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Abstract. A simple model of dynamic databases is studied from a modal logic
perspecitve. A stateα of a database is an atomic update of a stateβ if at most one
atomic statement is evaluated differently inα compared toβ. The corresponding
restriction on Kripke-like structures yields so-called update logics. These logics
are studied also in a many-valued context. Adequate tableau calculi are given.

1 Introduction

Various approaches employing modal logics for the representation of knowledge and for
(mechanized) reasoning about data have been investigated. See, e.g., [3, 15, 6, 10, 9]
for some recent work of relevance to database theory.

Here we investigate a particularly simple model of (dynamic) databases. The states
of a database are identified with assignments of truth values to basic propositions. Some
states are considered as results ofupdatingother states of the database. In other words,
a binaryupdate relationis defined over the set of possible states. This amounts to defin-
ing usual Kripke interpretations. Standard normal modal logics arise if we augment
classical propositional logic (over the signature of basic propositions of the database)
with the modalities2 and3, interpreted as “in all updated states” and “in some updated
state”, respectively. However, as we shall see below, interesting deviations from stan-
dard modal logics are needed to model atomic, i.e. stepwise, updates instead of arbitrary
ones.

Literature on the so-called “update problem” usually aims at formalizing changes
in databases triggered byarbitrary complexchanges in the environment to which the
database refers. Here however, we want to model onlyatomic or “single-step” up-
dates1. More exactly, each update operation is assumed to change the truth value of
at most one basic proposition at a time. In general, atomic updates reflect adaption to
a changing environment (or improved knowledge) only viasequencesof such atomic
update operations. However, we think that consideringatomicupdates leads to a more
realistic model of the actual computational behavior of dynamic databases. At a fun-
damental level the evolution of any database proceeds in basic steps, each of which
corresponds to some well defined atomic action that can be performed on a database
entry. We aim at a conceptually clear as well as technically simple logical model of this
aspect of dynamic databases.

1 What we call “atomic update” here was called “single-step updates” in a previous — unpub-
lished — version of this paper by the first author. This preliminary version of the paper is ac-
cessible athttp://www.cin.ufpe.br/ ∼wollic/wollic2000/proceedings/ .
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The subtle constraint on the update relation seems to have dramatic effects for the
corresponding modal logics: the set of formulas valid in all corresponding Kripke in-
terpretations is not closed under substitution. In response to this fact we propose to use
a two-sortedpropositional language that allows us to distinguish between “atoms” (ba-
sic propositions of the database) and genuine propositional variables; and consequently
between “concrete” and “schematic” statements about data. We define a corresponding
semantics and provide complete and soundtableau calculifor the resulting logics.

We generalize this model of atomic dynamic databases to scenarios allowing for
incomplete and inconsistent information. Replacing classical logic by Belnap’s well-
known four-valued logic [4] opens the space for new types of modal operators over
corresponding update models. Some examples of suchdistribution modalitiesexpress-
ing properties of updates will be investigated. We claim that in general the concept of
distribution modalities is a versatile tool to model a broad range of updates in (dynamic)
databases. A variant of tableaux for finite-valued logics with distribution modalities in-
troduced in [7] turns out to be adequate for formalizing reasoning in corresponding
logics.

We emphasize that the concepts and results presented here should be considered
only as a first step in exploring the scope and limits of many-valued Kripke structures
and distribution modalities in the context of reasoning about dynamic databases. Ac-
cordingly, we conclude with a list of future topics of research.

2 Atomic databases and Kripke interpretations

Our first object of investigation is arguably the simplest logical model of a database.
It refers to a fixed set of atomic units of information (propositions, calledatoms) and
presumes that the only information explicitly contained in the database is which of those
atomic propositions hold and which do not hold.

More formally, by a(classical) state (of a database)we mean a total function of type
atoms 7→ {t, f}, whereatoms is a non-empty, countable set of propositional atoms.
Obviously we can evaluate classical propositional formulas over the signatureatoms
(and standard connectives) with respect to a stateα as usual:

– vα(p) = α(p), for p∈ atoms
– vα(>) = t andvα(⊥) = f
– vα(¬A) = t iff vα(A) = f
– vα(A◦B) = ◦̃(vα(A),vα(B))

where◦ ∈ {∧,∨,⊃,≡} and ◦̃ is the classical boolean function associated with the bi-
nary connective◦. In other words, aqueryis an arbitrary propositional formulaA over
atoms, which receives the answervα(A) if the database is in stateα.

