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Abstract. A simple model of dynamic databases is studied from a modal logic
perspecitve. A state of a database is an atomic update of a gdfeat most one
atomic statement is evaluated differentlydircompared t@. The corresponding
restriction on Kripke-like structures yields so-called update logics. These logics
are studied also in a many-valued context. Adequate tableau calculi are given.

1 Introduction

Various approaches employing modal logics for the representation of knowledge and for
(mechanized) reasoning about data have been investigated. See] é.q.[[3, 15 6, 10, 9]
for some recent work of relevance to database theory.

Here we investigate a particularly simple model of (dynamic) databases. The states
of a database are identified with assignments of truth values to basic propositions. Some
states are considered as resultspdatingother states of the database. In other words,

a binaryupdate relatioris defined over the set of possible states. This amounts to defin-
ing usual Kripke interpretations. Standard normal modal logics arise if we augment
classical propositional logic (over the signature of basic propositions of the database)
with the modalitiesa and<, interpreted as “in all updated states” and “in some updated
state”, respectively. However, as we shall see below, interesting deviations from stan-
dard modal logics are needed to model atomic, i.e. stepwise, updates instead of arbitrary
ones.

Literature on the so-called “update problem” usually aims at formalizing changes
in databases triggered laybitrary complexchanges in the environment to which the
database refers. Here however, we want to model atdynic or “single-step” up-
date§. More exactly, each update operation is assumed to change the truth value of
at most one basic proposition at a time. In general, atomic updates reflect adaption to
a changing environment (or improved knowledge) only séguencesf such atomic
update operations. However, we think that consideatmmnicupdates leads to a more
realistic model of the actual computational behavior of dynamic databases. At a fun-
damental level the evolution of any database proceeds in basic steps, each of which
corresponds to some well defined atomic action that can be performed on a database
entry. We aim at a conceptually clear as well as technically simple logical model of this
aspect of dynamic databases.

1 what we call “atomic update” here was called “single-step updates” in a previous — unpub-
lished — version of this paper by the first author. This preliminary version of the paper is ac-
cessible ahttp://www.cin.ufpe.br/ ~wollic/wollic2000/proceedings/

Nieuwenhuis, Robert and Andrei Voronkov (ed&ggic for Programming, Artificial
Intelligence and Reasoning. 8th International Conference, LPAR 2001.
Proceedings. LNAI 2250. Springer, Berlin, 2001. pp. 635-649
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The subtle constraint on the update relation seems to have dramatic effects for the
corresponding modal logics: the set of formulas valid in all corresponding Kripke in-
terpretations is not closed under substitution. In response to this fact we propose to use
atwo-sortedpropositional language that allows us to distinguish between “atoms” (ba-
sic propositions of the database) and genuine propositional variables; and consequently
between “concrete” and “schematic” statements about data. We define a corresponding
semantics and provide complete and sotaiideau calculifor the resulting logics.

We generalize this model of atomic dynamic databases to scenarios allowing for
incomplete and inconsistent information. Replacing classical logic by Belnap’s well-
known four-valued logicd4] opens the space for new types of modal operators over
corresponding update models. Some examples of disttibution modalitiesxpress-
ing properties of updates will be investigated. We claim that in general the concept of
distribution modalities is a versatile tool to model a broad range of updates in (dynamic)
databases. A variant of tableaux for finite-valued logics with distribution modalities in-
troduced in [7] turns out to be adequate for formalizing reasoning in corresponding
logics.

We emphasize that the concepts and results presented here should be considered
only as a first step in exploring the scope and limits of many-valued Kripke structures
and distribution modalities in the context of reasoning about dynamic databases. Ac-
cordingly, we conclude with a list of future topics of research.

2 Atomic databases and Kripke interpretations

Ouir first object of investigation is arguably the simplest logical model of a database.
It refers to a fixed set of atomic units of information (propositions, cadliexins) and
presumes that the only information explicitly contained in the database is which of those
atomic propositions hold and which do not hold.

