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Abstract

The paper contains proof–theoretic investigations on extensions of Kripke–Platek
set theory, KP, which accommodate first order reflection. Ordinal analyses for such
theories are obtained by devising cut elimination procedures for infinitary calculi
of ramified set theory with Πn reflection rules. This leads to consistency proofs
for the theories KP + Πn–reflection using a small amount of arithmetic (PRA) and
the well–foundedness of a certain ordinal notation system with respect to primitive
recursive descending sequences.

Regarding future work, we intend to avail ourselves of these new cut elimination
techniques to attain an ordinal analysis of Π1

2 comprehension by approaching Π1
2

comprehension through transfinite levels of reflection.

1 Introduction

Since 1967, when Takeuti obtained a consistency proof for the subsystem of analysis
based on impredicative Π1

1 comprehension, great progress1 has been made in the proof
theory of impredicative systems, culminating in the “Admissible Proof Theory” origi-
nating with Jäger and Pohlers in the early 80’s. In essence, admissible proof theory
is a gathering of cut elimination techniques for infinitary calculi of ramified set theory
with Σ and/or Π2 reflection rules2 that lends itself to ordinal analyses of theories of the
form KP + “there are x many admissibles” or KP + “there are many admissibles”. By
way of illustration, the subsystem of analysis with ∆1

2 comprehension and Bar induc-
tion can be couched in such terms, for it is naturally interpretable in the set theory
KPi := KP + ∀y∃z(y∈z ∧ z is admissible) (cf. Jäger and Pohlers [1982]). Nonetheless,
the advanced techniques of admissible proof theory are way too weak for dealing with
significantly stronger theories like Π1

2 analysis, let alone full analysis. An ordinal analysis
of Π1

2 comprehension would inherently involve one for all the theories KP + Πnreflection,
and, therefore, a first step to be taken towards this end consists in devising ordinal no-
tation systems that give rise to cut elimination procedures for infinitary calculi with Πn

reflection rules.
In this paper we focus on the ordinal analysis of Π3 reflection. This means no genuine

loss of generality, as the removal of Π3 reflection rules in derivations already exhibits the
pattern of cut elimination that applies for arbitrary Πn reflection rules as well.

As regards the advance achieved in this paper, it should be pointed out that we cherish
much higher expectations than just moving a tiny step towards Π1

2 comprehension. The
idea is that Π1

2 comprehension can be fathomed by going through transfinite levels of

1See Takeuti and Yasugi [1973], Schütte [1977], Buchholz et al. [1981], Jäger and Pohlers [1982],
Pohlers [1982], Jäger [1986], Takeuti [1987], Pohlers [1987], Pohlers [1991].

2Recall that the salient feature of admissible sets is that they are models of ∆0 collection and that
∆0 collection is equivalent to Σ reflection on the basis of the other axioms of KP (see Barwise [1975]).
Furthermore, admissible sets of the form Lα also satisfy Π2 reflection.



reflection; and thus an ordinal analysis for it should be attainable via an, admittedly,
considerable extension of the machinery laid out in this paper.

The paper is organized as follows: Section 2 introduces set–theoretic reflection and situates
it with regard to non-monotone inductive definitions, subsystems of analysis with β–
model reflection and Π1

2 comprehension. Section 3 provides a formalization of KP as
sequent calculus. In Section 4, so–called collapsing functions are developed which give
rise to a strong ordinal notation system T (K). T (K) is introduced in Section 5. In
Section 6, we define an infinitary calculus RS(K) with Π3 and Π2 relection. Here we
draw on Buchholz’s [1993] approach to local predicativity, in particular, the notion of
operator controlled derivations. Section 7 deals with the elimination of uncritical cuts in
RS(K) derivations, i.e. cuts whose cut formulae have not been introduced by reflection
rules. Section 8 is devoted to interpreting KP + Π3–Ref in RS(K). Section 9 and 10
are concerned with the removal of critical cuts in RS(K) derivation. Finally, in Section
11, we indicate how ordinal analyses for arbitrary Πn reflections can be obtained. This
Section also contains some remarks on consistency proofs.
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2 Set–theoretic reflection and related principles

This Section provides some background information and contains (almost) no proofs. Its
theorems will not be used in later Sections.

We shall consider set-theoretic reflection on the basis of Kripke–Platek set theory, KP,
which arises from ZF by omitting4 the power set axiom and restricting the axiom schemes
of comprehension and collection to absolute predicates, i.e. ∆0 predicates.

Definition 2.1 A set–theoretic formula is said to be Πn (respectively Σn) if it consists of
a string of n alternating quantifiers beginning with a universal one (respectively existential
one), followed by a ∆0 formula. By Πn reflection we mean the scheme

F → ∃z[Tran(z) ∧ z 6= ∅ ∧ F z],

3Meanwhile, Kurt Schütte has given another presentation of the ordinal analysis of KP + Π3–Ref

using the calculus of positive and negative forms (cf. Schütte [1993]).
4This contrasts with Barwise [1975], where the infinity axiom is not included in KP .
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where F is Πn and Tran(z) expresses that z is a transitive set; F z denotes the formula
that arises from F by restricting the unbounded quantifiers to z, i.e. ∀x gets replaced
with (∀x∈z) and ∃x with (∃x∈z).

An ordinal α > 0 is said to be Πn–reflecting if Lα |= Πnreflection.
Σn reflection and Σn–reflecting are defined analogously.

Note that if κ is Πn–reflecting and n ≥ 2, then κ must be a limit ordinal > ω. Therefore
Lκ is a model of all the axioms of KP other than ∆0 collection. But ∆0 collection issues
from Πn reflection, and hence Lκ |= KP + Πnreflection.

Πn–reflecting ordinals have interesting points of contact with non–monotone inductive
definitions.

Definition 2.2 A function Γ from the power set of IN into itself is called an operator on
IN. Γ determines a transfinite sequence 〈Γξ : ξ∈ON〉 of subsets of IN,

Γλ = Γ<λ ∪ Γ(Γ<λ),

where Γ<λ =
⋃

ξ<λ

Γξ.

The closure ordinal |Γ| of Γ is the least ordinal ρ such that Γρ+1 = Γρ. Γ is said to
be Π0

k when there is an arithmetic Π0
k formula F (U, u) with second order variable U such

that, for all X ⊆ IN,
Γ(X) = {n∈IN : F (X, n)}.

Let | Π0
k |:= sup{| Γ |: Γ is Π0

k}.

Owing to Aczel and Richter [1974], we have the following characterization.

Theorem 2.3 For k > 0,

|Π0
k | = first Πk+1–reflecting ordinal.

Several notions of recursively large ordinals are modelled upon notions of large cardinals.
This is especially true of notions like “recursively inaccessible ordinal” and “recursively
Mahlo ordinal”. It turns out that the least Π3–reflecting ordinal is greater than the least
recursively Mahlo ordinal, indeed much greater than any transfinite iteration of recursive
“Mahloness” from below. For instance, every Π3–reflecting ordinal κ is recursively κ–
Mahlo.

Definition 2.4 An ordinal κ is recursively Mahlo if for every κ–recursive function f :
κ −→ κ there exists an admissible ordinal ρ < κ that is closed under f .

A recursively Mahlo ordinal κ is recursively α–Mahlo if for every κ–recursive function
f : κ −→ κ there exists an admissible ordinal ρ < κ closed under f such that ρ is
recursively β–Mahlo for all β < α.
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Regarding a notion of large cardinal to which Π3–reflecting ordinals provide the recur-
sive counterparts, Aczel and Richter [1974] have convincingly argued that this should
be the weakly compact (or Π1

1 indescribable) cardinals. By the same token, for n > 1,
Πn+2–reflecting ordinals should be regarded as the recursive analogues of Π1

n indescribable
cardinals.

Since subsystems of analysis appear to be the most common measure for the calibra-
tion of proof–theoretic strength of theories, we shall also give a characterization of KP +
Πnreflection (for n > 2) in terms of subsystems of analysis. However, Πnreflection does
not simply translate into familiar levels of comprehension of the projective hierarchy. In
proof–theoretic strength, the theories KP + Πnreflection (n > 2) are strictly between ∆1

2

comprehension plus Bar–induction and Π1
2 comprehension. It turns out that set–theoretic

reflection by transitive sets is related to β–model reflection.
Via coding, any set of natural numbers X gives rise to a countable collection of subsets

of IN, {(X)k : k∈IN}, where (X)k = {m : 2k3m∈X}. The structure

BX = 〈IN, {(X)k : k∈IN}, 0, 1, +, ·, =,∈〉

(where the first order part is standard) is a β–model if, for any Π1
1 sentence A with param-

eters from BX , A holds in BX iff A is true (or, equivalently, the notion of well–foundedness
is absolute with regard to BX). We shall refer to BX as the the model coded by X. The
notion of countably coded β–model can be formalized in analysis. Hereditarily countable
sets can be identified with certain well–founded trees on IN and thus can be modelled
in second order arithmetic (see Apt and Marek [1974]). Let ACA denote the subsystem
of second order arithmetic with comprehension restricted to arithmetic predicates. We
use Z∈X as an abbreviation for ∃k[Z = (X)k]. The following characterization can be
obtained (Rathjen [1991b]).

Theorem 2.5 For n > 2, KP + Πnreflection proves the same Π1
4 sentences of second

order arithmetic as ACA plus Bar–induction augmented by the scheme

∀Z1, . . . , Zk [A(Z1, . . . , Zk) → ∃X [Z1∈X ∧ . . .Zk∈X ∧ BX |= A(Z1, . . . , Zk) ]],

where A ranges over the Π1
n+1 formulae of second order arithmetic and the free second

order variables of A are among the ones shown. It is readily shown that ∆1
2 comprehension

is derivable in the latter theory

Next, we are going to explain why an ordinal analysis of Π1
2 comprehension, unlike

∆1
2 comprehension, has to exceed the methods of admissible proof theory. On the set–

theoretic side, Π1
2 comprehension corresponds to Σ1 separation, i.e. the scheme

∃z(z = {x∈a : F (x)})

for all Σ1 formulae F (x) in which z does not occur free. The precise relationship reads as
follows.
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Theorem 2.6 KP + Σ1 separation and (Π1
2 − CA) + BI prove the same theorems of

second order arithmetic.5

The ordinals κ such that Lκ |= KP + Σ1separation are familiar from ordinal recursion
theory (see Barwise [1975], Hinman [1978]). An admissible ordinal κ is said to be non-
projectible if there is no (total) κ–recursive function mapping κ one–one into some β < κ.

The key to the “largeness” properties of nonprojectible ordinals is the following.

Theorem 2.7 For any nonprojectible ordinal κ, Lκ is a limit of Σ1–elementary substruc-
tures6, i.e. for every β < κ there exists a β < ρ < κ such that Lρ is a Σ1–elementary
substructure of Lκ (written Lρ ≺1 Lκ).

Ordinals ρ satisfying Lρ ≺1 Lκ for some κ > ρ have strong reflecting properties. For
instance, if Lρ |= F for some set–theoretic sentence F (possibly containing parameters
from Lρ), then there exists a γ < ρ such that Lγ |= F because from Lρ |= F we can infer
Lκ |= ∃γF Lγ which yields Lρ |= ∃γF Lγ using Lρ ≺1 Lκ.

The last remark makes it clear that an ordinal analysis of Π1
2 comprehension would nec-

essarily involve a proof–theoretic treatment of reflections.

3 A sequent calculus for KP

Since later on we are going to interpret KP in an infinitary sequent calculus RS(K), we
will furnish KP in sequent calculus style. For technical reasons we shall treat equality as
a defined symbol and assume that formulae are in negation normal form. Also bounded
quantifiers will be treated syntactically as quantifiers in their own right.

The language of KP , L, consists of: free variables a1, a2, a3, . . . ; bound variables
x1, x2, x3, . . . ; the predicate symbol ∈; the logical symbols ¬,∧,∨, ∀, ∃; and parenthesis.