We are interested in the dynamic structure of a database; i.e., the possible transitions
from states to states triggered by update operations. As explained above, we focus on
the—arguably—most elementary type of an update operation: A single application of
such an update operation changes the truth status of at most one atomic unit of informa-
tion. Correspondingly, stateα′ is called anatomic updateof a stateα if the following
condition is satisfied:
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(au) α(p) 6= α′(p) for at most one p∈ atoms.

Throughout the paper we will consideratomicupdatesonly, and therefore often drop
the adjective “atomic.”

Definition 1. An (atomic-)update modelis a pair D = (Σ,U) where

– Σ is a set of states of a database over (a fixed set)atoms, i.e., a set of functions of
typeatoms 7→ {t, f}, and

– U is a binary relation overΣ, subject to the restriction that∀α,α′ ∈Σ:αUα′ implies
that α′ is an atomic update ofα.

We extend the expressibility of the query language by adding to it the modal oper-
ators2 and3, with the intended meaning “in all (reachable) updates” and “in some
(reachable) update”, respectively. More exactly—referring to statesα of a atomic-
update modelD = (Σ,U)—we extend the definition ofvα as follows:

– vD
α (2A) = t iff ∀β ∈ Σ: if αUβ, thenvD

β (A) = t, and

– vD
α (3A) = t iff ∃β ∈ Σ:αUβ andvD

β (A) = t.

This simple logical machinery allows for the expression of statements that refer not
only to the current state of a database but also to possible updates of a states.

Example 2.The formulaA⊃2A may be paraphrased as “If the statementA is currently
validated by the database, then all possible (atomic) updates will still validateA”. Sim-
ilarly 3A∧3¬A expresses thatA is contingent, i.e., a statement that will be evaluated
differently in different possible updates of the current state of the database. Likewise
we can express the fact that there is no possible update of the current state by “¬3>”.
The statement that for every possible update (of the current state) a further update is
possible is expressed by “23>.”

There is a close connection between states of a database and worlds of a Kripke
structure where a worldβ is accessible from a worldα iff β is an atomic update ofα.

Definition 3. A (Kripke) interpretationis a triple M = (W,R,V) where

– W is a non-emptyset of worlds,
– R is a binaryaccessibility relationon W,
– V : PV×W 7→ {t, f} is a truth value assignmentto the infinite setPV of proposi-

tional variables.

The corresponding evaluation function vM that assigns a truth value to each formula A
in each world w∈W is defined as usual.M is a(counter-)interpretationfor a formula A
if vM (A,w) = t (f) for some w∈W. A isvalid in M if M is not a counter-interpretation
for A; i.e., if vM (A,w) = t for all w ∈W.

Definition 4. TheskeletonT(M ) of an interpretationM = (W,R,V) is the undirected
graph with W as set of nodes and an edge between v,w∈W iff v 6= w and either vRw
or wRv. We call an interpretationM tree-like if its skeleton T(M ) is a tree (i.e., a
connected acyclic graph).
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Clearly, condition (au) corresponds to condition

(au′) wRvimpliesV(p,v) 6= V(p,w) for at most one p∈ PV.

for Kripke interpretations. We say that an interpretationM = (W,R,V) fulfills condition
(au′) on a subset P⊆PV if for all v,w∈W: if wRvthenV(p,v) = V(p,w) for all except
at most onep∈ P.

If a Kripke interpretationM = (W,R,V) satisfies (au′) for all its worlds then it
corresponds to a (unique) update modelDM = (Σ,U), whereatoms is identified with
PV, Σ = {λp[V(p,w)] | w ∈W}, andαUβ⇐⇒ vRwwhereα = λp[V(p,v)] andβ =
λp[V(p,w)]. Conversely, every update modelD corresponds to Kripke interpretation
MD that satisfies (au′).

By requiring the update relation in a model to fulfill simple properties we can adapt
our model to databases which obey certain dynamic constraints. For instance, requiring
the update relationU to besymmetriccorresponds to modeling databases for which
every update is reversible. Similarly in many applications it will be useful to requireU
to be reflexive(corresponding to: the “empty” update operation is always applicable)
or serial (corresponding to: every state can be updated). Observe however that, e.g.,
transitivity does not in general make sense for atomic updates: the atomic update of an
atomic update is not expected to be atomic itself.

Definition 5. The class of all update models is calledupdateK-models. An update
model is called anupdateKB-, D-, T-, or TB-modelif its update relation is symmetric,
serial, reflexive, or symmetric and reflexive, respectively.

