONSTRUALS OF COMPUTATION
Brian Cantwell Smith

The Age of Significance
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CONSTRUALS OF COMPUTATION

1. Formal symbol manipulation
the idea, derivative from a century’s work in formal logic and 
meta-mathematics, of a machine manipulating symbolic or 
meaningful expressions without regard to their interpretation or
semantic content; 
Calculation of a function behavior that, when given as input an 
argument to a (typically mathematical) function, produces as 
output the value of that function on that argument;

2. Effective computability
what can be done mechanically, as it were, by, an abstract 
analogue of a “mere machine”;

29

3. Rule-following or algorithm execution 
what is involved, and what behavior is thereby produced, in 
following a set of rules or instructions, such as when cooking 
dessert;

4. Digital state machines 
the idea of an automaton with a finite, disjoint set of internally 
homogeneous states;

5. Information processing
what is involved in storing, manipulating, displaying, and otherwise 
trafficking in “information,” whatever information might be; and

6. Physical symbol systems
the idea, made famous by Newell and Simon, that, somehow or 
other, computers interact with and perhaps are also made of symbols 
in a way that depends on their mutual physical embodiment.
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TURING MACHINES

31

............
Tape

Read-Write head
Control Unit

A Turing Machine
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............

Read-Write head

No boundaries -- infinite length

The head moves Left or Right

The Tape
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............

Read-Write head

1. Reads a symbol
2. Writes a symbol
3. Moves Left or Right

The head at each time step:
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Example
Time 0

............ a a cb

Time 1
............ a b k c

1. Reads a
2. Writes k
3. Moves Left

35

Head starts at the leftmost position
of the input string

............

Blank symbol

head

a b ca

Input string

The Input String

#####

36

1q 2qLba ,→

Read Write Move Left

1q 2qRba ,→

Move Right

States & Transitions
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............ # a b ca
Time 1

1q 2qRba ,→

............ a b cb
Time 2

1q

2q

# # # #

# # # # #
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Determinism

1q

2qRba ,→

Allowed Not Allowed

3qLdb ,→

1q

2qRba ,→

3qLda ,→

No lambda transitions allowed in TM!

Turing Machines are deterministic
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COMPUTING FUNCTIONS
WITH

TURING MACHINES
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A function

)(wf
Domain

D

Dw∈
Range

S

Swf ∈)(
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A function may have many parameters:

yxyxf +=),(

Example: Addition function
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Integer Domain

Binary: 101

Decimal: 5

We prefer unary representation:

easier to manipulate

Unary: 11111
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Definition

A function      is computable if
there is a Turing Machine       such that: 

f
M

Initial configuration Final configuration

Dw∈ Domain

fq

)(wf

final state0q

w

initial state

For all

# # # #
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Example (Addition)

The function yxyxf +=),( is computable

Turing Machine:

Input string: yx0 unary

Output string: 0xy unary

yx, are integers

45

Start

Finish 0

fq

11

yx +

L 11

final state

0

0q

1 11 1

x y

1L L

initial state

# #

# #
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0q 1q 2q 3qL,##→ L,01→

L,11→

R,##→

R,10→

R,11→

4q

R,11→

Turing machine for  function yxyxf +=),(
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Execution Example:

11=x

11=y

Time 0

0

0q

1 11 1
x y

Final Result

0

4q

1 11 1
yx +

(2)

(2)