More formally, by &classical) state (of a databasek mean a total function of type
atoms — {t,f}, whereatoms is a non-empty, countable set of propositional atoms.
Obviously we can evaluate classical propositional formulas over the sigrettures
(and standard connectives) with respect to a state usual:

Va(p) = a(p), for p € atoms
Vo(T) =tandvy(L)=f

— Vg (—A) =tiff vg(A) =f
Vo (Ao B) =5(Va(A),Va(B))

whereo € {A,V,D,=} and?d is the classical boolean function associated with the bi-
nary connective. In other words, aueryis an arbitrary propositional formul over
atoms, which receives the answeg (A) if the database is in state

We are interested in the dynamic structure of a database; i.e., the possible transitions
from states to states triggered by update operations. As explained above, we focus on
the—arguably—most elementary type of an update operation: A single application of
such an update operation changes the truth status of at most one atomic unit of informa-
tion. Correspondingly, stat@ is called anatomic updateof a statea if the following
condition is satisfied:
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(au) a(p) # a’(p) for at most one g atoms.

Throughout the paper we will considatomicupdatesonly, and therefore often drop
the adjective “atomic.”

Definition 1. An(atomic-)update modés a pair D = (Z,U) where

— X is a set of states of a database over (a fixed a&tins, i.e., a set of functions of
typeatoms — {t,f}, and

— U is abinary relation ovek, subject to the restriction thato, o’ € Z:aUa’ implies
thata’ is an atomic update af.

We extend the expressibility of the query language by adding to it the modal oper-
atorsd and <, with the intended meaning “in all (reachable) updates” and “in some
(reachable) update”, respectively. More exactly—referring to states a atomic-
update mode® = (Z,U)—we extend the definition ofy as follows:

— Vg (OA) =tiff VB € Z: if aUB, thenvy’(A) =t, and
— Vg (OA) = tiff 3B € Z:aUB andvy(A) =t.

This simple logical machinery allows for the expression of statements that refer not
only to the current state of a database but also to possible updates of a states.

Example 2.The formulaA > OA may be paraphrased as “If the statemfeig currently
validated by the database, then all possible (atomic) updates will still vadagm-

ilarly OAA O—A expresses that is contingent, i.e., a statement that will be evaluated
differently in different possible updates of the current state of the database. Likewise
we can express the fact that there is no possible update of the current state Hy.“

The statement that for every possible update (of the current state) a further update is
possible is expressed bipOT "

There is a close connection between states of a database and worlds of a Kripke
structure where a worlfl is accessible from a world iff 3 is an atomic update af.

Definition 3. A (Kripke) interpretatioris a triple @ = (W,R,V) where

— W is a non-emptget of worlds

— R is a binaryaccessibility relatiomn W,

-V :PVxW— {t,f}is atruth value assignmertid the infinite sePV of proposi-
tional variables

The corresponding evaluation functioff\that assigns a truth value to each formula A
in each world we W is defined as usual/ is a(counter-)interpretatiofor a formula A

if vM (A w) =t () for some we W. Aisvalid in 4 if 2 is not a counter-interpretation
for A;i.e., if V/(Aw) =t forallweW.

Definition 4. TheskeletonT () of an interpretationtM = (W,R,V) is the undirected
graph with W as set of nodes and an edge betweerewV iff v w and either vRw
or wRv. We call an interpretatiof tree-likeif its skeleton TM) is a tree (i.e., a
connected acyclic graph).
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Clearly, condition &u) corresponds to condition
(au’) wRvimpliesV(p,v) # V(p,w) for at most one  PV.

for Kripke interpretations. We say that an interpretatidn= (W, R,V) fulfills condition
(au’) on a subset EZ PV if for all v,w e W: if wRvthenV (p,v) =V (p,w) for all except
at most onep € P.

If a Kripke interpretation = (W,R,V) satisfies &u') for all its worlds then it
corresponds to a (unique) update mogg) = (%,U), whereatoms is identified with
PV, Z={ApV(p,w)] | we W}, andaUB < vRwwherea = ApV(p,v)] and =
AplV(p,w)]. Conversely, every update mod®l corresponds to Kripke interpretation
My that satisfiesdu’).

By requiring the update relation in a model to fulfill simple properties we can adapt
our model to databases which obey certain dynamic constraints. For instance, requiring
the update relatiot to be symmetriccorresponds to modeling databases for which
every update is reversible. Similarly in many applications it will be useful to regjuire
to bereflexive(corresponding to: the “empty” update operation is always applicable)
or serial (corresponding to: every state can be updated). Observe however that, e.g.,
transitivity does not in general make sense for atomic updates: the atomic update of an
atomic update is not expected to be atomic itself.