The atomic formulae are those of the form (a∈ b) with free variables a, b. Formulae
are built from atomic and negated atomic formulae by means of the connectives ∧,∨ and
the following construction step: If b is a free variable and F (a) is a formula in which the
bound variable x does not occur, then (∀x ∈ b)F (x), (∃x ∈ b)F (x), ∀xF (x), ∃xF (x) are
formulae.

A formula which contains only bounded quantifiers, i.e. quantifiers of the form (∀x∈
b), (∃x ∈ b), is said to be a ∆0–formula. The negation, ¬A, of a non–atomic formula
A is defined to be the formula obtained from A by (i) putting ¬ in front any atomic
subformula, (ii) replacing ∧,∨, (∀x∈ b), (∃x∈ b), ∀x, ∃x by ∨,∧, (∃x∈ b), (∀x∈ b), ∃x, ∀x,
respectively, and (iii) dropping double negations.

5For this result to hold it is crucial that Infinity is among the axioms of KP.
6Lρ is a Σ1–elementary substructure of Lκ if every Σ1 sentence with parameters from Lρ that holds

in Lκ holds in Lρ as well.
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Equality is defined by a = b :⇔ (∀x∈a)(x∈ b) ∧ (∀x∈ b)(x∈a). As a result of this,
we will have to state the Axiom of Extensionality in a different way than usually.

We use A, B, C, ..., F (a), G(a), .. as meta–variables for formulae. Upper case Greek
letters ∆, Γ, Λ, ... range over finite sets of formulae. The meaning of {A1, . . . , An} is the
disjunction A1 ∨ · · · ∨An. Γ, A stands for Γ∪{A}. As usual, A → B abbreviates ¬A∨B.
We shall write b = {y∈a : F (y)} for (∀y∈b)[y∈a ∧ F (y)] ∧ (∀y∈a)[F (y) → y∈x].

For any Γ and formula A,
Γ, A,¬A

is a logical axiom of KP .

The set–theoretic axioms of KP are:

Extensionality: Γ, a = b → [F (a) ↔ F (b)] for all formulae F (a).

Foundation: Γ, ∃xG(x) → ∃x[G(x) ∧ (∀y∈x)¬G(y)]
for all formulae G(b).

Pairing: Γ, ∃x (x = {a, b}).

Union: Γ, ∃x (x =
⋃

a).

Infinity: Γ, ∃x
[

x 6= ∅ ∧ (∀y∈x)(∃z∈x)(y∈z)
]

.

∆0–Separation: Γ, ∃x
(

x = {y∈a : F (y)}
)

for all ∆0–formulae F (b)

∆0–Collection: Γ, (∀x∈a)∃yG(x, y) → ∃z(∀x∈a)(∃y∈z)G(x, y)
for all ∆0–formulae G(b).

The logical rules of inference are:

(∧)
Γ, A Γ, A′

Γ, A ∧ A′ (∨)
Γ, Ai

Γ, A0 ∨ A1
if i∈{0, 1}

(b∀)
Γ, a∈b → F (a)
Γ, (∀x∈b)F (x)

(∀)
Γ, F (a)

Γ, ∀xF (x)

(b∃)
Γ, a∈b ∧ F (a)
Γ, (∃x∈b)F (x)

(∃)
Γ, F (a)

Γ, ∃xF (x)

(Cut)
Γ, A Γ,¬ A

Γ
where in (∀) and (b∀) the free variable a is not to occur in the conclusion of the inference.

We formalize Πn–reflection as an inference rule.

Definition 3.1 The sequent calculus KP + Πn–Ref arises from KP by adjoining the
Πn–reflection rule of inference

(Πn − Ref)
Γ, A

Γ, ∃z[Tran(z) ∧ z 6= ∅ ∧ Az]

5



for all Πn–formulae A.

4 Collapsing functions

We are going to develop so–called collapsing functions which give rise to a strong ordi-
nal notation system T (K). Rather than developing such functions on the basis of Π3

reflecting ordinals, we build them by employing a weakly compact cardinal. This is not a
far–fetched assumption since Π3 reflecting ordinals are the recursive analogues of weakly
compact cardinals (see Aczel and Richter [1974]). Proceeding this way, allows us to de-
velop the right intuitions about these functions and to side–step fiddly and delicate ordinal
recursion theory (cf. Rathjen [1993a] and [1993c]). Of course, another option would be to
abstain completely from set theory by directly defining the primitive recursive notation
system. However, nude ordinal notation systems without any set-theoretic interpretation
tend to be hard to grasp.

Firstly, we remind the reader of some set–theoretical notions and take this as an oppor-
tunity to fix some notations.

Definition 4.1 Let On denote the class of ordinals and let Lim be the class of limit
ordinals. The cumulative hierarchy, V =

⋃

{ Vα : α ∈ On}, is defined by: V0 = ∅,
Vα+1 = {X : X ⊆ Vα}, Vλ =

⋃

{Vξ : ξ < λ} for λ∈Lim.
Let A = 〈A, U1, . . . , f1, . . . , c1, . . . 〉 be a structure for a language. The extension of L

to second order, denoted L2, is given as follows. Besides symbols of L, a formula of L2

may contain second order quantifiers ∀X, ∃X, and atomic formulae X(t), where X is a
second order variable and t is a term of L.

Satisfaction of sentences of L2 in A is defined as follows. Variables of first order range
over elements of A. Variables of second order range over the full power set of A. A formula
X(t) is interpreted as t∈X.

A formula of L2 is Π1
n if it is of the form

∀X1∃X2 · · ·QXnF (X1, · · · , Xn),

where F (X1, · · · , Xn) does not contain second order quantifiers and the n second order
quantifiers in ∀X1∃X2 · · ·QXn are alternating.

Definition 4.2 A cardinal κ is Π1
n–indescribable, if whenever U1, . . . , Um ⊆ Vκ and F is

a Π1
n sentence of the language of 〈Vκ,∈, U1, . . . , Um〉 such that

〈Vκ,∈, U1, . . . , Um〉 |= F

then, for some 0 < α < κ,

〈Vα,∈, U1 ∩ Vα, . . . , Um ∩ Vα〉 |= F.
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Definition 4.3 A class of ordinals C is unbounded in α∈Lim if (∀ξ < α)(∃δ ∈C)(ξ <
δ ∧ δ < α).

Let κ be a regular cardinal > ω. A class C of ordinals is closed in κ if whenever λ is
a limit ordinal < κ such that C is unbounded in λ, then λ∈C.

A class of ordinals S is stationary in κ if, for all C which are closed and unbounded
in κ, S ∩ C 6= ∅.

κ is Mahlo on X ⊆ On if κ∈X and X is stationary in κ. The Mahlo thinning–operation
M is defined as follows

M(X) = {α∈X : X ist stationary in α}.

The Π1
1 indescribable cardinals are also called (or proved to be the same as) the weakly

compact cardinals (see Jech [1979]). To give an inkling as to the strength of weakly
compact cardinals, we introduce the notion of Mahlo cardinal. A cardinal is called Mahlo
cardinal (respectively, weakly Mahlo cardinal) if, for every function f : κ 7−→ κ, there
exists an inaccessible cardinal (respectively, weakly inaccessible cardinal) ρ < κ such
that ρ is closed under f . Equivalently, κ is Mahlo (respectively, weakly Mahlo) iff the
inaccessible cardinals (respectively, weakly inaccessible cardinals) are stationary in κ.

Remark 4.4 If κ is weakly compact, then κ is Mahlo and the Mahlo cardinals are sta-
tionary in κ.

The Veblen–function figures prominently in predicative proof theory (cf. Feferman [1968],
Schütte [1977], Sec.13 and Pohlers [1989].) We are going to incorporate this function in
our notation system.

Definition 4.5 The Veblen–function ϕαβ := ϕα(β) is defined by transfinite recursion
on α by letting ϕα be the function that enumerates the class of ordinals

{ωγ : γ∈On ∧ (∀ξ < α)[ϕξ(ω
γ) = ωγ]}.

Corollary 4.6 (i) ϕ0β = ωβ.

(ii) ξ, η < ϕαβ =⇒ ξ + η < ϕαβ.

(iii) ξ < ζ =⇒ ϕαξ < ϕαζ.

(iv) α < β =⇒ ϕα(ϕβξ) = ϕβξ.

Definition 4.7 To save space, we introduce some abbreviations. fun(g) abbreviates that
g is a function. dom(g) and ran(g) denote the domain and the range of g, respectively.
g′′x stands for the set {g(u) : u∈x∩dom(g)}. Let pow(a) := {x : x ⊆ a}. For U a second
order variable, let club(U) be the formula expressing that U is closed and unbounded in
On, i.e. ∀α(∃β∈U)(α < β) ∧ (∀λ∈Lim)[(∀ξ < λ)(∃δ∈U)(ξ < δ < λ) → λ∈U ].
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For classes G, one defines fun(G), ran(G) and dom(G) analogously.

Let

Ωξ =

{

ℵξ if ξ > 0
0 otherwise.

General assumption: From now on, we assume that there exists a weakly compact
cardinal, denoted K.
Reg denotes the set of uncountable regular cardinals < K. We shall use the variables
κ, π, τ, κ′, π′, τ ′ exclusively for elements of Reg.

Definition 4.8 By recursion on α, we define sets C(α, β) and Mα, and ordinals Ξκ und
Ψξ

π(α) as follows7

C(α, β) =































closure of β ∪ {0,K}
under +,

(ξη 7→ ϕξη),
(ξ 7→ Ωξ)ξ<K,
(ξ 7−→Ξ(ξ))ξ<α

(ξπδ 7−→ Ψξ
π(δ))ξ≤δ<α

M0 = K ∩ L〉m, and, for α > 0,

Mα =

{

π < K : C(α, π) ∩ K = π ∧ (∀ξ∈C(α, π) ∩ α)[Mξ stationary in π]
∧ α∈C(α, π)

}

Ξ(α) = min(Mα ∪ {K}).

For ξ ≤ α,

Ψξ
π(α) = min({ρ∈M ξ ∩ π : C(α, ρ) ∩ π = ρ ∧ π, α∈C(α, ρ)} ∪ {π}).

Note that in the above definition, we tacitly assume, in keeping with our convention, that
π ranges over regular cardinals.

Remark 4.9 To gain a better picture of the sets Mα, it is instructive to study some
initial cases. It is readily verified that any κ∈M1 is weakly inaccessible since κ is regular
and closed under Ω. Therefore, M1 consists of the weakly inaccessible cardinals below K.
Subsequently, we come to see that, for any π∈M2, M1 is stationary in π and hence π is
weakly Mahlo. This pattern continues for quite a while, i.e., M3 consists of the weakly
hyper–Mahlo cardinals below K, M4 consists of the weakly hyper–hyper–Mahlo cardinals
below K and so forth. However, only for weakly α < K, Mα can be couched in terms
of α–hyper–Mahloness. By way of contrast, MK is obtained by diagonalizing over the
sequence (Mα)α<K.

7Closure of C(α, β) under (ξ 7→ Ωξ)ξ<K is only demanded for technical convenience. This closure
property does not contribute to the strength of the intended ordinal notation system. Likewise, it would
suffice to demand only closure under ξ 7→ ωξ instead of ϕ.
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Remark 4.10 The inductive generation of C(α, β) is completed after ω stages. Therefore
C(α, β) can be depicted as C(α, β) =

⋃

n<ω

Cn(α, β), where Cn(α, β) consists of the elements

constructed up to stage n. We emphazise this build–up of C(α, β) since we will be proving
properties of the elements of this set by induction on stages Cn(α, β).

Lemma 4.11 (i) α ≤ α′ ∧ β ≤ β ′ =⇒ C(α, β) ⊆ C(α′, β ′).

(ii) β < π =⇒ |C(α, β) |< π.

(iii) λ∈Lim =⇒ C(α, λ) =
⋃

η<λ

C(α, η) ∧ C(λ, α) =
⋃

η<λ

C(η, α).