# #

# #
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Time 0 0

0q

1 11 1

0q 1q 2q 3qL,01→

L,11→

R,10→

R,11→

4q

R,11→

# #

L,##→

R,##→

yxyxf +=),(
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0q

01 11 1Time 1

0q 1q 2q 3qL,01→

L,11→

R,10→

R,11→

4q

R,11→

# #

L,##→

R,##→

yxyxf +=),(
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0

0q

1 11 1Time 2

0q 1q 2q 3qL,01→

L,11→

R,10→

R,11→

4q

R,11→

# #

L,##→

R,##→

yxyxf +=),(
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1q

1 11 11Time 3

0q 1q 2q 3qL,01→

L,11→

R,10→

R,11→

4q

R,11→

# #

L,##→

R,##→

yxyxf +=),(
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1q

1 11 11Time 4

0q 1q 2q 3qL,01→

L,11→

R,10→

R,11→

4q

R,11→

# #

L,##→

R,##→

yxyxf +=),(
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1q

1 11 11Time 5

0q 1q 2q 3qL,01→

L,11→

R,10→

R,11→

4q

R,11→

# #

L,##→

R,##→

yxyxf +=),(
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2q

1 11 11Time 6

0q 1q 2q 3qL,01→

L,11→

R,10→

R,11→

4q

R,11→

# #

L,##→

R,##→

yxyxf +=),(
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3q

1 11 01Time 7

0q 1q 2q 3qL,01→

L,11→

R,10→

R,11→

4q

R,11→

# #

L,##→

R,##→

yxyxf +=),(
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3q

1 11 01Time 8

0q 1q 2q 3qL,01→

L,11→

R,10→

R,11→

4q

R,11→

# #

L,##→

R,##→

yxyxf +=),(
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3q

1 11 01Time 9

0q 1q 2q 3qL,01→

L,11→

R,10→

R,11→

4q

R,11→

# #

L,##→

R,##→

yxyxf +=),(
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3q

1 11 01Time 10

0q 1q 2q 3qL,01→

L,11→

R,10→

R,11→

4q

R,11→

# #

L,##→

R,##→

yxyxf +=),(
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3q

1 11 01Time 11

0q 1q 2q 3qL,01→

L,11→

R,10→

R,11→

4q

R,11→

# #

L,##→

R,##→

yxyxf +=),(
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4q

1 11 01

0q 1q 2q 3qL,01→

L,11→

R,10→

R,11→

4q

R,11→

HALT & accept

Time 12 # #

L,##→

R,##→

yxyxf +=),(
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Formal Definitions 
for 

Turing Machines

62

Transition Function

1q 2qRba ,→

),,(),( 21 Rbqaq =δ
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Turing Machine

),#,,,,,( 0 FqQM δΓΣ=

Transition
function

Initial
state

blank

Final
states

States

Input
alphabet

Tape
alphabet
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PART II

UNIVERSAL TM’S; DECIDABILITY
UNCOMPUTABLE FUNCTIONS

HILBERT’S PROGRAM [AND GÖDEL THEOREM]
TURING THESIS; CHURCH-TURING THESIS

65

A limitation of Standard Turing Machines:
A Standard Turing Machine is “hardwired”

it executes
only one program

UNIVERSAL TURING MACHINE

66

Solution: Universal Turing Machine

• Reprogrammable machine

• Simulates any other Turing Machine

Characteristics:

67

Universal Turing Machine 

Input of  Universal Turing Machine

• Description of transitions of M
• Initial tape contents of M

68

Universal 
Turing 
Machine

Description of 
Three tapes

MTape Contents of

Tape 2

State of M

Tape 3

M

Tape 1

69

We describe Turing machine 
as a string of symbols:

We encode        as a string of symbols

M

M

Description of M

Tape 1

70

Alphabet Encoding

Symbols: a b c d K

Encoding: 1 11 111 1111

71

State Encoding

States: 1q 2q 3q 4q K

Encoding: 1 11 111 1111

Head Move Encoding

Move:

Encoding:

L R

1 11
72

Transition Encoding

Transition: ),,(),( 21 Lbqaq =δ

Encoding: 10110110101

separator
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Machine Encoding

Transitions:
),,(),( 21 Lbqaq =δ

Encoding:

10110110101

),,(),( 32 Rcqbq =δ

110111011110101100

separator 74

Decidability

75

A problem is decidable if some Turing machine
solves (decides) the problem, i.e. comes up with 
answer YES or NO.

Decidable problems:

• Does machine      have three states ?M
• Is string     a binary number? w
• Does DFA*       accept any input?  M

* DFA = Deterministic Finite Automaton

76

Turing Machine
Input
problem
instance

YES

NO

The Turing machine that decides a problem
answers YES or NO for each instance.

77

The machine that decides a problem:

• If the answer is YES
then halts in a yes state

• If the answer is NO
then halts in a no state

78

Turing Machine that decides a problem

YES and NO states are halting states

YES

NO

79

Some problems are undecidable:

There is no Turing Machine that
solves all instances of the problem.

80

A famous undecidable problem:

The halting problem

81

The Halting Problem

Input: • Turing Machine M
• String w

Question: Does       halt on     ? M w
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Theorem

The halting problem is undecidable.

Proof (by contradiction)

Assume to the contrary that
the halting problem is decidable.
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There exists Turing Machine
that solves the halting problem

H

H
M

w

YES

NO
M halts on w

84

H

wwM 0q
yq

nq

Input:
initial tape contents

Encoding
of M w

String

YES

NO

Construction of H

85

Construct machine H ′

returns YES then loop forever.HIf

returns NO then halt.HIf

86

H

wwM 0q
yq

nq NO

aq bq

H ′

Loop forever

YES

87

ĤConstruct machine

Input:

If  M halts on input Mw

Then loop forever

Else halt

Mw (machine       )M

88

Mw MM wwcopy

Mw H ′

Ĥ

89

ĤRun machine        with input itself

Input:

If  halts on input 

Then loop forever

Else halt

Hw ˆ (machine       )Ĥ

Ĥ Hw ˆ

90

on input Ĥ Hw ˆ

If        halts then loops forever.