Definition 5. The class of all update models is callegdateK-models An update
model is called ampdateKB-, D-, T-, or TB-modelif its update relation is symmetric,
serial, reflexive, or symmetric and reflexive, respectively.

3 Concrete versus schematic statements

It might seem as if—so far—we have only described just another view of normal modal
logic. However, by insisting that the truth value of at moseatom can be changed in
one update operation we ensured that, e.g., the formula

F=(pAg) DO(pVva)

is evaluated true in all states of all modelspiindq are different atoms. By contrast,
substituting (inF) p for g results in a formula which is false in all states in whigks t
and where there is an atomic update in whgcis f. In other words, the set of formulas
true in all states of an update model is in genarlclosed under substitution

There is a simple way of recovering closure under substitution:

Definition 6. A formula A isschematically validn an (atomic-)update modeb =
(Z,U) if v2(A') =t for all substitution instances’Af A and alla € 5.

The set of formulas that are schematically valid in all updatenodels is called
updateA (for A € {K, KB, D, T, TB}).

By definition, each updaté-is closed under substitution. It is easy to see that they
are also closed under modus ponens and the necessity rule. Therefore they can be con-
sidered as ordinary modal logics and can be directly compared to the corresponding
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standard logics (which we identify with the sets of formulas valid in all corresponding
Kripke interpretations).
Ouir first main result is the following

Theorem 7. For A € {K, KB, D, T, TB}, updateA and (ordinary)A coincide.

Proof. If a formula is valid in allA-interpretations then, in particular, it is valid in all
A-interpretations satisfying conditiomy’) for all worlds. Since such interpretations
correspond to update models it follows that updateA.

For the converse we prove the following:

Claim. Every tree-likeA-interpretation = (W,R,V) can be transformed into A-
interpretationM’ = (W, R, V') such that conditiofau’) is satisfied and for allv e W:
VM (A w) = v™' (AB,w) for all formulasA and some substitutiofy

The claim implies that ifM is a counter-interpretation fok then D, is a counter-
update-model forAB. It is a consequence of the usual tableau-based completeness
proofs for A € {K, B, D, T, TB}, that without loss of generality a (countek})-
interpretation for any formul& may be assumed to be tree-like (Recall Definitibn 4
and see, e.g.[1[8], but also Theorgm 14 below.) Therefore updateh follows from
the claim.

To establish the claim, consider the skeletdi ) of M and define

diffy; (v w) = [{pe P |V(p,v) #V(p,w)}]

for each edgév,w) in T(M). Obviously, if diff}¥ (v,w) < 1 for all edges(v,w) then
M satisfies the atomic update condition and nothing is left to prove. Since only finitely
many propositional variables can occur in a single fornAulae restrict our attention
to the assignments iM of a finite subseP of PV; more exactly we assume that—at
the beginning of our constructionv{p,w) =t for all w € W and allp € PV — P.

Let difff) (v,w) > 1; then there are two different propositional varialpeg € P such
thatV (p,v) # V(p,w) andV(q,v) # V(p,w). We set

6={p—(e=f),qg—(f=09)}

for pairwise different variablesg f,g ¢ P. We now update the truth value assignniént
of M to an assignment’ such that the following three conditions are satisfied:

1. difff (v, w) < diff, (v,w), whereP’ = PU {e, f, g},

2. difff¥ (u,u’) < diffyY (u,u') for all edgeg(u,u’) in T(M),

3. Var (AB,U) = V4, (A u) for all u e W and all formulasA built up from variables in
P, where’ = (W,RV').

We start by assigning appropriate truth valuestb,g in v andw. Without loss of
generality, we may assume that either

(@) V(p,v) =V(q,v) =t andV(p,w) =V(q,w) =T, or
(b) V(p,v) =V(g,w) =t andV(p,w) =V(q,v) =f.
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In case (a) we sé&t’(e,v) :V’(f,v) =V'(g,v) =V’'(ew) =V'(g,w) =tandV’(f,w) =

f. In case (b) we se¥’'(ev) = V'(f,v) =V(ew) =t andV’'(g,v) = V'(f,w) =
V’'(g,w) = f. In both cases conditiofi 1 is satisfied ang (A8,u) = v,,(A,u) for
ue {v,w}.