(iv) C(α, Ξ(α)) ∩ K = Ξ(α).

(v) C(α, Ψζ
π(α)) ∩ π = Ψζ

π(α).

(vi) If π∈Mα and ζ∈C(α, π) ∩ α, then π∈M ζ .

(vii) If M ξ is stationary in π, then π∈M ξ.

Proof. (i)–(v) are obvious.
(vi): The assumptions imply C(α, π)∩K = π and (∀ξ∈C(α, π)∩α)[M ξ stationary in π];
hence, a fortiori, C(ζ, π)∩K = π and (∀ξ∈C(ζ, π)∩ ζ)[M ξ stationary in π]. Since M ζ is
also stationary in π, we get ζ∈C(ζ, π). Therefore, π∈M ζ .

(vii): Let ρ∈M ξ ∩ π. Then ξ∈C(ξ, ρ), whence ξ∈C(ξ, π). Since M ξ is unbounded in
π it follows C(ξ, π)∩K = (

⋃

{C(ξ, ρ) : ρ∈Mξ ∩ π})∩K =
⋃

{C(ξ, ρ)∩K : ρ∈Mξ ∩ π} =
⋃

{ρ : ρ∈Mξ ∩ π} = π.
Now suppose that η∈C(ξ, π)∩ ξ, and let U ⊆ π be closed and unbounded in π. Since

M ξ is stationary in π, we may select a ρ∈M ξ ∩ π so that η ∈C(ξ, ρ) and U is already
closed and unbounded in ρ. Mη being stationary in ρ implies U ∩ Mη ∩ ρ 6= ∅; thus
U ∩ Mη ∩ π 6= ∅. Thence, Mη is stationary in π. ⊓⊔

Let KΓ denote the least ordinal α > K satisfying (∀ξ, η < α)(ϕξη < α).

Theorem 4.12 For all α < KΓ, Mα is stationary in K and hence Ξ(α) < K.

Proof. Each ordinal K < β < KΓ has a unique representation of either form β = ωβ1 +
· · · + ωβn with β > β1 ≥ · · · ≥ βn and n > 0, or β = ϕβ1β2 with β > β1, β2, denoted
β =NF ωβ1 + · · ·+ ωβn and β =NF ϕβ1β2, respectively. Due to uniqueness, we can define
an injective mapping

f : KΓ −→ LK
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by letting8

f(β) =















β if β < K
{1} if β = K
〈2, f(β1), . . . , f(βn)〉 if β =NF ωβ1 + · · · + ωβn and K < β
〈3, f(β1), f(β2)〉 if β =NF ϕβ1β2 and K < β.

Putting
f(α) ⊳ f(β) : ⇐⇒ α < β,

⊳ defines a well–ordering on a subset of LK of order type KΓ.

To show the Theorem, we proceed by induction on α, or, equivalently, by induction on ⊳.
Assume that E is closed and unbounded in K. We have to verify that Mα ∩ E 6= ∅.

Since α < KΓ, we may utilize the above representations to see that there are finitely
many ordinals α1 . . . , αn < K such that α is in the closure of {α1 . . . , αn,K} under +
and ϕ. Therefore we can pick a ρ0 < K with α∈C(α, ρ0). Since E\ρ0 is also closed and
unbounded in K, we may assume that E ∩ ρ0 = ∅. Using the induction hypothesis, for all
β < α, Mβ is stationary in K. Define

U1 := {f(α)}, U2 := {〈x, y〉 : x ⊳ y}, and U3 :=
⋃

β<α

(Mβ × {f(β)}).

The following sentences are satisfied in the structure 〈VK,∈, U1, U2, U3, E〉:

(1) ∀G ∀δ[fun(G) ∧ dom(G) = δ ∧ ran(G) ⊆ On → ∃γ(G′′δ ⊆ γ)]

(2) ∀a∃b∃β∃g[b = pow(a) ∧ fun(g) ∧ dom(g) = b ∧ ran(g) = β ∧ g injective ]

(3) U1 6= ∅ ∧ ∀γ∃δ(γ < δ ∧ E(δ))

(4) ∀X∀s∀t[U1(t) ∧ U2(〈s, t〉) ∧ club(X) → {y : U3(〈y, s〉)} ∩ X 6= ∅]

Employing the Π1
1–indescribability of K, there exists π < K such that the structure

〈Vπ,∈, U1 ∩ π, U2 ∩ π, U3 ∩ π, E ∩ π〉

satisfies:

(a) ∀G ∀δ[fun(G) ∧ dom(G) = δ ∧ ran(G) ⊆ On → ∃γ(G′′δ ⊆ γ)]

(b) ∀a∃b∃β∃g[b = pow(a) ∧ fun(g) ∧ dom(g) = b ∧ ran(g) = β ∧ g injective ]

(c) U1 ∩ π 6= ∅ ∧ ∀γ∃δ(γ < δ ∧ δ∈E ∩ π)

8〈x, y〉 := {{x}, {x, y}}; 〈x1, . . . , xn+1〉 := 〈〈x1, . . . , xn〉, xn+1〉 for n > 2.
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(d) ∀X∀s∀t[t∈U1 ∩ π ∧ (〈s, t〉)∈U2 ∩ π ∧ club(X) → {y : 〈y, s〉∈U3 ∩ π} ∩ X 6= ∅]

By virtue of (a), observing that ∀G is second order, and (b), π must be inaccessible. Due
to (c), f(α)∈Vπ and E is unbounded in π; whence π∈E. (d) forces that

(∗) (∀β < α)[f(β)∈Vπ → Mβ stationary in π].

Next, we want to verify
(+) (∀η∈C(α, π))[f(η)∈Vπ].

Set X := {η∈C(α, π) : f(η)∈Vπ}. Clearly, π∪ {0,K} ⊆ X . If η =NF ωη1 + · · ·+ ωηn and
η1, . . . , ηn ∈X, then η∈X since π is closed under + and ζ 7→ ωζ and Vπ is closed under
〈·, ·〉. Likewise, π being closed under ϕ implies that X is closed under ϕ.

For σ∈X ∩K, f(σ) = σ∈Vπ; thus σ < π and hence Ωσ < π because π is inaccessible.
If β∈X∩α, then, according to (∗), Mβ is stationary in π, yielding Ξ(β) = f(Ξ(β)) < π.
If κ, ξ, δ∈X und ξ ≤ δ < α, then f(κ) = κ < π and therefore Ψξ

κ(δ) < π. So it turns
out that X enjoys all the closure properties defining C(α, π). This verifies (+).

From π∈E it follows α∈C(α, π). Using (∗) and (+), we obtain

(∀β∈C(α, π) ∩ α)[Mβ is stationary in π].

Whence, π∈Mα ∩ E. ⊓⊔

Corollary 4.13 When α < KΓ, then α∈C(α, Ξ(α)) and Ξ(α) < K.

Agreement: For the remainder of this Section, we shall only consider ordinals < KΓ.

Lemma 4.14 Ξ(α) < Ξ(β) iff either

(1) α < β ∧ α∈C(β, Ξ(β))

or
(2) β < α ∧ β /∈C(α, Ξ(α)).

Proof. First, let Ξ(α) < Ξ(β) be the case. If α < β, then α∈C(α, Ξ(α)) ⊆ C(β, Ξ(β));
thus (1). If, however, β < α, then β ∈ C(α, Ξ(α)) is impossible since this would entail
Ξ(β)∈C(α, Ξ(α)) and consequently, Ξ(β) < Ξ(α); thence in this case (2) is satisfied.

For the reverse implication, note that (1) yields Ξ(α)∈C(β, Ξ(β)) and hence Ξ(α) <
Ξ(β). (2) entails β /∈C(β, Ξ(α)) and therefore, utilizing β∈C(β, Ξ(β)), Ξ(α) < Ξ(β). ⊓⊔

Corollary 4.15 α 6= β =⇒ Ξ(α) 6= Ξ(β).

Proposition 4.16 Let M ξ be stationary in π. Assume that ξ ≤ α und ξ, π, α∈C(α, π).
Then,

Ψξ
π(α)∈M ξ ∩ π.

Moreover, if ξ > 0, then M ξ is not stationary in Ψξ
π(α) and, for all β > ξ, Ψξ

π(α)/∈Mβ.
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Proof. Since ξ, π, α ∈ C(α, π) and π ∈ Lim, we may select a µ0 < π so that already
ξ, π, α∈C(α, µ0).

Letting E := {ρ < π : µ0 ≤ ρ ∧ C(α, ρ) ∩ π = ρ}, we claim that E is closed and
unbounded in π.

Unboundedness: Fix δ such that µ0 ≤ δ < π. For δ0 := δ+1 and δn+1 := sup(C(α, δn)∩π),
one obtains, by Lemma 4.11(ii) and the regularity of π, δ < δn ≤ δn+1 < π. The regularity
of π also ensures δ∗ := supn<ωδn < π. Since C(α, δn) ∩ π ⊆ δn+1 ⊆ C(α, δn+1) ∩ π issues
from the definition of δn+1, it follows

C(α, δ∗) ∩ π =
⋃

n<ω

(C(α, δn) ∩ π) = δ∗.

Therefore, δ < δ∗∈E.

Closedness: Let λ ∈ Lim ∩ π and suppose that E is unbounded in λ. Then C(α, λ) =
⋃

η∈E∩λ

C(α, η), and consequently λ∈E follows from

C(α, λ) ∩ π =
⋃

η∈E∩λ

(C(α, η) ∩ π) = sup(E ∩ λ) = λ.

By assumption, M ξ is stationary in π, so there exists a ν ∈ E ∩ M ξ. This involves
C(α, ν) ∩ π = ν. Because of µ0 ≤ ν, we get ξ, π, α ∈ C(α, ν). Due to the definition of
Ψξ

π(α), this implies Ψξ
π(α) ≤ ν < π.

Now assume ξ > 0. Then Ψξ
π(α) is regular. We want to show that M ξ is not stationary

in Ψξ
π(α). Observe that ξ, π, α ∈ C(α, Ψξ

π(α)). So, if M ξ were stationary in Ψξ
π(α), by

applying the same arguments as in the first part of the proof, we could verify the existence
of a ρ∈M ξ ∩ Ψξ

π(α) with ξ, π, α∈C(α, ρ) and C(α, ρ) ∩ π = ρ, which would collide with
the definition of Ψξ

π(α).
Finally, if we had Ψξ

π(α)∈Mβ for some β > ξ, then, since ξ∈C(ξ, Ψξ
π(α)), we would

get ξ∈C(β, Ψξ
π(α)) ∩ β, leading to the contradiction that M ξ is stationary in Ψξ

π(α). ⊓⊔

Proposition 4.17 (i) Ψξ
π(α) < π =⇒ Ψξ

π(α) 6= Ξ(β).

(ii) Ψξ
π(α) < π ∧ Ψσ

κ(β) < κ ∧ Ψξ
π(α) = Ψσ

κ(β) =⇒ α = β ∧ π = κ ∧ ξ = σ.

Proof. (i): By way of a contradiction, suppose Ψξ
π(α) = Ξ(β). Ψξ

π(α) < π implies π ∈
C(α, Ψξ

π(α)). From α ≤ β we could deduce π∈C(β, Ξ(β)) and therefore the contradiction
π < Ξ(β). From β < α we would get β ∈ C(β, Ξ(β)) ⊆ C(α, Ψξ

π(α)) and consequently
Ξ(β)∈C(α, Ψξ

π(α)), contradicting Ψξ
π(α) /∈C(α, Ψξ

π(α)). Since in any case we are led to a
contradiction, the assumption Ψξ

π(α) = Ξ(β) must be false.
(ii): The hypotheses imply

(a) ξ, α, π∈C(α, Ψσ
κ(β))
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and
(b) σ, κ, β∈C(β, Ψξ

π(α)).