If       doesn’t halt then it halts.

:

Ĥ

Ĥ

CONTRADICTION !
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This means that

The halting problem is undecidable.

END OF PROOF
92

Uncomputable Functions

93

Uncomputable Functions

A function is uncomputable if it cannot
be computed for all of its domain. 

Domain Range
f

94

An uncomputable function:

=)(nf
maximum number of moves until
any Turing machine with      states
halts when started with the blank tape. 

n

Example
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Theorem
Function             is uncomputable.)(nf

If it is so, then the blank-tape halting problem 
is decidable. 

Proof
Assume to the contrary that 

is computable.)(nf
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HILBERT’S PROGRAM
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HILBERT’S PROGRAM 
FOR MATHEMATICS

1900 Paris International Congress of Mathematicians 
(23 mathematical problems for the century to 
come).

Hilbert’s hope was that mathematics would be 
reducible to finding proofs (manipulating the 
strings of symbols) from a fixed system of axioms, 
axioms that everyone could agree were true.

http://aleph0.clarku.edu/~djoyce/hilbert/problems.html

http://mathworld.wolfram.com/HilbertsProblems.html 98

HILBERT’S PROGRAM 
FOR MATHEMATICS

Can all of mathematics be made algorithmic, or will 
there always be new problems that outstrip any 
given algorithm, and so require creative acts of 
mind to solve?

99

GÖDEL: TRUTH AND PROVABILITY

Kurt Gödel actually proved two related fundamental 
theorems. They have revolutionized mathematics, showing 
that mathematical truth is more than logic and 
computation. 

Gödel has been called the most important logician since 
Aristotle. His two theorems changed logic and 
mathematics as well as the way we look at truth and proof.
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GÖDEL: TRUTH AND PROVABILITY

Gödels first theorem proved that any formal system strong 
enough to support number theory has at least one 
undecidable statement. Even if we know that the statement 
is true, the system cannot prove it. This means the system 
is incomplete. For this reason, Gödel's first proof is called 
"the incompleteness theorem". 

101

GÖDEL: TRUTH AND PROVABILITY

Gödel's second theorem is closely related to the first. It says 
that no one can prove, from inside any complex formal 
system, that it is self-consistent.
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GÖDEL: TRUTH AND PROVABILITY

"Gödel showed that provability is a weaker notion than truth, 
no matter what axiomatic system is involved." 

In other words, we simply cannot prove some things in 
mathematics (from a given set of premises) which we 
nonetheless can know are true. (D. Hofstadter)
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TRUTH VS. PROVABILITY 
ACCORDING TO GÖDEL

After: Gödel, Escher, Bach - an Eternal Golden Braid by Douglas Hofstadter. 
104

A Post Script
Gödel theorem is built upon Aristotelian logic. 
So it is true within the paradigm of Aristotelian logic.

TRUTH VS. PROVABILITY 
ACCORDING TO GÖDEL
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CHURCH-TURING THESIS*

*Source: Stanford Encyclopaedia of Philosophy  
(B. Jack Copeland)
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A Turing machine is an abstract 
representation of a computing device.

It is more like a computer program (software) 
than a computer (hardware). 

107

LCMs [Logical Computing Machines: 
Turing’s expression for Turing machines] 
were first proposed by Alan Turing, 
in an attempt to give 
a mathematically precise definition 
of "algorithm" or "mechanical procedure". 

108

A method, M, is called ‘effective’ or ‘mechanical’ just in 
case:

1. M is set out in terms of a finite number of exact 
instructions (each instruction being expressed by means 
of a finite number of symbols); 

2. M will, if carried out without error, always produce the 
desired result in a finite number of steps; 

3. M can (in practice or in principle) be carried out by a 
human being unaided by any machinery except for 
paper and pencil; 

4. M demands no insight or ingenuity on the part of the 
human being carrying it out. 
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Turing’s thesis: LCMs [TMs] can do 
anything that could be described as 
"rule of thumb" or "purely 
mechanical". (Turing 1948) 

He adds: This is sufficiently well established 
that it is now agreed amongst logicians that 
"calculable by means of an LCM" is the 
correct accurate rendering of such phrases. 

110

Computer Science Law

A computation is mechanical/effective
if and only if
it can be performed by a Turing Machine.