Observe thap andg are not relevant for evaluatinr&d; we may thus set’(p,u) =
V'(g,u) =tin all worldsu e W.

The assignment of truth valueseof , g in worldsu distinct fromv andw is defined
by induction on the distana#(u) to the worldv in T(M ); whered(u) is defined as the
minimal number of edges in a sequencas, . .., Uy, v of adjacent nodes. The induction
hypothesis is:

(IH) Conditions[2 and]3, above, are satisfied if we only consider the warlgV for
whichd(u) <n

(IH) trivially holds forn=1

Let U’ be a world withd(u') = n+ 1. SinceT (M) is a tree there is a uniquewith
(U,u) in T(M) andd(u) = n. By induction hypothesis, we have already defined an
appropriate assignment &f., g in u. To find the appropriate truth values ferf,gin
U we distinguish the following cases.

(1) V(p,u) =V(g,u) = t. (IH) leaves two possibilities fov’ with respect tee, f,g in

u:
(1.1) V'(eu) =V'(f,u) =V'(g,u) =t. We setv’'(e,u) =V (p,u’) andV’(f,u) =t
andV’ (gvul = (qa )
(1.2) V'(e,u) =V'(f,u)=V'(g,u) =f. We seV'(e,u’) ==V (p,U) andV’'(f ,u) =f
andV’(g,u’) = =V(q,u).
(2) V(p,u)=tandVv(q ,u):f Again, (IH) leaves two possibilities:

(2.1) V'(e,u) =V'(f,u) =t andV’(g,u) =f.V'is like in case (1.1).
(2.2) V'(e,u) =V'(f,u) =fandV’(g,u) =t.V'is like in case (1.2).
3) V(pu) =f andV(q, u) =t. Like case (2), except for swappingndf in the as-
signments tdf in u'.
(4) V(p,u) =fandV(q,u) = f. Like case (1), except for swappingndf in the as-
signments tdf in u'.

In all cases it easy to check that (IH) holds fo# 1 after the described adjustments.
Therefore the construction eliminates the particular counter-exampatpwjithout
introducing a new one. The whole construction is repeated for eaclixpgirof adja-
cent worlds where diffY (x,y) > 1 until (au’) is satisfied.Y* is the respective valuation
from the previous step.) ad

Remark 8.As is to be expected from the intended semantictomicupdates update-
A=A does not holdn general ifA is a logic for which the accessibility relation is
transitive E.g., one can check that the formula

=(pAQ) D [COLVvO(=pVvg) V<oO(pVa)

is schematically valid in all atomic-update models with transitive update relation. How-
ever, it is easy to construct a (Kripke) counter-interpretation with transitive accessibility
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relation forF. (Modulo obvious augmentations of Definitiofjs 5 ahd 6) this fact can be
expressed as updaiet £ K4. Similarly, the “update counterparts” 85, S4, S5, etc.
do not coincide with the respective standard logics.

Remark 9.Independently of any considerations on update models, Thelgrem 7 can be
viewed as astrengthening of the completeness theofenthe standardnormal logics

K, KB, D, T, andTB. It states that for every non-valid formukathere is a counter-
interpretation of an instance Bfthat obeys the atomic-update restrictian/j. Indeed,

the proof of the theorem consists in an explicit construction of such a substitution in-
stance and its corresponding update counter-model.

We are interested in reasoning about dynamic databases both at the level of
“schematic” statements and by evaluating statements referring to concrete atoms of
a database. Theorefh 7 tells us that we remain within standard normal modal logics
as long as only schematic validity is considered. In order to be able to refer to the
schematic as well as the concrete level simultaneously we define the languagesr
atwo-sortedpropositional signature:

— An atomic formulaof UL is either an elemern € atoms or a schematic variable
or T or L. (The set of propositional variables aatbms are disjoint.)

— Complex formulasf UL are built up as usual from the atomic formulas using the
connectives-, A, V, D and the modalities], <.