From α < β, using (a), we would get ξ, α, π∈C(β, Ψσ
κ(β)) and hence Ψξ

π(α)∈C(β, Ψσ
κ(β)),

contradicting Ψσ
κ(β) /∈C(β, Ψσ

κ(β)). Similarly, using (b), the assumption β < α leads to a
contradiction. Therefore, α = β.

From π < κ we would get π ∈ C(β, Ψσ
κ(β)) ∩ κ by (a); but this is impossible since

C(β, Ψσ
κ(β)) ∩ κ = Ψσ

κ(β) = Ψξ
π(α) < π. Using (b), we can also exclude that κ < π.

Consequently, π = κ.
Finally, we have to show ξ = σ. For a contradiction, assume ξ < σ. Ψξ

π(α) < π yields
Ψξ

π(α)∈M ξ und thus ξ∈C(ξ, Ψξ
π(α)). Therefore, ξ∈C(σ, Ψσ

κ(β)). Utilizing the definition
of Ψσ

κ(β), the latter implies that M ξ is stationary in Ψσ
κ(β). Letting

Y := {η < Ψσ
κ(β) : C(α, η) ∩ Ψσ

κ(β) = η ∧ α, π∈C(α, η)},

we obtain a set that is unbounded and closed in Ψσ
κ(β). But then M ξ ∩ Y 6= ∅ and, as a

consequence, Ψξ
π(α) = min(M ξ ∩Y ) < Ψξ

π(α), contradicting Ψξ
π(α) = Ψσ

κ(β). Interchang-
ing the roles of σ and ξ in the preceeding argument, one also excludes σ < ξ. ⊓⊔

Lemma 4.18

(i) α =NF ωα1 + · · ·+ ωαn =⇒ [α∈C(ζ, ρ) ⇐⇒ α1, . . . , αn∈C(ζ, ρ)].

(ii) α =NF ϕα1α2 =⇒ [α∈C(ζ, ρ) ⇐⇒ α1, α2∈C(ζ, ρ)].

(iii) σ < K =⇒ [σ∈C(ζ, ρ) ⇐⇒ Ωσ ∈C(ζ, ρ)].

Proof. (i) Using induction on n, one easily shows that α∈Cn(ζ, ρ) implies α1, . . . , αn ∈
Cn(ζ, ρ). Similarly one proves (ii) and (iii). ⊓⊔

Lemma 4.19 (i) 0 < α ∧ π∈Mα =⇒ Ωπ = π.

(ii) π∈M1 =⇒ ΩΨ0
π(α) = Ψ0

π(α).

(iii) π = Ωζ+1 ∧ α∈C(α, π) =⇒ Ωζ < Ψ0
π(α) < Ωζ+1.

(iv) Ψ0
π(α) < π =⇒ Ψ0

π(α) /∈Reg.

Proof. (i): The hypotheses imply C(α, π) ∩ K = π. Therefore π is closed under σ 7→ Ωσ;
whence Ωπ = π.

(ii) follows from (i), noting that C(α, Ψ0
π(α)) ∩ π = Ψ0

π(α).

(iii): As ζ < π and α ∈ C(α, π), there is an η < π with α, π ∈ C(α, η). Utilizing
the regularity of π, we can find a ρ < π so that simultaneously α, π ∈ C(α, ρ) and
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C(α, ρ) ∩ π = ρ. This shows Ψ0
π(α) < Ωζ+1. Therefore π ∈ C(α, Ψ0

π(α), and hence, by
4.18, ζ∈C(α, Ψ0

π(α)). Consequently, Ωζ ∈C(α, Ψ0
π(α)) ∩ π = Ψ0

π(α).

(iv): Ψ0
π(α) < π implies α, π∈C(α, Ψ0

π(α)). Let σ0 be minimal with the property α, π∈
C(α, σ0). In view of Lemma 4.11(iii), σ0 is not a limit; hence σ0 < Ψ0

π(α).
Put σn+1 := sup(C(α, σn) ∩ π) and σ∗ := supn<ωσn. Then σn ≤ σn+1 ≤ σ∗ < π.

Using induction on n, we come to see that σn ≤ Ψ0
π(α). Since C(α, σn) ∩ π ⊆ σn+1 and

⋃

n<ω

C(α, σn) = C(α, σ∗), we get C(α, σ∗) ∩ π = σ∗. Further, α, π∈C(α, σ∗). Therefore,

Ψ0
π(α) ≤ σ∗. This verifies Ψ0

π(α) = σ∗.
Regarding the sequence of σn’s, there are two possible outcomes. In the first case, this

sequence is strictly increasing and therefore Ψ0
π(α) has cofinality ω, yielding that Ψ0

π(α)
is singular.

In the second case, there exists an n0 such that σn0 < σn0+1 = σn0+2. To see this,
note that σ0 is not a limit whereas σn ∈ Lim for n > 0. In this case we also have
σn0+1 = σ∗ = Ψ0

π(α). Further, |C(α, σn0) ∩ π |= max(ω, | σn0 |) < σn0+1. On the other
hand, σn0+1 = sup(C(α, σn0) ∩ π), so σn0+1 must be singular. Whence, Ψ0

π(α) /∈Reg. ⊓⊔

In the rest of this Section, we provide “recursive” <–comparisons for ordinals which
are presented in terms of Ψ and Ξ.

Proposition 4.20 Suppose that Ψξ
π(α) < π, Ψσ

κ(β) < κ, and Ψσ
κ(β) < π. Then

Ψξ
π(α) < Ψσ

κ(β)

iff one of the following cases holds:

(1) α < β ∧ α, ξ, π∈C(β, Ψσ
κ(β)) ∧ Ψξ

π(α) < κ.

(2) β ≤ α ∧ {β, σ, κ} * C(α, Ψξ
π(α)).

(3) α = β ∧ κ = π ∧ ξ < σ ∧ ξ∈C(σ, Ψσ
κ(β)).

(4) σ < ξ ∧ σ /∈C(ξ, Ψξ
π(α)).

Proof. From (1) it follows Ψξ
π(α)∈C(β, Ψσ

κ(β)) ∩ κ, whence Ψξ
π(α) < Ψσ

κ(β).
(2) yields {β, σ, κ} * C(β, Ψξ

π(α)); so, because of {β, σ, κ} ⊆ C(β, Ψσ
κ(β)), this be-

comes Ψξ
π(α) < Ψσ

κ(β).
(3) implies that M ξ is stationary in Ψσ

κ(β). As α, π, ξ∈C(β, Ψσ
κ(β)), Ψξ

π(α) < Ψσ
κ(β)

follows from 4.16.
(4) yields Ψξ

π(α) < Ψσ
κ(β) since σ∈C(σ, Ψσ

κ(β)).
Next, assume Ψξ

π(α) < Ψσ
κ(β). Then Ψξ

π(α) < κ. We have to show that one of (1)–(4)
holds.

First, assume α < β. From {α, ξ, π} * C(β, Ψσ
κ(β)) we would get

{α, ξ, π} * C(α, Ψξ
π(α)), contradicting Ψξ

π(α) < π. So (1) must be the case.
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If β < α, then {β, σ, κ} ⊆ C(α, Ψξ
π(α)) cannot hold since this would imply Ψσ

κ(β)∈
C(α, Ψξ

π(α)) ∩ π and therefore Ψξ
π(α) < Ψσ

κ(β). This shows that β < α implies (2).
Finally, suppose α = β. If κ < π, then κ /∈ C(α, Ψξ

π(α)); whence (2). π < κ would
force π∈C(α, Ψσ

κ(β)) ∩ κ = Ψσ
κ(β), contradicting Ψσ

κ(β) < π.
So it remains to prove the assertion when α = β and π = κ. If σ /∈ C(α, Ψξ

π(α)),
then (2) is satisfied. So assume σ∈C(α, Ψξ

π(α)). From Ψξ
π(α) < π we get Ψξ

π(α) ∈ M ξ, in
particular, ξ ∈ C(ξ, Ψξ

π(α)). Also, by assumption, we have Ψξ
π(α) < Ψσ

κ(β). Consequently,
if ξ < σ, then ξ ∈ C(σ, Ψσ

κ(β)), so (3) holds. 4.17 excludes that ξ = σ. Furthermore,
σ < ξ ∧ σ ∈ C(ξ, Ψξ

π(α)) can be excluded since this would lead to the contradiction
Ψσ

κ(β) < Ψξ
π(α) by 4.16. Therefore σ < ξ yields (4). ⊓⊔

Proposition 4.21

Ψξ
π(α) < Ξ(β) ⇐⇒ [π ≤ Ξ(β) ∨ (β < α ∧ β /∈C(α, Ψξ

π(α)))]

Proof. “⇐” is immediate.
To verify “⇒”, we assume Ψξ

π(α) < Ξ(β) and Ξ(β) < π. We have to verify β <
α ∧ β /∈C(α, Ψξ

π(α)).
α ≤ β would imply α, ξ, π ∈C(α, Ψξ

π(α)) ⊆ C(β, Ξ(β)), and hence the contradiction
π < Ξ(β). So we must have β < α. If β ∈ C(α, Ψξ

π(α)), then Ξ(β) ∈ C(α, Ψξ
π(α)) ∩ π,

yielding the contradiction Ξ(β) < Ψξ
π(α). ⊓⊔

5 The ordinal notation system T (K)

We are going to define a set of ordinals T (K) ⊆ C(KΓ, ′) in conjunction with a function
m which assigns to inaccessibles π ∈ T (K) ∩ K the maximal α with π ∈ Mα. However,
m(π) will be defined “constructively” from a normal form representation of π, and only
later we shall verify the identity

(∗) m(π) = sup{β : π∈Mβ}.

We shall demand closure of T (K) under Ψξ
π only when M ξ is stationary in π (and ξ, π∈

T (K)). It will transpire that, for π ∈ T (K), stationarity of M ξ in π is equivalent to
ξ∈C(m(π), π) ∩ m(π).

Finally, by utilizing normal forms and the <–comparisons of the previous Section, we
will come to see that 〈T (K), <〉 gives rise to a primitive recursive ordinal notation system.

Definition 5.1 The set of ordinals T (K) and a function

m : T (K) ∩R⌉} −→ T (K)

are inductively defined by the following clauses.
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(T1) 0,K∈T (K).

(T2) If α =NF α1 + · · ·+ αn and α1, . . . , αn∈T (K), then α∈T (K).

(T3) If α =NF ϕα1α2 with α1, α2∈T (K), then α∈T (K).

(T4) If ξ∈T (K)∩K and 0 < ξ < Ωξ, then Ωξ ∈T (K). If further Ωξ ∈Reg, i.e. ξ = ξ0 + 1
for some ξ0, then m(Ωξ) = 1.

(T5) If α∈T (K) and 0 < α, then Ξ(α)∈T (K) and m(Ξ(α)) = α.

(T6) If α, ξ, π∈ T (K) and α, ξ, π∈C(α, π) and ξ ≤ α and ξ ∈C(m(π), π) ∩ m(π), then
Ψξ

π(α)∈T (K).
m(Ψξ

π(α)) = ξ, providing that ξ > 0.

We shall write δ =NF Ψξ
π(α) if δ = Ψξ

π(α) and the requirements of (T6) are fulfilled.
The meaning of the function m and the condition ξ∈C(m(π), π) ∩ m(π) in (T6) are

elucidated in the following Lemma.

Lemma 5.2 Let δ∈T (K). Then:

(i)(a) δ∈C(KΓ, ′).

(i)(b) When δ is weakly inaccessible and δ < K, then δ∈Mm(δ); moreover, Mm(δ) is not

stationary in δ and m(δ) = sup{β : δ∈Mβ}.

(ii) If π, ξ∈T (K), then M ξ is stationary in π iff ξ∈C(m(π), π) ∩ m(π).

(iii) The clauses defining T (K) are deterministic, i.e., for each β ∈T (K), there is only
one way to get into T (K). Whence, each ordinal in T (K) can be denoted uniquely
using only the symbols 0,K, +, ϕ, Ω, Ξ, Ψ.