111

Definition of Algorithm

An algorithm for function
is a Turing Machine which computes 

)(wf
)(wf

112

When we say

There exists an algorithm

Algorithms are Turing Machines!

It means

There exists a Turing Machine.

113

Turing introduced his thesis in the course of 
arguing that the Entscheidungsproblem, 
or decision problem, for the predicate 
calculus - posed by Hilbert (1928) - is 
unsolvable. 

114

Church’s account of the Entscheidungsproblem

By the Entscheidungsproblem of a system of 
symbolic logic is here understood the 
problem to find an effective method by 
which, given any expression Q in the 
notation of the system, it can be determined 
whether or not Q is provable in the system. 
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The truth table test is such a method for 
the propositional calculus. 

Turing showed that, given his thesis, 
there can be no such method for the 
predicate calculus. 

Predicate calculus formulas are of a type:

116

The truth table: AND Operator (&)
(propositional calculus)

dairy products AND export 
AND europe

All terms are present

111
001
010
000

A&BBA

AND Gate
117

Church’s thesis: A function of positive 
integers is effectively calculable
only if it is recursive.
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PART III

OTHER MODELS OF COMPUTATION
NATURAL COMPUTATION 

[BIOLOGICAL COMPUTING, QUANTUM COMPUTING]

CONCLUSIONS
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TURING EQUIVALENT (EFFECTIVE)
MODELS OF COMPUTATION

• Turing Machines
• Recursive Functions
• Post Systems
• Rewriting Systems
• …

120

All models of effective computation are 
equivalent.

A computation is mechanical if and only if
it can be performed by a Turing Machine.

Turing’s Thesis

Church’s Thesis (extended)

121

Theorem:
A language is recursively enumerable
if and only if 
- a Turing Machine / Post system

generates it.
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REWRITING SYSTEMS

• Matrix Grammars

• Markov Algorithms

• Lindenmayer-Systems (L-Systems)

They convert one string to another

123

LINDENMAYER-SYSTEMS

They are parallel rewriting systems

Example: aaa →

aaaaaaaaaaaaaaa ⇒⇒⇒Derivation:

}0:{ 2 ≥= naL
n

124

Lindenmayer-Systems are not general
as recursively enumerable languages

Theorem:
A language is recursively enumerable
if and only if an
Extended Lindenmayer-System generates it.

Extended Lindenmayer-Systems: uyax →),,(

context

125

L-System Example: Fibonacci 
numbers

Consider the following simple grammar:

variables :   A  B 
constants :   none

start:   A     
rules:   A →B

B → AB
126

This L-system produces the following 
sequence of strings ... 

Stage 0 : A
Stage 1 : B
Stage 2 : AB
Stage 3 : BAB
Stage 4 : ABBAB
Stage 5 : BABABBAB
Stage 6 : ABBABBABABBAB
Stage 7 : BABABBABABBABBABABBAB
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If we count the length of each string, we 
obtain the Fibonacci sequence of numbers: 

1  1  2  3  5  8  13  21  34 ....

128

Example - Algal growth

The figure shows the pattern of cell lineages found in 
the alga Chaetomorpha linum. 

To describe this pattern, we must let the symbols 
denote cells in different states, rather than different 
structures. 

129

This growth process can be generated from an 
axiom A and growth rules 

A → DB
B → C 
C → D
D → E
E → A

130

Here is the pattern generated by this model. 
It matches the arrangement of cells in the original alga. 

Stage  0 :                      A
Stage  1 :             D                B
Stage  2 :             E                C
Stage  3 :             A                D
Stage  4 :         D        B           E
Stage  5 :         E        C           A
Stage  6 :         A        D       D       B 
Stage  7 :      D     B     E       E       C
Stage  8 :      E     C     A       A       D
Stage  9 :      A     D   D   B   D   B     E
Stage 10 :    D   B   E   E   C   E   C     A
Stage 11 :    E   C   A   A   D   A   D   D   B

131

EXAMPLE - A COMPOUND LEAF (OR BRANCH)

Leaf1 {          ; Name of the l-system, "{" indicates start
; Compound leaf with alternating branches,

angle 8        ; Set angle increment to (360/8)=45 degrees
axiom x        ; Starting character string
a=n            ; Change every "a" into an "n"
n=o            ; Likewise change "n" to "o" etc ...
o=p
p=x
b=e
e=h
h=j
j=y
x=F[+A(4)]Fy   ; Change every "x" into  "F[+A(4)]Fy"
y=F[-B(4)]Fx   ; Change every "y" into  "F[-B(4)]Fx"
F=@1.18F@i1.18
}              ; final } indicates end

132

http://www.xs4all.nl/~cvdmark/tutor.html
(Cool site with animated L-systems)

133

Here is a series of forms created by slowly changing the 
angle parameter. lsys00.ls

Check the rest of the Gallery of L-systems:
http://home.wanadoo.nl/laurens.lapre/
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A model of a horse chestnut tree
inspired by the work of Chiba
and Takenaka. 