3 Concrete versus schematic statements

It might seem as if—so far—we have only described just another view of normal modal
logic. However, by insisting that the truth value of at mostoneatom can be changed in
one update operation we ensured that, e.g., the formula

F = (p∧q)⊃2(p∨q)

is evaluated true in all states of all models, ifp andq are different atoms. By contrast,
substituting (inF) p for q results in a formula which is false in all states in whichp is t
and where there is an atomic update in whichp is f. In other words, the set of formulas
true in all states of an update model is in generalnot closed under substitution.

There is a simple way of recovering closure under substitution:

Definition 6. A formula A isschematically validin an (atomic-)update modelD =
(Σ,U) if vD

α (A′) = t for all substitution instances A′ of A and allα ∈ Σ.
The set of formulas that are schematically valid in all updateΛ-models is called

update-Λ (for Λ ∈ {K, KB, D, T, TB}).

By definition, each update-Λ is closed under substitution. It is easy to see that they
are also closed under modus ponens and the necessity rule. Therefore they can be con-
sidered as ordinary modal logics and can be directly compared to the corresponding
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standard logics (which we identify with the sets of formulas valid in all corresponding
Kripke interpretations).

Our first main result is the following

Theorem 7. For Λ ∈ {K, KB, D, T, TB}, update-Λ and (ordinary)Λ coincide.

Proof. If a formula is valid in allΛ-interpretations then, in particular, it is valid in all
Λ-interpretations satisfying condition (au′) for all worlds. Since such interpretations
correspond to update models it follows thatΛ⊆ update-Λ.

For the converse we prove the following:

Claim. Every tree-likeΛ-interpretationM = (W,R,V) can be transformed into aΛ-
interpretationM ′ = (W,R,V ′) such that condition(au′) is satisfied and for allw∈W:
vM (A,w) = vM ′

(Aθ,w) for all formulasA and some substitutionθ.

The claim implies that ifM is a counter-interpretation forA thenDM ′ is a counter-
update-model forAθ. It is a consequence of the usual tableau-based completeness
proofs for Λ ∈ {K, B, D, T, TB}, that without loss of generality a (counter)-Λ-
interpretation for any formulaA may be assumed to be tree-like (Recall Definition 4
and see, e.g., [8], but also Theorem 14 below.) Therefore update-Λ ⊆ Λ follows from
the claim.

To establish the claim, consider the skeletonT(M ) of M and define

diffP
V(v,w) = |{p∈ P |V(p,v) 6= V(p,w)}|

for each edge(v,w) in T(M ). Obviously, if diffPV
V (v,w) ≤ 1 for all edges(v,w) then

M satisfies the atomic update condition and nothing is left to prove. Since only finitely
many propositional variables can occur in a single formulaA we restrict our attention
to the assignments inM of a finite subsetP of PV; more exactly we assume that—at
the beginning of our construction—V(p,w) = t for all w∈W and allp∈ PV−P.

Let diffP
V(v,w)> 1; then there are two different propositional variablesp,q∈P such

thatV(p,v) 6= V(p,w) andV(q,v) 6= V(p,w). We set

θ = {p← (e≡ f ),q← ( f ≡ g)}

for pairwise different variablese, f ,g 6∈ P. We now update the truth value assignmentV
of M to an assignmentV ′ such that the following three conditions are satisfied:

1. diffP
′

V (v,w)< diffP′
V ′(v,w), whereP′ = P∪{e, f ,g},

2. diffPV
V (u,u′)≤ diffPV

V ′ (u,u′) for all edges(u,u′) in T(M ),
3. vM ′(Aθ,u) = vM (A,u) for all u∈W and all formulasA built up from variables in

P, whereM ′ = (W,R,V ′).

We start by assigning appropriate truth values toe, f ,g in v and w. Without loss of
generality, we may assume that either

(a) V(p,v) = V(q,v) = t andV(p,w) = V(q,w) = f, or
(b) V(p,v) = V(q,w) = t andV(p,w) = V(q,v) = f.
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In case (a) we setV ′(e,v) =V ′( f ,v) =V ′(g,v) =V ′(e,w) =V ′(g,w) = t andV ′( f ,w) =
f. In case (b) we setV ′(e,v) = V ′( f ,v) = V(′e,w) = t and V ′(g,v) = V ′( f ,w) =
V ′(g,w) = f. In both cases condition 1 is satisfied andvM ′(Aθ,u) = vM (A,u) for
u∈ {v,w}.

Observe thatp andq are not relevant for evaluatingAθ; we may thus setV ′(p,u) =
V ′(q,u) = t in all worldsu∈W.