A formula of our extended language is calleahcreteif it does not contain proposi-
tional variables. Otherwise, it is callethematic For concrete formulag, V3! (F) is
defined as in Sectiofj 2. An arbitrary (possibly schematic) forrfuig calledvalid in
M if for all concrete formula$’ that arise by substituting the propositional variables
of F with concrete formulas we haw@! (F') =t for all statesx of M.

Notation.We use lower case letters for atoms. Different letters always denote dif-
ferent atoms. Propositional variables are denoted by upper case letters from the end of
the alphabet.

Example 10.The concrete formul@a A —b) D> O(b D a) is valid in all update mod-
els. However the schematic formul& A —b) D O(b D X) is not valid in most update
models.

The concrete formulg= <(anb) A< (an—b) AS(—anb) AO(—aA—b) can never
evaluate tad, since this would mean that in at least one of the accessible updates both
atoms,a andb, are evaluated differently than in the current state. In other woggis
valid in all update models. In contrast, it is easy to find counter models f&rv Y) v
OXV=Y)vO(=XVY)vO(=XV-aY).

4 Prefixed tableaux adapted to update models

We have defined adequate syntax and semantics of a language that allows to express
various statements with respect to changing databases (of a particularly simple type).
To substantiate the claim that this formalism provides a basisefoningwe have to



642 Christian G. Feriiller, Georg Moser, and Richard Zach

define sound and complete calculi, suitable for automated proof search. Fortunately, Fit-
ting’s analyticprefixed tableaufg] for standard normal logics turn out to be adaptable
to our scenario. (See also]12] for an overview and history of related methods.)

We assume familiarity with tableaux but review the relevant terminology.

A prefixis a finite sequence of natural numbers (separated by dots). A prifix
a simple extensionf a prefixo if T = o0.n for somen € IN. A prefixed formulas a
pair consisting of a prefig and formulaF written aso :: F. (Kripke-) interpretations
are extended to prefixed formulas by referring taasignmend of worlds to prefixes.
More formally, we defineig! (o :: F) = v (F,@(0)). If Sis a set of prefixed formulas,
then Pre(S) is the set of prefixes$n

Prefixed tableauware downward rooted trees of prefixed formulas, generated by
appending new prefixed formula to a branch according to three types of rules.

Non-modal rules:
The rules for negation and disjunction are as follows:

( )o::ﬂﬂF V) o:FVG ( v)w
o:F o:F|o:G G oG
We refer too :: F ando :: Gin (V) as the twasidesof the conclusion. The rules for
conjunction and implication are similar.

Modal rules:
The rules for analyzing the modality in the basic modal logiK are

o 0OF () o -0OF
on:F on:-F

(K)

where for(1) nis such that the prefig.n is new to the current branch and for (K)
o.n has been already used in the current brarklis treated as-0O-. For serial,
reflexive, and symmetric models we have to add the following rules, respectively:

o 0OF o OF o.n::OF
(D)o::<>F M o.F (KB) o.F

Closure rules:
The closure rules for standard modal logics are

o:-F
g:-T
o:F _
_ closed
closed

To accommodate the difference between atoms and schematic variables in the lan-
guageU L as well as for the atomic update condition in update models it suffices to
extend the standard tableau calculi by additional closure rules.

(Atomic) update closure rules:

o:a o -a o:a o -a
o.n:—a g.n:a o.n:-a og.n:a

o:b o:b og:-b og:-b
on:-b a.n:-b on:b on:b

closed closed closed closed
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wherea andb are different atoms.

If Ais one of the logicK, KB, D, T, or TB, then a tableau constructed according to
the above rules and the corresponding modal rules is callegdate/\-tableau

A branchB of a tableau i<losedif one of the above closure rules is applicable;
otherwiseB is calledopen Let B be an open branch; the resBltof applying a rulep
to one of the prefixed formulas Bland adding the prefixed formula(s) of (one side of)
the conclusion op to B is called arextension of Bas usual.

If all branches in a tableall areclosed thenT is calledclosed

A closed updaté\-tableau with root 1 :=-F is atableau proofof F. We will estab-
lish soundness and completeness of the presented tableau calculi, following essentially
the proofs for standard normal logics as presented, e.d], inl[8114, 12].