Proof. (i): We prove (a), (b) simultaneously by induction on the definition of δ ∈ T (K).
During the proof, we frequently use the fact that C(KΓ, ′) ⊆ KΓ, which easily follows from
the definition of C(KΓ, ′).

Suppose δ = Ξ(α) with α∈T (K). The induction hypothesis yields α∈C(KΓ, ′) ∩ KΓ.
Therefore, δ ∈ C(KΓ, ′) and m(δ) = α and, according to 4.12, δ ∈ Mπ(δ). If δ ∈ Mβ for
some β > α, then, as α∈C(α, δ), we would get α∈C(β, δ)∩β and thus the contradiction
that Mα is stationary in Ξ(α). Hence, m(δ) =NF sup{β : δ∈Mβ}.

Suppose δ = Ψξ
π(α). The induction hypothesis yields α, ξ, π∈C(KΓ, ′), so δ∈C(KΓ, ′).

Assume further that δ is weakly inaccessible. Then, by 4.19(iii) , π must be weakly
inaccessible, too, and ξ > 0. The induction hypothesis yields π ∈ Mm(π). Hence, from
ξ∈C(m(π), π) ∩ m(π), it follows that M ξ is stationary in π. So, using 4.16, we can infer
that δ∈M ξ , M ξ is not stationary in δ and ξ = sup{β : δ∈Mβ}. This gives the assertion
since m(δ) = ξ.
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Finally, if δ enters T (K) by one of the clauses (T1),(T2),(T3),(T4), then (a) is imme-
diate by the inductive assumption.

(ii): First, assume that M ξ is stationary in π. Observe that (ii) is trivial for successor
cardinals. So let π be weakly inaccessible. Then, using 4.11(vii), π∈M ξ ; thus ξ < m(π)
by (i)(b). Choosing ρ∈M ξ ∩ π, we get ξ∈C(ξ, ρ); whence ξ∈C(m(π), π) ∩ m(π).

On the other hand, ξ ∈ C(m(π), π) ∩ m(π) implies that M ξ is stationary in π since
π∈Mm(π) by (i)(b).

(iii) follows from 4.12, 4.15, 4.16, 4.17, and 4.19. ⊓⊔

To conceive of 〈T (K), <〉 as a primitive recursive ordinal notation system, we need to
be able to determine whether an arbitrary term, composed of the symbols 0,K, +, ϕ, Ω, Ξ, Ψ,
denotes an ordinal from T (K), and, moreover, given two terms denoting ordinals from
T (K), the order between the denoted ordinals should be computable from the order of or-
dinals denoted by proper subterms. An important step towards such a decision procedure
is taken in the following definition.

Definition 5.3 By induction on the definition of α∈T (K), Kδ(α) is defined as follows.

(K1) Kδ(K) = ∅.

(K2) If α =NF α1 + · · ·+ αn or α =NF ϕα1α2, then Kδ(α) =
⋃

1≤i≤n

Kδ(αi).

(K3) If α = Ωξ with 0 < ξ < Ωξ < K, then Kδ(α) = Kδ(ξ).

(K4) If α = Ξ(β), then

Kδ(α) =

{

∅ if α < δ
Kδ(β) ∪ {β} else.

(K5) If α =NF Ψσ
κ(β), then

Kδ(α) =

{

∅ if α < δ
Kδ(κ) ∪ Kδ(σ) ∪ Kδ(β) ∪ {β} else.

Lemma 5.4 If α∈T (K) and δ, γ are arbitrary ordinals, then

α∈C(γ, δ) ⇐⇒ Kδ(α) < γ.

Proof. This is straightforwardly verified by induction on α∈T (K). ⊓⊔

Given α, ξ, π ∈ T (K), Lemma 5.4 enables us to check all the conditions demanded
in (T6) of Definition 5.1, solely, by inspecting the inductive generation that α, ξ, π have
as elements of T (K). Therefore, in conjunction with the recursive characterization of
the <–relation of the previous Section, we are led to a primitive recursive description
of 〈T (K), <〉, when we identify the elements of T (K) with the terms denoting them.
However, there is no reason to write out such a primitive recursive definition in detail
since it does not convey any more insights.
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6 The Calculus RS(K)

It is well known that the axioms of Peano Arithmetic, PA, can be derived in a sequent
calculus, PAω, augmented by an infinitary rule, the so–called ω–rule9

Γ, A(n̄) for all n

Γ, ∀xA(x)
.

An ordinal analysis for PA is then attained as follows:

• Each PA–proof can be “unfolded” into a PAω–proof of the same sequent.

• Each such PAω–proof can be transformed into a cut–free PAω–proof of the same
sequent of length < ε0.

In order to obtain a similar result for set theories like KP , we have to work a bit harder.
Guided by the ordinal analysis of PA, we would like to invent an infinitary rule which,
when added to KP , enables us to eliminate cuts. As opposed to the natural numbers,
it is not clear how to bestow a canonical name to each element of the set–theoretic uni-
verse. However, within the confines of the constructible universe, which is made from
the ordinals, it is pretty obvious how to “name” sets once we have names for ordi-
nals at our disposal. Recall that Lα, the αth level of Gödel’s constructible hierarchy
L, is defined by L0 = ∅, Lλ =

⋃

{Lβ : β < λ} for limits λ, and Lβ+1 =
{

X : X ⊆
Lβ ; X definable over 〈Lβ ,∈〉

}

. So any element of L of level α is definable from elements
of L with levels < α and Lα.

6.1 The Language of RS(K)

Henceforth, we shall restrict ourselves to ordinals from T (K).

Definition 6.1 We extend the language of set theory, L, by new unary predicate symbols
Adα for every α∈T (K). The augmented language will be denoted by LAd.

The atomic formulae of LAd are those of either form (a ∈ b), ¬(a ∈ b), Adα(a), or
¬Adα(a). The LAd–formulae are obtained from atomic ones by closing off under ∧,∨, (∃x∈
a), (∀x∈a), ∃x, and ∀x.

Definition 6.2 The LRS(K)–terms and their levels are generated as follows.

1. For each α, Lα is an LRS(K)–term of level α.

2. The formal expression [x ∈ Lα : F [x, s1, · · · sn]Lα] is an LRS(K)–term of level α if
F [a, b1, · · · , bn] is an LAd–formula and s1, · · · , sn are LRS(K)–terms with levels < α.

9n̄ stands for the nth numeral
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We shall denote the level of an LRS(K)–term t by | t |; t∈Term(α) stands for | t |< α and
t∈Term for t∈Term(K).

The LRS(K)–formulae are the expressions of the form F [s1, . . . , sn]
LK , where F [a1, . . . , an]

is an LAd–formula and s1, . . . , sn∈Term.
For technical convenience, we let ¬A be the formula which arises from A by (i) putting

¬ in front of each atomic formula, (ii) replacing ∧,∨, (∀x ∈ a), (∃x ∈ a) by ∨,∧, (∃x ∈
a), (∀x∈a), respectively, and (iii) dropping double negations.

Convention: In the sequel, LRS(K)–formulae will be referred to as formulae. The same
usage applies to LRS(K)–terms.

Definition 6.3 If x is a term or a formula, then

k(x) := {α : Lα occurs in x }.

Here any occurrence of Lα, i.e. also those inside of terms, has to be considered. For
technical convenience, we put k(0) := k(1) := ∅.

We set |x |:= max(k(x) ∪ {0}) and |0 |:=|1 |:= 0.
If X is a finite set consisting of objects of the above kind, put

k(X) :=
⋃

{k(x) : x∈X}

and
|k(X) |:= sup{|k(x) |: x∈X}.

Definition 6.4 We use the relation ≡ to mean syntactical identity. For terms s, t with
|s |<| t | we set

s
◦
∈t ≡

{

B(s) if t ≡ [x∈Lβ : B(x)]
s /∈L0 if t ≡ Lβ.

Observe that s∈t and s
◦
∈t have the same truth value under the standard interpretation

in the constructible hierarchy.

6.2 The Rules of RS(K)

Next we introduce a calculus, RS(K), with infinitary rules. A, B, C, . . . , F (t), G(t), . . .
range over LRS(K)–formulae. We denote by upper case Greek letters Γ, ∆, Λ, . . . finite
sets of LRS(K)–formulae. The intended meaning of Γ = {A1, · · · , An} is the disjunction
A1 ∨ · · ·∨An. Γ, A stands for Γ∪{A} etc.. We also use the shorthands r 6= s := ¬(r = s)
and r /∈t := ¬(r∈t).
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An LRS–formula is said to be ∆0(α) if it contains only terms with levels < α. An
LRS–formula A is Πk(α) if it has the form

(∀x1∈Lα) · · · (Qkxk∈Lα)F (x1, . . . , xk),

where the k quantifiers in front are alternating and F (L0, . . . , L0) is ∆0(α). Analoguously,
one defines Σk(α)–formulae.

Given an LRS–formulae A and terms s, t, we denote by A(s,t) the formula which arises
from A by replacing all the quantifiers (∃x ∈ t) and (∀x ∈ t) by (∃x ∈ s) and (∀x ∈ s),
respectively. To economize on subscripts, we also write A(s,α) for A(s,Lα) and A(β,α) instead
of A(Lβ ,Lα).

Definition 6.5 The rules of RS(K) are:

(∧)
Γ, A Γ, A′

Γ, A ∧ A′

(∨)
Γ, Ai

Γ, A0 ∨ A1
if i = 0 or i = 1

(∀)
· · ·Γ, s

◦
∈t → F (s) · · · (s∈Term(| t |))

Γ, (∀x∈t)F (x)

(∃)
Γ, s

◦
∈t ∧ F (s)

Γ, (∃x∈t)F (x)
if s∈Term(| t |)

( 6∈)
· · ·Γ, s

◦
∈t → r 6= s · · · · · · (s∈Term(| t |))

Γ, r 6∈t

(∈) Γ, s
◦
∈t ∧ r = s
Γ, r∈t if s∈Term(| t |)

(¬Adα)
· · ·Γ, Lρ 6= t · · · (ρ∈Mα; ρ ≤| t |)

Γ,¬Adα(t)

(Adα)
Γ, Lρ = t
Γ, Adα(t)

if ρ∈Mα and ρ ≤| t |

(Cut)
Γ, A Γ,¬ A

Γ

(RefK)
Γ, A

Γ, (∃z∈LK)[Tran(z) ∧ z 6= ∅ ∧ A(z,K)]
if A∈Π3(K)

(Ref ξ
π)

Γ, F (s)

Γ, (∃z∈Lπ)[Adξ(z) ∧ (∃u∈z)F (u)(z,π)]
if F (s)∈Π2(π),
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where (Ref ξ
π) comes with the proviso that M ξ be stationary in π.

Remark 6.6 At first glance, the rule (Ref ξ
π) might loom complicated. As a matter of

fact, instead, we could have adopted the rule:

(Ref ξ
π)∗

Γ, A

Γ, (∃z∈Lπ)[Adξ(z) ∧ A(z,π)]
if A∈Π2(π).

But latter on (cf. Lemma 8.12), we will need to derive Σ3(π)–reflection and this can be
accomplished more easily with (Ref ξ

π) at our disposal.

6.3 H–controlled derivations

If we dropped the rules (RefK) and (Ref ξ
π) from RS(K), the remaining calculus would en-

joy full cut elimination owing to the symmetry of the pairs of rules 〈 (∧), (∨) 〉, 〈 (∀), (∃) 〉,
〈 ( 6∈), (∈) 〉, 〈 (Adα), (¬Adα) 〉. However, partial cut elimination for RS(K) can be attained
by delimiting a collection of derivations of a very uniform kind.

To define uniform derivations, we shall find it useful to apply the notion of operator
controlled derivations of Buchholz [1993].

Definition 6.7 Let P (On) = {X : X is a set of ordinals}.
A class function

H : P (On) → P (On)

will be called operator if the following conditions are met for all X, X ′∈P (On):

(H0) 0∈H(X).