Here branches compete for light 
from the sky hemisphere. Clusters 
of leaves cast shadows on branches 
further down. An apex in shade 
does not produce new branches. An 
existing branch whose leaves do not 
receive enough light dies and is 
shed from the tree. In such a 
manner, the competition for light 
controls the density of branches in 
the tree crowns.

Reception

Internal processes

Response

Plant

Response

Internal processes

Reception

Environment
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Apropos adaptive reactive systems:
"What's the color of a chameleon put onto a mirror?" -Stewart Brand

(Must be possible to verify experimentally, isn’t it?)
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NATURAL COMPUTATION

138

COMPUTATION IN PHYSICAL AND 
BIOLOGICAL SYSTEMS

Computation and information processing may be 
studied in physical and biological systems that are 
different from the operations performed by 
electronic computers.
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COMPUTATION IN PHYSICAL AND 
BIOLOGICAL SYSTEMS

The goal is both of building better electronic 
computers, by importing strategies used in other 
devices, and of furthering our understanding of 
natural processes, by using information-processing 
principles to explain their behavior. 
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COMPUTATION IN PHYSICAL AND 
BIOLOGICAL SYSTEMS

Principles of computation in biological and physical 
systems have a different character from that of 
present-day electronic computers. 

For example, biological systems are massively 
parallel and distributed, they use disposable 
components, they are robust to perturbations in 
their environment (as discussed earlier), they learn 
innovative solutions in response to problems, and 
their global structure and behavior is not directly 
predictable by simple inspection. 
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COMPUTATION IN PHYSICAL AND 
BIOLOGICAL SYSTEMS

Other kinds of physical systems share many of these 
properties, depending on what level we choose to 
model them (e.g., quantum, molecular, chemical, 
or ecosystem). 
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HOW DOES NATURE COMPUTE?

Relevant questions:

• How is information processing embedded in dynamical behavior?

• How can we detect and then quantify structure in natural 
processes?

In pursuing answers to this sort of question we've come to the 
conclusion that the diverse model classes found in computation 
theory are key tools in being explicit about how natural information 
processing mechanisms can be represented and analyzed. 

http://www.santafe.edu/sfi/research/focus/compPhysics/ (The Santa Fe Institute )
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HOW DOES NATURE COMPUTE?

“However, we also have come to the conclusion that 
contemporary notions of ``computation'' and of ``useful'' 
information processing --- colored as they are by the 
recent history of digital computer technology --- must be 
extended in order to be useful within empirical science. 

Why? 

Because the processes studied by natural scientists 
involve systems that are continuous, stochastic, 
spatially extended, or some combination of these and 
other characteristics that fall strictly outside the 
purview of discrete computation theory. “

http://www.santafe.edu/sfi/research/focus/compPhysics/
144

BIOLOGICAL COMPUTING
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DNA BASED COMPUTING

Despite their respective complexities, biological and 
mathematical operations have some similarities:

The very complex structure of a living being is the 
result of applying simple operations to initial 
information encoded in a DNA sequence (genes). 

All complex math problems can be reduced to 
simple operations like addition and subtraction. 
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For the same reasons that DNA was 
presumably selected for living organisms as 
a genetic material, its stability and 
predictability in reactions.

DNA strings can also be used to encode 
information for mathematical systems. 
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THE HAMILTONIAN PATH PROBLEM
(a "key into lock" problem)

The objective is to find a path from start 
to end going through all the points 
only once. 

This problem is difficult for 
conventional (serial logic) computers 
because they must try each path one 
at a time. It is like having a whole 
bunch of keys and trying to see which 
fits a lock. 
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DNA based computers can try all the keys at the 
same time (massively parallel) and thus are very 
good at key-to-lock problems, but much slower at 
simple mathematical problems like multiplication. 

The Hamiltonian Path problem was chosen because 
every key-to-lock problem can be solved as a 
Hamiltonian Path problem.
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SOLVING THE HAMILTONIAN PATH 
PROBLEM

1. Generate random paths through the graph. 
2. Keep only those paths that begin with the start city 

(A) and conclude with the end city (G). 
3. Because the graph has 7 cities, keep only those 

paths with 7 cities. 
4. Keep only those paths that enter all cities at least 

once. 
5. Any remaining paths are solutions.
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DNA

151

DNA – BASE MOLECULE

152

SOLVING THE HAMILTONIAN PATH 
PROBLEM

The key to solving the problem was using DNA to 
perform the five steps in the above algorithm. 