Letl be a set of prefixes. Letr> 1, (0,T € M) denote that is A-accessiblérom o.
The definition oft> is given in the following table. (We call a prefixa A-deadendf A
is non-serial and if there is nbaccessible fronw. In the case of the serial counterpart
of A we demand that anfk-deadend is made reflexive.)

AN o> T iff

K |t=ao.nforsomen>1
KB|tT=0.noroc=1.m

D |K-condition or ¢ is aK-deadend and = 1)
T |[t=0.nort=0
TBjt=0cort=0.norc=1t.m

This definition implies thatl, ) is aA-frame forA € {K,KB,D, T, TB}. In the
following, we identify the set of propositional atoratoms with a subset oPV (this
subset is again denoteda@®ms), thus treating our two-sorted (prefixet)L-formulas
as a ordinary (prefixed) formula of modal logic.

A branchB of an update\-tableau issatisfiedby aA-interpretationM = (W,R,V)
if there is an assignmenqtsuch thav? (o :: F) =t for all ¢ :: F in B.

Observe that open branches o?pupdate tableaux are, by definition, also branches of
ordinary (modal) tableaux. Hence the following lemma is standard.

Lemma 11. Let B be an open branch in an updatetableau. Assume that B is satisfied
by anA-interpretations such that for all we W, condition(au’) is fulfilled. Then every
extension Bof B is also satisfied bgi/ .

Theorem 12 (Soundness)Let A € {K,KB,D,T,TB}. If F has an update\-tableau
proof then F is valid in all updaté-models.

Proof. (Indirectly.) Suppose thaE is not valid in all update\-models. Then some
instance~’ of F has a countef-interpretationtM = (W, R,V), which fulfills condition
(au’) for all we W.

Now assume that there exists a tableau pfioof F. We can instantiaté to obtain
a closed tablead’ with root 1 ::—F’. By the first assumptiong[(ﬂF’) =t. Using
Lemma[Ill inductively, if follows that there exists a brancfTirsatisfied bya/. This
contradicts the assumption thatand hence als®’ is closed. O
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A setSof prefix U L-formulas isatomically closedf

1. There is a formul& such that botlo :: Aando :: —=A occur inS, or
2. o::—=T occursinS, or
3. one of the following cases holds, whexd are different atoms:

{o:a on:-q
{o:—-a on:a
{o:a, o.n:-a
{o:—-a on:a

@b, on:-b}CS
wb, on:-b}CS
m-b, onib}CS
m-b, onb}CS

Q Qaaqgq

A setS of prefix U L-formulas isA-downward saturatedf it is not atomically closed
and the usual conditions for downward saturatedness are satisfied by composite formu-
lasF. (See, e.g.,[[12] 8].) We recall only the case where ¢ :: OA: Let N = PrgS),
if o :: OAoccurs inS thent :: A € Sfor everyt € IN such thato > 1.
We use the following corollary, extracted from the proof of Theofem 7.

Corollary 13. Let M = (W,RV) be a tree-like/A-interpretation that, for all we W
fulfills the atomic update conditiora(/) on some subset P &V. Then there exists an
A-interpretation M’ = (W,R,V) such that for all we W: w fulfills the atomic update
condition @u’) on all PV and V¥ (A,w) = v?*'(A8,w) for all formulas A and some
substitution® with domainPV — P.

Theorem 14 (Completeness)ror A € {K, KB, D, T, TB}, if an UL-formula F is
valid in all updateA-models, then there exists a tableau proof of F.

Proof. (Indirectly.) Suppose that all tableaux with root I-F have an open branch.
Then a systematic tableau construction, as described’in [12] or [8], yields an open
branchB that is downward saturated. As in the standard completeness proofs, one can
show thatB is satisfied by a tree-lik&-interpretatior = (W,R,V). In particular, we
havevf“;[(l ::F) =ffor some assignmengt Moreover, sinc® is A-downward saturated,

(au) is fulfilled on (the subset dPV called)atoms (because of claugé 3 in the defini-

tion of atomical closure, above.) By Corollgry 13 we obtain a coufitarterpretation

M' = (W,R V') for F’ that fulfills (au’) on all variables, where iR’ only variables that

are not inatoms have been instantiated. But this implies tRatannot be valid in all
A-update models. O