The assignment of truth values toe, f ,g in worldsu distinct fromv andw is defined
by induction on the distanced(u) to the worldv in T(M ); whered(u) is defined as the
minimal number of edges in a sequenceu,u1, . . . ,uk,v of adjacent nodes. The induction
hypothesis is:

(IH) Conditions 2 and 3, above, are satisfied if we only consider the worldsu∈W for
whichd(u)≤ n.

(IH) trivially holds for n = 1.
Let u′ be a world withd(u′) = n+ 1. SinceT(M ) is a tree there is a uniqueu with

(u′,u) in T(M ) andd(u) = n. By induction hypothesis, we have already defined an
appropriate assignment toe, f ,g in u. To find the appropriate truth values fore, f ,g in
u′ we distinguish the following cases.

(1) V(p,u) = V(q,u) = t. (IH) leaves two possibilities forV ′ with respect toe, f ,g in
u:

(1.1) V ′(e,u) = V ′( f ,u) = V ′(g,u) = t. We setV ′(e,u′) = V(p,u′) andV ′( f ,u′) = t
andV ′(g,u′) = V(q,u′).

(1.2) V ′(e,u) =V ′( f ,u) =V ′(g,u) = f. We setV ′(e,u′) = ¬̃V(p,u′) andV ′( f ,u′) = f
andV ′(g,u′) = ¬̃V(q,u′).

(2) V(p,u) = t andV(q,u) = f. Again, (IH) leaves two possibilities:
(2.1) V ′(e,u) = V ′( f ,u) = t andV ′(g,u) = f. V ′ is like in case (1.1).
(2.2) V ′(e,u) = V ′( f ,u) = f andV ′(g,u) = t. V ′ is like in case (1.2).

(3) V(p,u) = f andV(q,u) = t. Like case (2), except for swappingt and f in the as-
signments tof in u′.

(4) V(p,u) = f andV(q,u) = f. Like case (1), except for swappingt and f in the as-
signments tof in u′.

In all cases it easy to check that (IH) holds forn+ 1 after the described adjustments.
Therefore the construction eliminates the particular counter-example to (au′) without
introducing a new one. The whole construction is repeated for each pair(x,y) of adja-
cent worlds where diffPV

V∗ (x,y)> 1 until (au′) is satisfied. (V∗ is the respective valuation
from the previous step.) ut

Remark 8.As is to be expected from the intended semantics ofatomicupdates update-
Λ=Λ does not holdin general ifΛ is a logic for which the accessibility relation is
transitive. E.g., one can check that the formula

F = (p∧q)⊃ [32⊥∨2(¬p∨q)∨33(p∨q)]

is schematically valid in all atomic-update models with transitive update relation. How-
ever, it is easy to construct a (Kripke) counter-interpretation with transitive accessibility
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relation forF . (Modulo obvious augmentations of Definitions 5 and 6) this fact can be
expressed as update-K4 6= K4. Similarly, the “update counterparts” ofK5, S4, S5, etc.
donotcoincide with the respective standard logics.

Remark 9.Independently of any considerations on update models, Theorem 7 can be
viewed as astrengthening of the completeness theoremfor thestandardnormal logics
K, KB, D, T, andTB. It states that for every non-valid formulaF there is a counter-
interpretation of an instance ofF that obeys the atomic-update restriction (au′). Indeed,
the proof of the theorem consists in an explicit construction of such a substitution in-
stance and its corresponding update counter-model.

We are interested in reasoning about dynamic databases both at the level of
“schematic” statements and by evaluating statements referring to concrete atoms of
a database. Theorem 7 tells us that we remain within standard normal modal logics
as long as only schematic validity is considered. In order to be able to refer to the
schematic as well as the concrete level simultaneously we define the languageUL over
a two-sortedpropositional signature:

– An atomic formulaof UL is either an elementp∈ atoms or a schematic variable
or> or⊥. (The set of propositional variables andatoms are disjoint.)

– Complex formulasof UL are built up as usual from the atomic formulas using the
connectives¬,∧,∨,⊃ and the modalities2, 3.

A formula of our extended language is calledconcreteif it does not contain proposi-
tional variables. Otherwise, it is calledschematic. For concrete formulasF , vM

α (F) is
defined as in Section 2. An arbitrary (possibly schematic) formulaF is calledvalid in
M if for all concrete formulasF ′ that arise by substituting the propositional variables
of F with concrete formulas we havevM

α (F ′) = t for all statesα of M .
Notation.We use lower case letters for atoms. Different letters always denote dif-

ferent atoms. Propositional variables are denoted by upper case letters from the end of
the alphabet.