These interconnecting blocks can be used to model 
DNA:    

•

153

DNA tends to form long double helices: 

The two helices are joined by "bases", represented here by 
coloured blocks. Each base binds only one other specific 
base. In our example, we will say that each coloured block 
will only bind with the same colour. For example, if we 
only had red blocks, they would form a long chain like 
this: 

Any other colour will not bind with red: 

SOLVING THE HAMILTONIAN PATH PROBLEM
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PROGRAMMING WITH DNA

Step 1: Create a unique DNA sequence for 
each city A through G. For each path, for 
example, from A to B, create a linking piece 
of DNA that matches the last half of A and 
first half of B.
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PROGRAMMING WITH DNA

Step 2: Because it is difficult to "remove" 
DNA from the solution, the target DNA, the 
DNA which started at A and ended at G was 
copied over and over again until the test 
tube contained a lot of it relative to the other 
random sequences. 
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Step 3: Going by weight, the DNA sequences 
which were 7 "cities" long were separated 
from the rest. 

PROGRAMMING WITH DNA
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Step 4: To ensure that the remaining 
sequences went through each of the cities, 
"sticky" pieces of DNA attached to magnets 
were used to separate the DNA. 

PROGRAMMING WITH DNA
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Step 5: All that was left was to sequence the DNA, 
revealing the path from A to B to C to D to E to F 
to G.

PROGRAMMING WITH DNA
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ADVANTAGES

The above procedure took approximately one week 
to perform. Although this particular problem could 
be solved on a piece of paper in under an hour, 
when the number of cities is increased to 70, the 
problem becomes too complex for even a 
supercomputer. 

While a DNA computer takes much longer than a 
normal computer to perform each individual 
calculation, it performs an enormous number of 
operations at a time (massively parallel). 
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DNA computers also require less energy and space 
than normal computers. 1000 litres of water could 
contain DNA with more memory than all the 
computers ever made, and a pound of DNA would 
have more computing power than all the 
computers ever made.
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THE FUTURE

DNA computing is about ten years old and for this 
reason, it is too early for either great optimism or 
great pessimism. 

Early computers such as ENIAC filled entire rooms, 
and had to be programmed by punch cards. Since 
that time, computers have become much smaller 
and easier to use. 
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Just as DNA cloning and sequencing were once 
manual tasks, DNA computers will also become 
automated. 

In addition to the direct benefits of using DNA 
computers for performing complex computations, 
some of the operations of DNA computers are 
used in molecular and biochemical research.

http://www.cis.udel.edu/~dna3/DNA/dnacomp.html ; http://dna2z.com/dnacpu/dna.html; 

http://www.liacs.nl/home/pier/webPagesDNA ; 
http://www.corninfo.chem.wisc.edu/writings/DNAcomputing.html ;

http://www.comp.leeds.ac.uk/seth/ar35 /
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QUANTUM COMPUTING

164

Today: fraction of micron (10-6 m) wide logic gates 
and wires on the surface of silicon chips. 

Soon they will yield even smaller parts and 
inevitably reach a point where logic gates are so 
small that they are made out of only a handful of 
atoms. 

1 nm = 10-9 m
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On the sub-atomic scale matter obeys the rules of
quantum mechanics, which are quite different 
from the classical rules that determine the 
properties of conventional logic gates. 

So if computers are to become smaller in the future, 
new, quantum technology must replace or 
supplement what we have now.
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WHAT IS QUANTUM MECHANICS?

The deepest theory of physics; the framework within 
which all other current theories, except the general 
theory of relativity, are formulated. Some of its 
features are:

Quantisation (which means that observable 
quantities do not vary continuously but come in 
discrete chunks or 'quanta'). 
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Interference (which means that the outcome of a 
quantum process in general depends on all the 
possible histories of that process). 

This is the feature that makes quantum computers 
qualitatively more powerful than classical ones. 
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Entanglement (Two spatially separated and non-
interacting quantum systems that have interacted 
in the past may still have some locally 
inaccessible information in common –
information which cannot be accessed in any 
experiment performed on either of them alone.) 

This is the one that makes quantum cryptography 
possible. 
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The discovery that quantum physics allows 
fundamentally new modes of information 
processing has required the existing theories of 
computation, information and cryptography to be 
superseded by their quantum generalisations. 

170

The advantage of quantum computers arises from the 
way they encode a bit, the fundamental unit of 
information. 

The state of a bit in a classical digital computer is 
specified by one number, 0 or 1. 