Remark on integrity constraints

In reasoning about changing states of a datakiasegrity constraintsare of central
importance. By an integrity constraint we simply mean a condition, referring to specific
atoms and/or schematic variables, that has to be fulfilled in all states of a given database.
Assuming that, in reference to single state, those conditions are expressihle the
framework of prefixed tableaux allows the inclusion of integrity constraints in reasoning
about databases by simply treating the corresponding formulagadsglobal axioms

(in the sense of [&,14]).
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5 Incomplete and inconsistent data

Our model of the dynamic behavior of a database is yet too simple to capture phenom-
ena like possibly incomplete and inconsistent data. However, we claim that the basic
formalism of atomic update models and corresponding tableaux is easily adapted to
such scenarios.

Belnap's four-valued logici[4] has been suggested repeatedly as a tool for reason-
ing about (possibly) inconsistent and incomplete information. The main intuition in this
context is that a database may not only contain information implying that a statement is
falseortrue, but such information may also be absent or inconsistent. The four possible
states of knowledge are represented by the four truth véifielse), u (undeterminej
L(inconsistent andt (true), respectively. This intended interpretation induces the fol-
lowing truth functions for the connectives A, andV:

|- Alfu Lt Vifudlt
flt fiffff flfudlt
ufu uffuf u ujuu tt
1L Liff L L Lt Lt
t|f tifult tjtttt

For the definition of other connectives (in particular forms of implication) and the
choice of designated truth values we refer to the extensive investigations of Avron and
Arieli (see, e.g.,0211]).

The many-valued context allows to extend the classical universal and existential
modalities to the more general conceptdistribution modalitiesintroduced in [[7].

Let ¥ be the set of truth values; and, correspondingly, let a state of a database be an
assignmentr : atoms — . Then any functiorfi of type 2 — 4/ induces a truth
function of a distribution modality by:

Vo (HF) =H({Vg'(F) | B € Z:aUB}).

Here Z are the states of the update modBland U is its accessibility relation.
{vg)(F) | B € Z:aUB} is called thedistributionof F in 9 ata. Again, a (many-valued)
update model corresponds to a (many-valued) Kripke interpretation. In particular, we
call the update models in which the states of the database consist in assignments of
type atoms — {t,u,f, L} Belnap update structureJhis context allows us to define
modalities like

— det(F) with the intended meaning: “No update renders informatioR amcomplete
or inconsistent”, and
— unif(F) with the intended meaningF'is evaluated uniformly in all updates”.

Sincedet(F) is intended to express a meta-linguistic (and therefore classical) property
of F within the object language itself, it always evaluates twr f. More exactly, its
semantics is fixed by:

~ o [t W =0{f},{t},or {t,f}
det(W)—{f otherwise
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On the other hand “uniform evaluation” admittedly is an ambiguous concept. Cer-
tainly, we wantunif(F) to betrue if either F evaluates ta in all updates, or td in all
updates. Likewise, it is clear thawif(F ) is falseif the distribution containg andf (i.e.,
if there is an update evaluating the formulat tdut also another update that evaluates
it to f.) But we wantunif(F) to beundeterminedf the distribution ofF containsu. One
way to round off and formalize these intuitions is to define the truth functionrfibas
follows:

wWcCv |unif(W)
0, (T}, {t} t
{u},{u.f} {ut} u
{f,t},{f,u,t}, {f, Lt} {f,u, Lt} f

{3 AR L L {u, Ly {fu, L) {u, Lty L

Of coursedetandunif are just two simple examples. Observe that there Qrp@s-
sible distribution modalities definable over Belnap update structures. All of them refer
to properties of the “truth status” of statements with respect to the class of possible step-
wise evolutions of the database. We also remind the reader that Belnap update models
come in different variants according to different constraining properties of the update
relation.

To define a particulaBelnap update logiavith respect to a class of Belnap update
models we therefore have to fix three independent parameters (in addition to the set of
atoms and propositional variables):

(1) a set of designated truth valugp C V/; usually{t} or {t, L}

(2) a set of{y,...,un} of distribution modalities (with associated truth functions
[, ..., Hn and four-valued connectives (specified by their truth tables)

(3) properties like symmetry or reflexivity, which we want the update relation to ob-
serve.