Example 10.The concrete formula(a∧¬b) ⊃ 2(b⊃ a) is valid in all update mod-
els. However the schematic formula(X∧¬b) ⊃ 2(b⊃ X) is not valid in most update
models.

The concrete formulaφ = 3(a∧b)∧3(a∧¬b)∧3(¬a∧b)∧3(¬a∧¬b) can never
evaluate tot, since this would mean that in at least one of the accessible updates both
atoms,a andb, are evaluated differently than in the current state. In other words¬φ is
valid in all update models. In contrast, it is easy to find counter models for2(X∨Y)∨
2(X∨¬Y)∨2(¬X∨Y)∨2(¬X∨¬Y).

4 Prefixed tableaux adapted to update models

We have defined adequate syntax and semantics of a language that allows to express
various statements with respect to changing databases (of a particularly simple type).
To substantiate the claim that this formalism provides a basis forreasoningwe have to
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define sound and complete calculi, suitable for automated proof search. Fortunately, Fit-
ting’s analyticprefixed tableaux[8] for standard normal logics turn out to be adaptable
to our scenario. (See also [12] for an overview and history of related methods.)

We assume familiarity with tableaux but review the relevant terminology.
A prefix is a finite sequence of natural numbers (separated by dots). A prefixτ is

a simple extensionof a prefixσ if τ = σ.n for somen ∈ IN. A prefixed formulais a
pair consisting of a prefixσ and formulaF written asσ :: F . (Kripke-) interpretations
are extended to prefixed formulas by referring to anassignmentφ of worlds to prefixes.
More formally, we definevM

φ (σ :: F) = vM (F,φ(σ)). If S is a set of prefixed formulas,
then Pre(S) is the set of prefixes inS..

Prefixed tableauxare downward rooted trees of prefixed formulas, generated by
appending new prefixed formula to a branch according to three types of rules.

Non-modal rules:
The rules for negation and disjunction are as follows:

(¬¬)
σ :: ¬¬F

σ :: F
(∨)

σ :: F ∨G
σ :: F σ :: G

(¬∨)
σ :: ¬(F ∨G)

σ :: ¬F
σ :: ¬G

We refer toσ :: F andσ :: G in (∨) as the twosidesof the conclusion. The rules for
conjunction and implication are similar.

Modal rules:
The rules for analyzing the modality2 in the basic modal logicK are

(K)
σ :: 2F
σ.n :: F

(π)
σ :: ¬2F
σ.n :: ¬F

where for(π) n is such that the prefixσ.n is new to the current branch and for (K)
σ.n has been already used in the current branch.3 is treated as¬2¬. For serial,
reflexive, and symmetric models we have to add the following rules, respectively:

(D)
σ :: 2F
σ :: 3F

(T)
σ :: 2F
σ :: F

(KB)
σ.n :: 2F

σ :: F

Closure rules:
The closure rules for standard modal logics are

σ :: ¬F
σ :: F

closed

σ :: ¬>
closed

To accommodate the difference between atoms and schematic variables in the lan-
guageUL as well as for the atomic update condition in update models it suffices to
extend the standard tableau calculi by additional closure rules.

(Atomic) update closure rules:

σ :: a
σ.n :: ¬a

σ :: b
σ.n :: ¬b
closed

σ :: ¬a
σ.n :: a
σ :: b

σ.n :: ¬b
closed

σ :: a
σ.n :: ¬a
σ :: ¬b
σ.n :: b

closed

σ :: ¬a
σ.n :: a
σ :: ¬b
σ.n :: b

closed
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wherea andb are different atoms.

If Λ is one of the logicsK, KB, D, T, or TB, then a tableau constructed according to
the above rules and the corresponding modal rules is called anupdateΛ-tableau.

A branchB of a tableau isclosedif one of the above closure rules is applicable;
otherwiseB is calledopen. Let B be an open branch; the resultB′ of applying a ruleρ
to one of the prefixed formulas inB and adding the prefixed formula(s) of (one side of)
the conclusion ofρ to B is called anextension of B, as usual.

If all branches in a tableauT areclosed, thenT is calledclosed.
A closed updateΛ-tableau with root 1 ::¬F is a tableau proofof F . We will estab-

lish soundness and completeness of the presented tableau calculi, following essentially
the proofs for standard normal logics as presented, e.g., in [8, 14, 12].

Let Π be a set of prefixes. Letσ � τ, (σ,τ∈Π) denote thatτ is Λ-accessiblefrom σ.
The definition of� is given in the following table. (We call a prefixσ aΛ-deadendif Λ
is non-serial and if there is noτ accessible fromσ. In the case of the serial counterpart
of Λ we demand that anyΛ-deadend is made reflexive.)