An n-bit binary word in a typical computer is 
accordingly described by a string of n zeros and 
ones. 

171

A quantum bit, called a qubit, might be represented 
by an atom in one of two different states, which 
can also be denoted as 0 or 1. 

Two qubits, like two classical bits, can attain four 
different well-defined states (0 and 0, 0 and 1, 1 
and 0, or 1 and 1). 
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But unlike classical bits, qubits can exist 
simultaneously as 0 and 1, with the probability for 
each state given by a numerical coefficient. 

Describing a two-qubit quantum computer thus 
requires four coefficients. In general, n qubits 
demand 2n numbers, which rapidly becomes a 
sizable set for larger values of n. 
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For example, if n equals 50, about 1015 numbers are 
required to describe all the probabilities for all the 
possible states of the quantum machine--a number 
that exceeds the capacity of the largest 
conventional computer. 

A quantum computer promises to be immensely 
powerful because it can be in multiple states at 
once (superposition) -- and because it can act on 
all its possible states simultaneously. 

Thus, a quantum computer could naturally perform 
myriad operations in parallel, using only a single 
processing unit. 
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The most famous example of the extra power of a 
quantum computer is Peter Shor's algorithm for 
factoring large numbers.

Factoring is an important problem in cryptography; 
for instance, the security of RSA public key 
cryptography depends on factoring being a hard 
problem. 

Despite much research, no efficient classical 
factoring algorithm is known.
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However if we keep on putting quantum gates 
together into circuits we will quickly run into some 
serious practical problems. 

The more interacting qubits are involved the harder it 
tends to be to engineer the interaction that would 
display the quantum interference. 

Apart from the technical difficulties of working at 
single-atom and single-photon scales, one of the 
most important problems is that of preventing the 
surrounding environment from being affected by 
the interactions that generate quantum 
superpositions. 
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The more components the more likely it is 
that quantum computation will spread 
outside the computational unit and will 
irreversibly dissipate useful information to 
the environment. 

This process is called decoherence. Thus the 
race is to engineer sub-microscopic systems 
in which qubits interact only with 
themselves but not with the environment.
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But, the problem is not entirely new! 

Remember STM? 

(Scanning Tuneling Microscopy )

STM was a Nobel Prize winning invention by 
Binning and Rohrer at IBM Zurich Laboratory 
in the early 1980s

178

• Title : Quantum Corral 
• Media : Iron on Copper (111) 179

The  standing-wave patterns in the local density of states of the Cu(111) 
surface. These spatial oscillations are quantum-mechanical interference 
patterns caused by scattering of the two-dimensional electron gas off the 
Fe adatoms and point defects. 180

WHAT WILL QUANTUM COMPUTERS BE 
GOOD AT? 

The most important applications currently known:

• Cryptography: perfectly secure communication. 
• Searching, especially algorithmic searching 

(Grover's algorithm). 
• Factorising large numbers very rapidly 

(Shor's algorithm). 
• Simulating quantum-mechanical systems efficiently
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FUNDAMENTAL LIMITS OF 
COMPUTATION

MISUNDERSTANDINGS OF THE 
CHURCH-TURING THESIS*

*Based on: The Blackwell Guide to Philosophy of Computing and 
Information, Chapter 1: 1. Computation: B. Jack Copeland)
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MISUNDERSTANDINGS OF THE 
TURING THESIS

Turing did not show that his machines can 
solve any problem that can be solved "by 
instructions, explicitly stated rules, or 
procedures" and nor did he prove that a 
universal Turing machine "can compute any 
function that any computer, with any 
architecture, can compute". 
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Turing proved that his universal machine can 
compute any function that any Turing 
machine can compute; and he put forward, 
and advanced philosophical arguments in 
support of, the thesis here called Turing’s 
thesis. 
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A thesis concerning the extent of effective 
methods - procedures that a human being 
unaided by machinery is capable of carrying 
out - has no implication concerning the extent 
of the procedures that machines are capable of 
carrying out, even machines acting in 
accordance with ‘explicitly stated rules’. 

185

Among a machine’s repertoire of atomic 
operations there may be those that no human 
being unaided by machinery can perform. 
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Turing’s "Machines". These machines are 
humans who calculate. (Wittgenstein)

A man provided with paper, pencil, and rubber, 
and subject to strict discipline, is in effect a 
universal machine. (Turing)  
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The Entscheidungsproblem is the problem of 
finding a humanly executable procedure of 
a certain sort, and Turing’s aim was 
precisely to show that there is no such 
procedure in the case of predicate logic.
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CONCLUSIONS

189

SYMBOLS, STRINGS, PROGRAMS
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PROGRAM = STRING (syntactic way)

PROGRAM = FUNCTION  Ν→Ν (semantic way)

PROGRAMstring string

PROGRAM
natural
number

n∈Ν

natural
number

n∈Ν
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Theorem

The set of all finite strings is countable.