(H1) For α =NF ωα1 + · · ·+ ωαn,

α∈H(X) ⇐⇒ α1, ..., αn∈H(X).

(In particular, (H1) implies that H(X ) will be closed under + and σ 7→ ωσ, i.e., if
α, β∈H(X), then α + β, ωα∈H(X).)

(H2) X ⊆ H(X)

(H3) X ′ ⊆ H(X) =⇒ H(X ′) ⊆ H(X).

Definition 6.8 (i) When f is a mapping f : Onk −→ On, then H is said to be closed
under f , if, for all X∈P (On) and α1, . . . , αk∈H(X ),

f(α1, . . . , αk)∈H(X ).

(ii) α∈H := α∈H(∅); s∈H := ‖(∫ ) ⊂ H.
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(iii) X ⊆ H := X ⊆ H(∅).

(iv) For s∈Term let H[s] denote the operator

(

X 7→ H(k(s) ∪ X)
)

X∈P (On)
.

(v) If X is set consisting of terms, formulae, and possibly elements from {0, 1}, then

H[X](X) := H(‖(X) ∪ X).

We shall also write H[X, s1, . . . , sn] for H[X∪{s1, . . . , sn}], and occasionally H[X, π]
instead of H[X, Lπ].

The next Lemma garners some simple properties of operators.

Lemma 6.9 If H is an operator, then:

(i) H[X] is an operator.

(ii) k(X) ⊂ H =⇒ H[X] = H.

(iii) ∀X, X ′∈P (On)[X ′ ⊆ X =⇒ H(X ′) ⊆ H(X )].

Definition 6.10 To each LRS(K)–formula A we assign either a (possibly infinite) dis-
junction

∨

(Aι)ι∈J or conjunction
∧

(Aι)ι∈J of LRS(K)–formulae. This assignment will be
indicated by A ∼=

∨

(Aι)ι∈J and A ∼=
∧

(Aι)ι∈J , respectively.

• r∈t ∼=
∨

(s
◦
∈t ∧ r = s)s∈Term(|t|)

• Adα(t) ∼=
∨

(Lρ = t)Lρ∈J , where J := {Lη : η∈Mα; η ≤| t |}

• (∃x∈t)F (x) ∼=
∨

(s
◦
∈t ∧ F (s))s∈Term(|t|)

• A0 ∨ A1
∼=

∨

(Aι)ι∈{0,1}

• ¬A ∼=
∧

(¬Aι)ι∈J , if A ∼=
∨

(Aι)ι∈J .

Using this representation of formulae, we can define the subformulae of a formula as
follows.10 When A ∼=

∧

(Aι)ι∈J or A ∼=
∨

(Aι)ι∈J , then B is a subformula of A if B ≡ A
or, for some ι∈J, B is a subformula of Aι.

Since we also want to keep track of the complexity of cuts appearing in derivations, we
endow each formula with an ordinal rank.

10That this constitutes a legitimite inductive definition will follow from Lemma 6.12
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Definition 6.11 The rank of formulae and terms is determined as follows.

1. rk(Lα) := ω · α.

2. rk([x∈Lα : F (x)]) := max{ω · α + 1, rk(F (L0)) + 2}.

3. rk(s∈t) := rk(s /∈t) := max{rk(s) + 6, rk(t) + 1}.

4. rk(Adα(s)) := rk(¬Adα(s)) := rk(s) + 5.

5. rk((∃x∈t)F (x)) := rk((∀x∈t)F (x)) := max{rk(t), rk(F (L0)) + 2}.

6. rk(A ∧ B) := rk(A ∨ B) := max{rk(A), rk(B)} + 1.

There is plenty of leeway in designing the actual rank of a formula. However, it is crucial
that it satisfies the following property.

Lemma 6.12 If A ∼=
∨

(Aι)ι∈J or A ∼=
∧

(Aι)ι∈J , then

(∀ι∈J) [rk(Aι) < rk(A)].

A proof for Lemma 6.12 is given in Buchholz [1993], Lemma 1.9. ⊓⊔

Using the formula representation of Definition 6.10, notwithstanding the many rules
of RS(K), the notion of H–controlled derivability can be defined concisely. We shall use
J ↾ α to denote the set {ι∈J :| ι |< α}.

Definition 6.13 Let H be an operator and let Γ be a finite set of RS(K)–formulae.
H

α

ρ Γ is defined by recursion on α via

{α} ∪ k(Γ) ⊂ H

and the following inductive clauses:
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(
∨

)
H

α0

ρ Λ, Aι0

H
α

ρ Λ,
∨

(Aι)ι∈J

α0 < α
ι0∈J ↾α

(
∧

)
H[ι]

αι

ρ Λ, Aι for all ι∈J

H
α

ρ Λ,
∧

(Aι)ι∈J

| ι |≤ αι < α

(Cut)
H

α0

ρ Λ,B H
α0

ρ Λ,¬B

H
α

ρ Λ

α0 < α
rk(B) < ρ

(RefK)
H

α0

ρ Λ, A

H
α

ρ Λ, (∃z∈LK)[Tran(z) ∧ z 6= ∅ ∧ A(z,K)]

α0,K < α
A∈Π3(K)

(Ref ξ
π)

H
α0

ρ Λ, F (s)

H
α

ρ Λ, (∃z∈Lπ)[Adξ(z) ∧ (∃u∈z)F (u)(z,π)]

α0 + 1, π < α
ξ∈H

F (s)∈Π2(π)
stat(ξ, π)

where stat(ξ, π) means that M ξ is stationary in π; according to 5.2(ii) this is equivalent
to ξ∈C(m(π), π) ∩ m(π), and thus is a decidable property by 5.4.

Remark 6.14 In (Ref ξ
π) we can assume that s∈H, for if s occurs in F (s) then this is

a consequence of k(Λ, F (s)) ⊆ H, and if s does not occur in F (s), then F (s) ≡ F (L0) so
that we could assume s ≡ L0 which would also entail s∈H.

Henceforth, we shall tacitly make this assumption when dealing with (Ref ξ
π).

The following observations are easily eastablished by induction on α.

Lemma 6.15 (i) H
α

ρ Γ ∧ α ≤ α′∈H ∧ ρ ≤ ρ′ ∧ ‖(Λ) ⊆ H =⇒ H
α′

ρ′
Γ, Λ .

(ii) H
α

ρ Γ,A ∨ B =⇒ H
α

ρ Γ,A,B .

(iii) H
α

ρ Γ, (∀§∈Lβ)F(§) ∧ γ∈H ∧ γ ≤ β =⇒ H
α

ρ Γ, (∀§∈Lγ)F(§) .

7 Predicative Cut Elimination and Bounding

Cuts in RS(K)–derivations whose cut formulae have not been introduced previously by a
Π3 or Π2–reflection inference will be called uncritical. Applying the usual cut elimination
procedure for infinitary logic, uncritical cuts can be replaced by cuts with lesser rank.
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In this Section we will deal with elimination of uncritical cuts in LRS in its quantitative
aspects. Since these results have literally the same proofs as their counterparts in Buchholz
[1993], we refrain from repeating them here.

Besides cut elimination results, we show that existential quantifiers in LRS–derivations
can always be “bounded” by the length of the derivation.

Lemma 7.1 (Inversion)

H
α

ρ Γ,
∧

(Aι)ι∈J =⇒ (∀ι∈J)H[ι]
α

ρ Γ,Aι

Proof. Use induction on α. ⊓⊔

The next Lemma relates the rank of a formula A, to its level, |A | (see 6.3).

Lemma 7.2 Let A, B be formulae and s, t be terms.

(i) rk(A) = ω· |A | +n for some n < ω.

(ii) rk(s) = ω· |s | +m for some m < ω.

(iii) |A |<|B | =⇒ rk(A) < rk(B).

(iv) |s |<| t | =⇒ rk(s) < rk(t).

Proof. See Buchholz [1993], Lemma 1.9. ⊓⊔

Lemma 7.3 (Reduction Lemma) Let A ∼=
∨

(Aι)ι∈J . Assume ρ /∈ Reg ∪ {K}, where
ρ := rk(A). Then:

H
α

ρ Λ,¬A ∧ H
β

ρ Γ,A =⇒ H
α+β

ρ Λ, Γ

Proof. Use induction on β. For details see Buchholz [1993], Lemma 3.14. ⊓⊔

Theorem 7.4 (Predicative cut elimination) Let H be closed under ϕ. If H
β

ρ+ωα Γ ,

[ρ, ρ + ωα[∩(Reg ∪ {K}) = ∅, and α∈H, then

H
ϕαβ

ρ Γ .

Proof. By main induction on α and subsidiary induction on β (cf. Buchholz [1993],
Theorem 3.16). ⊓⊔

Corollary 7.5 H
β

ρ+1
Γ ∧ ρ /∈Reg ∪ {K} =⇒ H

ωβ

ρ Γ .
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Lemma 7.6 (Bounding Lemma) Let µ ∈ Reg ∪ {K} and β ∈ H. If α ≤ β < µ and
B∈Σ1(µ), then

H
α

ρ Γ,B =⇒ H
α

ρ Γ,B(β,µ) .

Proof by induction on α. Since α < µ, B cannot be the principal formula of an inference
(Refµ) or (Ref ξ

µ).
If B is not the principal formula of the last inference, the assertion follows by using

the inductive assumption on its premisses and reapplying the same inference. Let B be
the principal formula of the last inference, which then must be (∃). B has the form
(∃x∈Lµ)F (x) with ∆0(µ)–formula F (L0). Also,

H
α0

ρ Γ,B, ∫
◦
∈Lµ ∧ F(∫ )

for some α0 < α and s∈Term(µ) with |s |< α. By the induction hypothesis,

H
α0

ρ Γ,B(β,µ), ∫
◦
∈Lµ ∧ F(∫ ) .

Since |s |< β, µ, we have s
◦
∈Lβ ≡ s

◦
∈Lµ. Thus, applying (∃), the assertion follows. ⊓⊔

8 Embeddings

The first part of this Section deals with an embedding of KP + Π3–Ref into RS(K).
Regarding proofs, we will be drawing on Buchholz [1993] when the proof is literally the
same.

Furthermore, we shall show, by virtue of reflection for Π2(π)–formulae, that reflection
provably propagates to Σ3(π)–formulae. This is not very surprising, however, we will
also need to control the quantitative repercussions which Σ3(π)–reflection causes on the
ordinal bounds of a given derivation. All these results will be needed in Section 10.

Definition 8.1 For Γ = {A1, . . . , An} let

no(Γ) := ωrk(A1)# · · ·#ωrk(An).

We define

 Γ :⇐⇒ for all operators H, H[Γ]

no(Γ)

0
Γ

and


ξ
ρ Γ :⇐⇒ for all operators H, H[Γ]

no(Γ)#ξ

ρ Γ .

Lemma 8.2 Let s ⊆ t stand for the formula (∀x∈s)(x∈t).
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(i) 
 A,¬A.

(ii) 
 s /∈s.

(iii) 
 s ⊆ s.

(iv) 
 s
◦

/∈t, s
◦
∈t for s∈Term(| t |).

(v) 
 s 6= t, t = s.

Proof. Buchholz [1993], Lemma 2.4, Lemma 2.5. ⊓⊔

Lemma 8.3


 [s1 6= t1], . . . , [sn 6= tn],¬A(s1, . . . , sn), A(t1, . . . , tn).

Proof. Buchholz [1993], Lemma 2.7. ⊓⊔

Corollary 8.4 (Equality and Extensionality)


 s1 6= t1, . . . , sn 6= tn,¬A(s1, . . . , sn), A(t1, . . . , tn).

Proof. Buchholz [1993], Theorem 2.9. ⊓⊔

Lemma 8.5 (Foundation)


 (∀x∈Lα)[(∀y∈x)F (y) → F (x)] −→ (∀x∈Lα)F (x).