Λ σ � τ iff
K τ = σ.n for somen≥ 1
KB τ = σ.n or σ = τ.m
D K-condition or (σ is aK-deadend andσ = τ)
T τ = σ.n or τ = σ
TB τ = σ or τ = σ.n or σ = τ.m

This definition implies that〈Π,�〉 is a Λ-frame forΛ ∈ {K,KB,D,T,TB}. In the
following, we identify the set of propositional atomsatoms with a subset ofPV (this
subset is again denoted asatoms), thus treating our two-sorted (prefixed)UL-formulas
as a ordinary (prefixed) formula of modal logic.

A branchB of an updateΛ-tableau issatisfiedby aΛ-interpretationM = (W,R,V)
if there is an assignmentφ such thatvM

φ (σ :: F) = t for all σ :: F in B.
Observe that open branches of update tableaux are, by definition, also branches of

ordinary (modal) tableaux. Hence the following lemma is standard.

Lemma 11. Let B be an open branch in an updateΛ-tableau. Assume that B is satisfied
by anΛ-interpretationM such that for all w∈W, condition(au′) is fulfilled. Then every
extension B′ of B is also satisfied byM .

Theorem 12 (Soundness).Let Λ ∈ {K,KB,D,T,TB}. If F has an updateΛ-tableau
proof then F is valid in all updateΛ-models.

Proof. (Indirectly.) Suppose thatF is not valid in all updateΛ-models. Then some
instanceF ′ of F has a counter-Λ-interpretationM = (W,R,V), which fulfills condition
(au′) for all w∈W.

Now assume that there exists a tableau proofT of F . We can instantiateT to obtain
a closed tableauT′ with root 1 ::¬F ′. By the first assumptionvM

φ (¬F ′) = t. Using
Lemma 11 inductively, if follows that there exists a branch inT’ satisfied byM . This
contradicts the assumption thatT and hence alsoT’ is closed. ut
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A setSof prefix UL-formulas isatomically closedif

1. There is a formulaA such that bothσ :: A andσ :: ¬A occur inS, or
2. σ :: ¬> occurs inS, or
3. one of the following cases holds, wherea,b are different atoms:

{ σ :: a, σ.n :: ¬a, σ :: b, σ.n :: ¬b } ⊆ S
{ σ :: ¬a, σ.n :: a, σ :: b, σ.n :: ¬b } ⊆ S
{ σ :: a, σ.n :: ¬a, σ :: ¬b, σ.n :: b } ⊆ S
{ σ :: ¬a, σ.n :: a, σ :: ¬b, σ.n :: b } ⊆ S

A setSof prefix UL-formulas isΛ-downward saturatedif it is not atomically closed
and the usual conditions for downward saturatedness are satisfied by composite formu-
lasF . (See, e.g., [12, 8].) We recall only the case whereF = σ :: 2A: Let Π = Pre(S),
if σ :: 2A occurs inS, thenτ :: A∈ S for everyτ ∈Π such thatσ � τ.

We use the following corollary, extracted from the proof of Theorem 7.

Corollary 13. Let M = (W,R,V) be a tree-likeΛ-interpretation that, for all w∈W
fulfills the atomic update condition (au′) on some subset P ofPV. Then there exists an
Λ-interpretationM ′ = (W,R,V) such that for all w∈W: w fulfills the atomic update
condition (au′) on all PV and vM (A,w) = vM ′

(Aθ,w) for all formulas A and some
substitutionθ with domainPV−P.

Theorem 14 (Completeness).For Λ ∈ {K, KB, D, T, TB}, if an UL-formula F is
valid in all updateΛ-models, then there exists a tableau proof of F.

Proof. (Indirectly.) Suppose that all tableaux with root 1 ::¬F have an open branch.
Then a systematic tableau construction, as described in [12] or [8], yields an open
branchB that is downward saturated. As in the standard completeness proofs, one can
show thatB is satisfied by a tree-likeΛ-interpretationM = (W,R,V). In particular, we
havevM

φ (1 ::F) = f for some assignmentφ. Moreover, sinceB is Λ-downward saturated,
(au′) is fulfilled on (the subset ofPV called)atoms (because of clause 3 in the defini-
tion of atomical closure, above.) By Corollary 13 we obtain a counter-Λ-interpretation
M ′ = (W,R,V ′) for F ′ that fulfills (au′) on all variables, where inF ′ only variables that
are not inatoms have been instantiated. But this implies thatF cannot be valid in all
Λ-update models. ut