We call a concrete formulg valid in such a logic iv? (F) € 74 for all statesx of all
corresponding atomic update modéls This is extended to schematic formulas in the
obvious way. (See Sectigh 3.)

6 Prefixed signed tableaux for Belnap update models

It is well known that appropriate analytic calculi for all (truth functional) finite valued
logics can be defined usirgignedversions of tableaux (see, e.d-J[13]). These can be
extended to finite valued modal logics by combining prefixes (denoting worlds) and
signs (denoting truth values) as was showrTin [7]. We describe a simplified example of
the latter calculi, adapted for update structures, for the special case of Belnap update
models with serial (but otherwise general) update relation and (only) modatfy

A prefixed signed formuls a triple consisting of a finite sequence of natural num-
berso (prefix), a truth valuer, and a formuldF, written aso: [v]: F.

2 Other properties of the update relation result in simple technical variations of some modal
rules. The corresponding calculi are omitted here for space reasons.
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Remark 15.In classical logic the prefixed signed formutadt]: F anda: [f]: F are just
notational variants of the prefixed formulas: F ando :: —=F, respectively. For many-
valued logics truth value signs are not only an elegant way to make semantic informa-
tion explicit but are, in generaheededo obtain complete tableau calculi.

Again, a(prefixed signedjableau is a downward rooted tree of prefixed signed
formulas, constructed using the following rules.

Non-modal rules: can directly be read off from the truth tables of connectives. We
refer to [T3,[16] for general methods and results about constructing optimal rules.
Closure rules: The standard closure rule is
o:[V:F
o:[w:F
closed
wherev andw are different truth valuesF(need not be atomic.)
A modal operatoptinduces an additional closure rules if a formpknever evalu-
ates to a particular truth value. For instance, the modaditiriggers the following
two closure rules:
o:[u]:detF) o:[L]:defF)
closed closed

Modal rules:
A general method for constructing modal rules from associated truth functions is

described in[J7]. We present greatly simplifiacersions for the remaining cases of
detmodalized formulae:

o:[t]:det(F) o:[f]:det(F)
onfthF | onfl:F on[ul:F [ on[L]:F
whereo.n already occurs on the branch.
(Atomic) update closure rule: o:[w]:a
o.n:[vi):a
o:[ug):b
a.n:[vo]:b
closed

wherea andb are different atoms ang # u; fori = 1 andi = 2.

The results of 7] and Theorenis] 12 gnd 14 can be combined straightforwardly to
obtain

Theorem 16. A formula F is valid in a Belnap update logic if and only if for all non-
designated truth values v there exists a corresponding update tableaux with o
that is closed.

Remark 17.For all mentioned variants of update logics, systematic and terminating
tableau construction procedures can be defined as usual. This, in particular, implies the
decidabilityof these logics.

3 The simplification makes essential use of the fact tiedts the only modal operator and that
the update relation is serial, but otherwise unrestricted.
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7 Open ends

Other types of update operations. Obviously atomic updates as defined by condition
(au) are only a special cafeOne might, e.g., study multiple update relations that
are indexed by the “new information” that triggers the update. This information is
often represented by a boolean combination of atoms and thus naturally induces
a corresponding algebra of update relations (similar to the algebra of programs in
dynamic logic).

Different underlying many-valued logics. Update models can be defined over all
kinds of truth functional logics as mechanism for “local” evaluation. As an inter-
esting example we mention the bi-lattice based logics suggested by M.L. Ginsberg
[1] for modeling default reasoning. Also dynanfizzydatabases can be modeled
by building on an appropriate fuzzy logic (e.g., some finite-valued tukasiewicz
logic).

Other useful distribution modalities. As explained above, every function of type
2" — 9/ induces a distribution modality. A systematic investigation of expressibil-
ity, complexity of corresponding rules and functional dependency between different
sets of modalities is still lacking.

Modeling global update constraints. As a simple example consider the condition—
for Belnap update models—that updates can amtyease knowledgabout data.
Technically this corresponds to requirinda) <y B(a) if aUp, where<y is the
partial “knowledge order” defined by <yt <x 1 andu <y f <y L.

First-order reasoning. Both, update models and corresponding tableau, are readily
generalized to the first-order level. This move, of course, vastly improves the ex-
pressibility and complexity of the corresponding logics. Their strength and limits
should also be explored.
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