Proof

Find an enumeration procedure 
for the set of finite strings

Any finite string can be encoded
with a binary string of 0’s and 1’s
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Produce strings in Proper Order

length 2

length 3

length 1
0
1

00
01
10
11

000
001
….

0
1

2
3
4
5

6
7
….

String = program Natural number
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Theorem

The set of all infinite strings is 
uncountable.

We assume we have 
an enumeration procedure 
for the set of infinite strings.

Proof (by contradiction)
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Infinite string: Encoding:

CANTOR’S DIAGONAL ARGUMENT

0w

1w

2w

...

...

...

...

00b

10b

20b

01b

11b

21b

02b

12b

22b

=

=

=

... ... ... ...
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CANTOR’S DIAGONAL ARGUMENT

We can construct a new string
that is missing in our enumeration!

w

The set of all infinite strings is 
uncountable!

Conclusion
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There are some integer functions that
that cannot be described by finite strings 
(programs/algorithms).

Conclusion

An infinite string can be seen as 
FUNCTION  Ν→Ν (n:th output is n:th bit 
in the string)
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Finite strings (algorithms): countable
Languages (power set of strings): uncountable

There are infinitely many more languages
than finite strings.
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There are some languages 
that cannot be described by finite strings 
(algorithms).

Conclusion
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DIFFERENT INFINITIES

• Cardinality of the simplest, ”smallest” 
infinity (that of a set of natural numbers, 
e.g.) is ℵ0. 

• Cardinality of the set of real numbers, 
points on a line/plane/body is ℵ1. 
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REPRESENTATIONAL POWER

Mapping
continuous variable ℵ1 → continuous variable ℵ1

is equivalent to a machine with an infinite symbol set and 
infinite rule table (which exceeds TM capabilities).
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BEYOND THE TURING LIMIT

HYPERCOMPUTATION
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HYPERCOMPUTATION

Is computation without an algorithm possible?

The classical concept of an algorithm is a specification 
of a process that is to take when the algorithm is 
unrolled into time. [...] One might compare this to the 
theory of evolution based on natural selection: this is 
a process-level theory, for which the existence of 
some a priori algorithm is problematic.” 

Michael Manthey, Aalborg University in Denmark
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HYPERCOMPUTATION
When we observe natural phenomena and we ascribe 

them computational significance, it is not the 
algorithm we are observing but the process, the 
computation.

Hypercomputation means computation without a 
program. 

Some objects might be performing 
hypercomputation around us: we observe... but we 
can not describe step-by-step [algorithmically] 
their computational process.
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NEURAL NETWORKS AND ANALOG
COMPUTATION - BEYOND THE TURING LIMIT -

HAVA SIEGELMANN

Siegelmann-Sontag thesis of
'hypercomputation by analog systems' 

analogously to the 
Church-Turing thesis of
'computation by digital systems'

http://www.cs.umass.edu/~hava/advertisement.html

Neural Networks and Analog Computation: Beyond the Turing Limit 
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THESIS OF TIME BOUNDED ANALOG 
COMPUTATION
Any ”reasonable analog computer” will have no 
more power (up to polynomial speedup) than
ARNN (Analog Recurrent Neural Network).

(Siegelmann - Sontag thesis) 

206

NEURAL NETWORKS AND ANALOG
COMPUTATION - BEYOND THE TURING LIMIT -

HAVA SIEGELMANN

All sets over finite alphabets can be represented as 
reals that encode the families of Boolean circuits 
that recognize them. Under efficient time 
computation, these networks compute not only all 
efficient computations by Turing machines but 
also some non-recursive functions such as the 
halting problem of Turing machines. 

Note that while the networks can answer questions 
regarding Turing machines computation, they still 
can not answer questions regarding their own 
halting and computation. 
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THEME OF THE SECOND AGE -
COMPUTING TRANSCENDS COMPUTERS

”Everything is up for grabs. Everything will
change. There is a magnificent sweep of 
intellectual landscape right in front of us. ”

David Gelernter, The Second Coming — A Manifesto

http://www.edge.org/3rd_culture/gelernter/gelernter_p1.html
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After all, this lecture might not be so close to the Blue Waterlilies of 
Claude Monet (1840-1926) ….

EPILOGUE

209

…but instead more of a Landscape with Distant River and Bay of another 
impressionist painter John M William Turner (1775-1851)!