Proof. Fix an operator H. Let A ≡ (∀x∈Lα)[(∀y∈x)F (y) → F (x)]. First, we show, by
induction on |s |, that if s∈Term(α), then

(+) H[A, ∫ ]
ωrk(A)#ω|s|+1

0
¬A,F(∫ ) .

So assume that

H[A,⊔]
ωrk(A)#ω|t|+1

0
¬A,F(⊔)

for all t∈Term(|s |). Using (∨), this yields

H[A, ∫ ,⊔]
ωrk(A)#ω|t|+1+1

0
¬A,⊔

◦
∈∫ → F(⊔)

for all t∈Term(|s |), and hence

(1) H[A, ∫ ]
ωrk(A)#ω|s|+2

0
¬A, (∀§∈∫ )F(∫ )
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via (∀). Set η := ωrk(A)#ω|s| + 2. By Lemma 8.2(i), H[A, ∫ ]
η

0
¬F(∫ ),F(∫ ) ; therefore,

using (1) and (∧),

H[A, ∫ ]
η+1

0
¬A, (∀†∈∫ )F(†) ∧ ¬F(∫ ),F(∫ ) .

From the latter we obtain

H[A, ∫ ]
η+2

0
¬A, ∫

◦
∈Lα ∧ [(∀†∈∫ )F(†) ∧ ¬F(∫ )],F(∫ ) ,

and hence H[A, ∫ ]
η+3

0
¬A, (∃§

◦
∈Lα)[(∀†∈§)F(†) ∧ ¬F(§)],F(∫ ) via (∃). This shows (+).

Finally, (+) enables us to deduce H[A, ∫ ]
ωrk(A)#ω|s|+1+1

0
¬A, ∫

◦
∈Lα → F(∫ ) from which

the assertion follows by applying (∀) and (∨). ⊓⊔

Lemma 8.6 (Infinity Axiom) If λ be a limit ordinal > ω, then


 (Infinity Axiom)Lλ ,

i.e.,

 (∃x∈Lλ)[z 6= ∅ ∧ (∀y∈x)(∃z∈x)(y∈z)].

Proof. Buchholz [1993], Theorem 2.9. ⊓⊔

Lemma 8.7 (∆0–Separation) Let A[a, b1, . . . , bn] be a ∆0–formula of LAd. If λ ∈ Lim
and s, t1, . . . , tn∈Term(λ), then


 (∃y∈Lλ)[(∀x∈y)(x∈s ∧ A[s, t1, . . . , tn]) ∧ (∀x∈s)(A[x, t1, . . . , tn] → x∈y)].

More concisely, we can express this by “ 
 (∆0–separation)Lλ ”.

Proof. Buchholz [1993], Theorem 2.9. ⊓⊔

Lemma 8.8 (Pair and Union) Assume λ∈Lim and s, t∈Term(λ).

(i) 
 (∃z∈Lλ)(s∈z ∧ t∈z).

(ii) 
 (∃z∈Lλ)(∀y∈s)(∀x∈y)(x∈z).

Proof. Buchholz [1993], Theorem 2.9. ⊓⊔

Definition 8.9 The sequent calculus GML (“GML” stands for “Grundmengenlehre”) is
defined as follows. The language of GML is LAd. With the exception of ∆0–collection,
GML has the same axiom schemes as KP . (However, it is understood that the axiom
schemes are defined with regard to LAd. To be precise, GML comprises the axiom scheme
of ∆0(LAd)–separation, whereas ∆0(LAd)–collection is not an axiom scheme of GML.)
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Lemma 8.10 Assume ρ = ωρ ≤ K. Let Γ[~a ] = {A1[~a ], . . . , Ak[~a ]} be a set of LAd–
formulae, where ~a = a1, . . . , an. If GML ⊢ Γ[~a ], then there exists m < ω such that, for
all ~s = s1, . . . , sn∈Term(ρ),

H[Γ[~∫ ]Lρ , ρ]
ρ·ωm

ρ+m
Γ[~∫ ]Lρ .

Here Γ[~s ]Lρ stands for {A1[~s ]Lρ , . . . , Ak[~s ]Lρ}.

Proof by induction on GLM derivations. As to the axioms of GLM , the claim follows
easily from previous results of this Section. The inferences of GLM are dealt with in the
same manner as in Buchholz [1993], Theorem 3.12. ⊓⊔

Theorem 8.11 Let Γ[~a ] = {A1[~a ], . . . , Ak[~a ]} be a set of L–formulae with ~a = a1, . . . , an.
When KP + Π3–Ref ⊢ Γ[~a ], then there exists m < ω such that, for all ~s = s1, . . . , sn ∈
Term,

H[Γ[~∫ ]LK ,K]
K·ωm

K+m
Γ[~∫ ]LK .

Proof. Compared to Lemma 8.10, there is only one new inference, namely (Π3 − Ref).
But (Π3 − Ref) is taken care of by (RefK). ⊓⊔

Convention: We shall also write ∃xζ and ∀xζ instead of (∃x ∈ Lζ) and (∀x ∈ Lζ),
respectively.

Lemma 8.12 Assume ξ∈C(m(π), π) ∩ m(π), ξ∈H, and F (L0, L0, L0) ∈ ∆0(π). If

H
α

ρ Γ, ∃⊓π∀§π∃†πF(⊓, §, †)

then
H

π1+α

ρ Γ, ∃‡π[A⌈ξ(‡) ∧ (∃⊓∈‡)(∀§∈‡)(∃†∈‡)F(⊓, §, †)] .

Note that π1+α = (ωπ)1+α = ωπ·(1+α).

Proof. We proceed by induction on α. Put C ≡ ∃uπ∀xπ∃yπF (u, x, y). If C is not the
principal formula of the last inference, then use the induction hypothesis on the premisses
and subsequently apply the same inference.

Assume that C is the principal formula. Then the last inference must be (∃), and we
have

H
α0

ρ Γ, C, ∀§π∃†πF(∫ , §, †)

for some α0 < α and s∈Term(π). Inductively we get

H
π1+α0

ρ Γ, ∃‡π[A⌈ξ(‡) ∧ (∃⊓∈‡)(∀§∈‡)(∃†∈‡)F(⊓, §, †)], ∀§π∃†πF(∫ , §, †) .

Note that π1+α0 + 1, π < π1+α. So, using (Ref ξ
π), we obtain

H
π1+α

ρ Γ, ∃‡π[A⌈ξ(‡) ∧ (∃⊓∈‡)(∀§∈‡)(∃†∈‡)F(⊓, §, †)] .

⊓⊔
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Lemma 8.13 Let ξ∈C(m(π), π)∩m(π) and ξ > 0. Assume that A1, . . . , Ak are subfor-
mulae of Σ3(π)–formelae, ξ∈H, π + ω ≤ ρ, and π < α = ωα. Then,

H
α

ρ Γ,A∞ ∧ . . . ∧ A‖ =⇒ H
α+2

ρ Γ, ∃‡π[A⌈ξ(‡) ∧ A(‡,π)
∞ ∧ . . . ∧A(‡,π)

\ ] .

Proof. Ai has the form Bi[~s ]Lπ with Bi[~a ] being a LAd–formula. Putting B[~a ] ≡ B1[~a ]∧
. . . ∧ Bn[~a ], we have A1 ∧ . . . ∧ An ≡ B[~s ]Lπ . By going to prenex normal form, coding
adjacent quantifiers of the same sort into one quantifier, and, if necessary, inserting dummy
quantifiers, we can transform B[~a ] into a Σ3–formula, say C[~a ]. The equivalence of C[~a ]
and B[~a ] is provable in GLM11 since coding tuples of sets just requires Pairing and
Extensionality. Therefore, the equivalence of C[~a ] and B[~a ] still holds when we relativize
all the quantifiers to a nonempty transitive set which is a model of Pairing; and this can
be proved in GLM . So, letting Pairing := ∀x∀y∃u(u = {x, y}), we get

GML ⊢ ¬B[~a ], C[~a ] (1)

and

GML ⊢ ¬[Tran(b) ∧ b 6= ∅ ∧ (Pairing)b],¬C[~a ]b, B[~a ]b. (2)

From (1), using Lemma 8.10, we obtain

H
π·ωm

π+m
¬B[~∫ ]Lπ , C[~∫ ]Lπ (3)

for some 0 < m < ω. Employing Lemma 8.12, (3) yields

H
ππ·ωm

π+m
¬B[~∫ ]Lπ , ∃‡π[A⌈ξ(‡) ∧ C[~∫ ]‡] . (4)

Using (Cut) on (4) and H
α

ρ Γ,B[~∫ ]Lπ , and noting that π + ω ≤ ρ, one obtains

H
α+1

ρ Γ, ∃‡π[A⌈ξ(‡) ∧ C[~∫ ]‡] . (5)

According to Lemma 8.10, (2) implies

H[ρ]
π

π ¬[T ∇⊣\(Lρ) ∧ Lρ 6= ∅ ∧ (P⊣〉∇〉\})Lρ ],¬C[~∫ ]Lρ ,B[~∫ ]Lρ (6)

for all ρ∈M ξ ∩ π since ωρ = ρ due to ξ > 0. But, by Lemma 8.10, we also have, for all
ρ∈M ξ ∩ π,

H[ρ]
π

π T ∇⊣\(Lρ) ∧ Lρ 6= ∅ ∧ (P⊣〉∇)Lρ ,

whence (6) implies

H[ρ]
π+1

π ¬C[~∫ ]Lρ ,B[~∫ ]Lρ (7)

11This is the only reason why we introduced GML.
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for all ρ∈M ξ ∩ π. From (7) one deduces

H[ρ]
π+2

π ¬C[~∫ ]Lρ ,A⌈ξ(Lρ) ∧ B[~∫ ]Lρ ,

whence

H[ρ]
π+3

π ¬C[~∫ ]Lρ , ∃‡π(A⌈ξ(‡) ∧ B[~∫ ]‡) (8)

for all ρ∈M ξ ∩ π. Since, by Corollary 8.4,

H[ρ,⊔]
π

0
Lρ 6= ⊔,¬C[~∫ ]⊔, C[~∫ ]Lρ ,

(Cut) yields

H[ρ,⊔]
π+4

π Lρ 6= ⊔,¬C[~∫ ]⊔, ∃‡π(A⌈ξ(‡) ∧ B[~∫ ]‡)

for all ρ∈M ξ ∩ π und t∈Term(π). Whence, via (¬Adξ),

H[⊔]
π+5

π ¬A⌈ξ(⊔),¬C[~∫ ]⊔, ∃‡π(A⌈ξ(‡) ∧ B[~∫ ]‡)

for all t∈Term(π). Therefore, employing (∨) und (∀),

H[ρ]
π+8

π ∀‡π[¬A⌈ξ(‡) ∨ ¬C[~∫ ]‡], ∃‡π(A⌈ξ(‡) ∧ B[~∫ ]‡) . (9)

Finally, by linking (5) and (9) via (Cut),

H
α+2

ρ Γ, ∃‡π(A⌈ξ(‡) ∧ B[~∫ ]‡) .

⊓⊔

9 The Operators Hγ

In order to be able to remove critical cuts, i.e. cuts which were introduced by (RefK) or
(Ref ξ

π) inferences, we have to forgo arbitrary operators. We shall need operators H such
that an H–controlled derivation that satisfies certain extra conditions can be “collapsed”
into a derivation with much smaller ordinal labels.

Definition 9.1 The operator Hδ is defined by

Hδ(X) =
⋂

{C(α, β) : X ⊆ C(α, β) ∧ δ < α}

Lemma 9.2 (i) Hδ is an operator.

(ii) δ < δ′ =⇒ Hδ(X ) ⊆ Hδ′(X ).
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(iii) Hδ is closed under ϕ and (σ 7→ Ωσ)σ<K.

(iv) ξ, π, α∈Hδ(X ) ∧ ξ ≤ α ≤ δ =⇒ Ψξ
π(α)∈Hδ(X ).