Remark on integrity constraints

In reasoning about changing states of a database,integrity constraintsare of central
importance. By an integrity constraint we simply mean a condition, referring to specific
atoms and/or schematic variables, that has to be fulfilled in all states of a given database.
Assuming that, in reference to single state, those conditions are expressible inUL , the
framework of prefixed tableaux allows the inclusion of integrity constraints in reasoning
about databases by simply treating the corresponding formulas ofUL asglobal axioms
(in the sense of [8, 14]).
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5 Incomplete and inconsistent data

Our model of the dynamic behavior of a database is yet too simple to capture phenom-
ena like possibly incomplete and inconsistent data. However, we claim that the basic
formalism of atomic update models and corresponding tableaux is easily adapted to
such scenarios.

Belnap’s four-valued logic [4] has been suggested repeatedly as a tool for reason-
ing about (possibly) inconsistent and incomplete information. The main intuition in this
context is that a database may not only contain information implying that a statement is
falseor true, but such information may also be absent or inconsistent. The four possible
states of knowledge are represented by the four truth valuesf (false), u (undetermined),
⊥(inconsistent), andt (true), respectively. This intended interpretation induces the fol-
lowing truth functions for the connectives¬, ∧, and∨:

¬
f t
u u
⊥ ⊥
t f

∧ f u ⊥ t
f f f f f
u f u f u
⊥ f f ⊥ ⊥
t f u ⊥ t

∨ f u ⊥ t
f f u ⊥ t
u u u t t
⊥ ⊥ t ⊥ t
t t t t t

For the definition of other connectives (in particular forms of implication) and the
choice of designated truth values we refer to the extensive investigations of Avron and
Arieli (see, e.g., [2, 1]).

The many-valued context allows to extend the classical universal and existential
modalities to the more general concept ofdistribution modalities, introduced in [7].
Let V be the set of truth values; and, correspondingly, let a state of a database be an
assignmentα : atoms 7→ V . Then any functioñµ of type 2V 7→ V induces a truth
function of a distribution modalityµ by:

vD
α (µF) = µ̃({vD

β (F) | β ∈ Σ:αUβ}).

Here Σ are the states of the update modelD and U is its accessibility relation.
{vD

β (F) | β ∈ Σ:αUβ} is called thedistributionof F in D atα. Again, a (many-valued)
update model corresponds to a (many-valued) Kripke interpretation. In particular, we
call the update models in which the states of the database consist in assignments of
type atoms 7→ {t,u, f,⊥} Belnap update structures. This context allows us to define
modalities like

– det(F) with the intended meaning: “No update renders information onF incomplete
or inconsistent”, and

– unif(F) with the intended meaning: “F is evaluated uniformly in all updates”.

Sincedet(F) is intended to express a meta-linguistic (and therefore classical) property
of F within the object language itself, it always evaluates tot or f. More exactly, its
semantics is fixed by:

d̃et(W) =
{

t if W = /0,{f},{t},or {t, f}
f otherwise
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On the other hand “uniform evaluation” admittedly is an ambiguous concept. Cer-
tainly, we wantunif(F) to betrue if either F evaluates tot in all updates, or tof in all
updates. Likewise, it is clear thatunif(F) is falseif the distribution containst andf (i.e.,
if there is an update evaluating the formula tot, but also another update that evaluates
it to f.) But we wantunif(F) to beundeterminedif the distribution ofF containsu. One
way to round off and formalize these intuitions is to define the truth function forunif as
follows:

W ⊆ V ũnif(W)
/0,{f},{t} t

{u},{u, f},{u, t} u
{f, t},{f,u, t},{f,⊥, t},{f,u,⊥, t} f

{⊥},{f,⊥},{⊥, t},{u,⊥},{f,u,⊥},{u,⊥ t} ⊥

Of course,detandunif are just two simple examples. Observe that there are 424
pos-

sible distribution modalities definable over Belnap update structures. All of them refer
to properties of the “truth status” of statements with respect to the class of possible step-
wise evolutions of the database. We also remind the reader that Belnap update models
come in different variants according to different constraining properties of the update
relation.

To define a particularBelnap update logicwith respect to a class of Belnap update
models we therefore have to fix three independent parameters (in addition to the set of
atoms and propositional variables):

(1) a set of designated truth valuesVD ⊆ V ; usually{t} or {t,⊥}
(2) a set of{µ1, . . . ,µn} of distribution modalities (with associated truth functions

µ̃1, . . . , µ̃n and four-valued connectives (specified by their truth tables)
(3) properties like symmetry or reflexivity, which we want the update relation to ob-

serve.

We call a concrete formulaF valid in such a logic ifvD
α (F) ∈ VD for all statesα of all

corresponding atomic update modelsD. This is extended to schematic formulas in the
obvious way. (See Section 3.)

6 Prefixed signed tableaux for Belnap update models

It is well known that appropriate analytic calculi for all (truth functional) finite valued
logics can be defined usingsignedversions of tableaux (see, e.g., [13]). These can be
extended to finite valued modal logics by combining prefixes (denoting worlds) and
signs (denoting truth values) as was shown in [7]. We describe a simplified example of
the latter calculi, adapted for update structures, for the special case of Belnap update
models with serial (but otherwise general) update relation and (only) modalitydet.2

A prefixed signed formulais a triple consisting of a finite sequence of natural num-
bersσ (prefix), a truth valuev, and a formulaF , written asσ: [v]:F .
2 Other properties of the update relation result in simple technical variations of some modal

rules. The corresponding calculi are omitted here for space reasons.
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Remark 15.In classical logic the prefixed signed formulasσ: [t]:F andσ: [f]:F are just
notational variants of the prefixed formulasσ :: F andσ :: ¬F , respectively. For many-
valued logics truth value signs are not only an elegant way to make semantic informa-
tion explicit but are, in general,neededto obtain complete tableau calculi.

Again, a (prefixed signed)tableau is a downward rooted tree of prefixed signed
formulas, constructed using the following rules.

Non-modal rules: can directly be read off from the truth tables of connectives. We
refer to [13, 16] for general methods and results about constructing optimal rules.

Closure rules:The standard closure rule is

σ: [v]:F
σ: [w]:F
closed

wherev andw are different truth values. (F need not be atomic.)
A modal operatorµ induces an additional closure rules if a formulaµF never evalu-
ates to a particular truth value. For instance, the modalitydet triggers the following
two closure rules:

σ: [u]:det(F)
closed

σ: [⊥]:det(F)
closed

Modal rules:
A general method for constructing modal rules from associated truth functions is
described in [7]. We present greatly simplified3 versions for the remaining cases of
det-modalized formulae:

σ: [t]:det(F)
σ.n: [t]:F σ.n: [f]:F

σ: [f]:det(F)
σ.n: [u]:F σ.n: [⊥]:F

whereσ.n already occurs on the branch.
(Atomic) update closure rule: σ: [u1]:a

σ.n: [v1]:a
σ: [u2]:b

σ.n: [v2]:b
closed

wherea andb are different atoms andvi 6= ui for i = 1 andi = 2.

The results of [7] and Theorems 12 and 14 can be combined straightforwardly to
obtain

Theorem 16. A formula F is valid in a Belnap update logic if and only if for all non-
designated truth values v there exists a corresponding update tableaux with root1:[v]:F
that is closed.

Remark 17.For all mentioned variants of update logics, systematic and terminating
tableau construction procedures can be defined as usual. This, in particular, implies the
decidabilityof these logics.

3 The simplification makes essential use of the fact thatdet is the only modal operator and that
the update relation is serial, but otherwise unrestricted.
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7 Open ends

Other types of update operations.Obviously atomic updates as defined by condition
(au) are only a special case.4 One might, e.g., study multiple update relations that
are indexed by the “new information” that triggers the update. This information is
often represented by a boolean combination of atoms and thus naturally induces
a corresponding algebra of update relations (similar to the algebra of programs in
dynamic logic).

Different underlying many-valued logics. Update models can be defined over all
kinds of truth functional logics as mechanism for “local” evaluation. As an inter-
esting example we mention the bi-lattice based logics suggested by M.L. Ginsberg
[11] for modeling default reasoning. Also dynamicfuzzydatabases can be modeled
by building on an appropriate fuzzy logic (e.g., some finite-valued Łukasiewicz
logic).

Other useful distribution modalities. As explained above, every function of type
2V 7→V induces a distribution modality. A systematic investigation of expressibil-
ity, complexity of corresponding rules and functional dependency between different
sets of modalities is still lacking.

Modeling global update constraints. As a simple example consider the condition—
for Belnap update models—that updates can onlyincrease knowledgeabout data.
Technically this corresponds to requiringα(a) ≤k β(a) if αUβ, where≤k is the
partial “knowledge order” defined byu≤k t ≤k ⊥ andu≤k f ≤k ⊥.

First-order reasoning. Both, update models and corresponding tableau, are readily
generalized to the first-order level. This move, of course, vastly improves the ex-
pressibility and complexity of the corresponding logics. Their strength and limits
should also be explored.
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