(v) β ≤ δ ∧ β∈Hδ(X ) =⇒ Ξ(β)∈Hδ(X ).

(vi) Ωσ ≤ η ≤ Ωσ+1 < K ∧ η∈Hδ(X ) =⇒ σ, Ωσ, Ωσ+∞∈Hδ(X ).

Proof. (i) follows from Lemma 4.18. (ii) holds by Lemma 4.11(i). (iii) follows from closure
of any C(α, β) under these functions.

(iv): From ξ, π, α ∈ Hδ(X ), X ⊆ C(α′, β) and ξ ≤ α ≤ δ < α′, it follows Ψξ
π(α) ∈

C(α′, β); thus Ψξ
π(α)∈Hδ(X ).

The proof of (v) is similar to (iv).
(vi): Suppose X ⊆ C(α, β) with δ < α. Then we have to show σ∈C(α, β). Note that

η∈C(α, β). By induction on n, one verifies

(∗) Ωσ ≤ η ≤ Ωσ+1 ∧ η∈Cn(α, β) =⇒ σ∈C(α, β),

yielding σ ∈ C(α, β). If η = Ωσ, then σ ∈ C(α, β) by 4.18(iii). Otherwise, there is
only one case when (∗) is not immediate by the induction hypothesis , namely when
η = Ψξ

π(γ)∈Cn(α, β)\Cn−1(α, β) with ξ, π, γ∈Cn−1(α, β). According to 4.19,(ii),(iii), we
then must have ξ = 0 and π = Ωσ+1; consequently, by Lemma 4.18, σ∈C(α, β). ⊓⊔

Roughly speaking, the process of collapsing a proof tree, which we will be using in the
next Section, involves pruning, grafting, and relabelling the tree with smaller ordinals.
The relabelling will be done by applying a variant of Ξ or variants of the functions Ψξ

π

to the ordinal labels of the original tree. We are compelled to pass to variants of these
functions because Ξ or Ψξ

π may not preserve the order of the ordinals of the given tree,
and further Ψξ

π(α) < π may fail to be the case for some ordinal α of the tree. But that
the relabelling be done in an order preserving way, is necessary if this procedure is meant
to transform proof trees into proof trees.

To handle the aforementioned difficulties, we will be needing several technical results,
the meaning of which will emerge only gradually in the proofs of Theorem 10.1 and
Theorem 10.3. I have preferred to ban these “side calculations” from the proofs of the
main theorems since the danger is to be feared that they may obscure the central ideas
underlying the cut elimination and collapsing procedure.

Definition 9.3 (i) NF (α, β) means that αn ≥ β1 if α = ωα1 + · · · + ωαn and β =
ωβ1 + · · ·+ ωβm are the respective Cantor normal forms.

(ii) B(X; γ) : ⇐⇒ γ∈Hγ [X] ∧ k(X) ⊆ C(γ + 1, Ξ(γ + 1)).

Lemma 9.4 Assume B(X; γ), π∈M α̂, α∈Hγ [X], and NF (γ, ωK·α), where α̂ := γ+ωK·α.
For arbitrary α0, let α̂0 := γ + ωK·α′.
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(i) Hγ[X](∅) ∩ K ⊆ Ξ(γ + ∞).

(ii) Ξ(α̂ + π)∈Hα̂+π[X, π].

(iii) α0∈Hγ [X] ∧ α0 < α =⇒ Ξ(α̂0 + π) < Ξ(α̂ + π).

(iv) Suppose t ∈ Term, | t |≤ αt < α, and αt ∈ Hγ [X, t]. If γt := γ + ωK·α⊔+|⊔| and
βt := γt + ωK·α⊔, then

B(X ∪ {t}; γt) and βt∈Hγ⊔ [X, t].

If in addition t∈Term(π), then also

Ξ(βt + π) < Ξ(α̂ + π) and π∈Mβt .

Proof. (i) follows from k(X) ⊆ C(γ + 1, Ξ(γ + 1)) in view of the definition of Hγ [X].
(ii): Since γ, α, π∈Hα̂+π[X, π], (ii) follows from 9.2(v).
(iii): α̂ + π ∈ C(α̂ + π, Ξ(α̂ + π)) and NF (γ, ωK·α) imply γ ∈C(α̂ + π, Ξ(α̂ + π)) by

4.18. Therefore,

α0∈Hγ [X] ⊆ C(γ + 1, Ξ(γ + 1)) ⊆ C(α̂ + π, Ξ(α̂ + π)).

Thence, α̂0 + π∈C(α̂ + π, Ξ(α̂ + π)) ∩ α̂ + π; thus Ξ(α̂0 + π) < Ξ(α̂ + π).
(iv): γ∈Hγ [X] ensures γt, βt∈Hγ⊔ [X; t]. NF (γ, ωK·α) and αt < α yield NF (γ, ωK·α⊔+|⊔|).

Hence, from γt ∈ C(γt, Ξ(γt)), we can deduce γ, | t |∈ C(γt, Ξ(γt)) and therefore, C(γ +
1, Ξ(γ + 1)) ⊆ C(γt, Ξ(γt)). This shows B(X ∪ {t}; γt).

Now suppose t ∈ Term(π). From NF (γ, ωK·α) it follows γ ∈ C(α̂, Ξ(α̂)) and hence
k(X ∪ {t}) ⊆ C(α̂, π) as Ξ(α̂) ≤ π holds because of π ∈M α̂. Whence, βt ∈C(α̂, π) ∩ α̂.
This implies

βt + π∈C(α̂ + π, Ξ(α̂ + π)) ∩ α̂ + π;

thus
Ξ(βt + π) < Ξ(α̂ + π).

Finally, from βt∈C(α̂, π) ∩ α̂ and π∈M α̂ we obtain, by 4.11(vi), π∈Mβt . ⊓⊔

Definition 9.5 (i) Card := {K} ∪ {Ωσ : ′ < σ < K}.

(ii) For µ∈Card, put

µ =

{

µ + 1 if µ∈Reg ∪ {K}
µ otherwise.

(iii) Let A(X; γ, π, ξ, µ) stand for

B(X; γ) ∧ γ, π, ξ, µ∈Hγ[X] ∧ ξ∈C(m(π), π) ∩ m(π)

∧ k(X) ⊆ C(γ + 1, Ψ0

π(γ + 1)) ∧ π ∈
⋂

{C(δ, Ψ0

τ (δ)) : δ > γ; τ > π}

∧ ξ ≤ γ ∧ µ∈Card ∧ π ≤ µ.

33



Lemma 9.6 Assume A(X; γ, π, ξ, µ), NF (γ, ωµ·α), and α ∈Hγ[X]. For arbitrary β, let

β̂ := γ + ωµ·β. Then the following properties hold.

(i) Ψξ
π(α̂)∈Hα̂[X] ∧ Ψξ

π(α̂)∈Mξ ∩ π.

(ii) Hγ[X](∅) ⊆ C(γ + 1, Ψ0

π(γ + 1)).

(iii) α0∈Hγ [X] ∧ α0 < α =⇒ Ψξ
π(α̂0) < Ψξ

π(α̂).

(iv) Suppose σ ∈ Hγ [X], σ ≤ γ, σ ∈ C(m(π), π) ∩ m(π) and t ∈ Term(π). If γt =
γ + ωµ·α+|t|, then

A(X ∪ {t}; γt, π, σ, µ).

(v) If α0 < α, α0, τ ∈Hγ [X] and π ≤ τ ≤ µ, then

A(X; γ, τ, 0, µ) ∧ A(X; α̂0, τ, 0, µ).

Proof. (i): α̂∈Hα̂[X] is obvious. Therefore, Ψξ
π(α̂)∈Hα̂[X] by 9.2(iv). Since Hγ[X](∅) ⊆

C(γ + 1, Ψ0

π(γ + 1)) ⊆ C(α̂, π), we get ξ, π, α̂∈C(α̂, π). Since also ξ∈C(m(π), π) ∩m(π),
we obtain Ψξ

π(α̂)∈M ξ ∩ π using 4.16.
(ii): Immediate as k(X) ⊆ C(γ + 1, Ψ0

π(γ + 1)).
(iii): Since α̂, π ∈ C(α̂, Ψξ

π(α̂)) by (i), and NF (γ, ωµ·α) involves γ ∈ C(α̂, Ψξ
π(α̂)), it

follows Ψ0
π(γ + 1)∈C(α̂, Ψξ

π(α̂)). From (ii) we get Ψ0
π(γ + 1) < π. Therefore, Ψ0

π(γ + 1) <
Ψξ

π(α̂). In view of (ii), this yields Hγ [X](∅) ⊆ C(α̂, Ψξ
π(α̂)) and hence α̂0 ∈C(α̂, Ψξ

π(α̂)).
Ψξ

π(α̂0) < π follows by replacing α with α0 in the proof of (i). Consequently, in view of
the above, Ψξ

π(α̂0) < Ψξ
π(α̂).

(iv): α, µ, γ∈Hγ[X] guarantees µ, γ, | t |, αt∈Hγ⊔ [X, t]. Therefore,

γt∈Hγ⊔ [X, t].

We claim that
(∗) k(X ∪ {t}) ⊆ C(γt + 1, Ψ0

π(γt + 1))

By (ii), α, γ ∈ C(γt + 1, π) and hence γt ∈ C(γt + 1, π), which implies γt ∈ C(γt +
1, Ψ0

π(γt + 1)). As NF (γ, ωµ·α), this shows γ ∈C(γt + 1, Ψ0
π(γt + 1)), yielding (note that

π ∈C(γ + 1, π) by (ii)) Ψ0
π(γ + 1) < Ψ0

π(γt + 1). So we obtain k(X) ⊆ C(γt, Ψ
0

π(γt + 1))
and hence (∗).

Finally, from (∗) and Hγ[X] ⊆ Hγ⊔ [X, t] and γt∈Hγ⊔ [X, t], we get A(X∪{t}; γt, π, σ, µ).
(v): As τ ∈Hγ[X], we get τ ∈C(γ + 1, π) due to (ii). If now κ > τ and δ > γ, then

π∈C(δ, Ψ0
κ(δ)); whence τ ∈C(δ, Ψ0

κ(δ)). A(X; γ, τ, 0, µ) is now immediate.
To see A(X; α̂0, τ, 0, µ), it suffices to verify C(γ+1, Ψ0

π(γ + 1)) ⊆ C(α̂0+1, Ψ0
τ(α̂0 + 1)).

This is trivial if τ > π. In case τ = π, we get γ∈C(α̂0 + 1, Ψ0
π(α̂0 + 1)) from NF (γ, ωµ·α)

and α̂0∈C(α̂0 +1, Ψ0
π(α̂0 + 1)). Thus Ψ0

π(γ + 1)∈C(α̂0 +1, Ψ0
π(α̂0 + 1)). As Ψ0

π(γ + 1) <
π, the latter yields the claim. ⊓⊔

34



10 Impredicative cut elimination and collapsing

In general, the usual cut elimination procedure does not apply when the cut formula has
been introduced by a reflection inference. This is, for instance, the case when

H
α

K+∞
Γ

results from
H

ξ0

K
Γ,A

H
ξ

K
Γ, ∃‡K[T ∇⊣\(‡) ∧ ‡ 6= ∅ ∧ A‡]

(RefK)

and
· · ·H[∫ ]

ξs

K
Γ,¬[T ∇⊣\(∫ ) ∧ ∫ 6= ∅ ∧ A∫ ] · · · (∫ ∈T ⌉∇m)

H
ξ

K
Γ, ∀‡K¬[T ∇⊣\(‡) ∧ ‡ 6= ∅ ∧ A‡]

(∀)

using (Cut), where A is a Π3(K)–formula. In this situation, the usual procedure of
replacing an instance of (Cut) with cuts of lesser rank does not work. In order to overcome
this problem, the proof tree has to undergo more radical transformations.

Theorem 10.1 Suppose B(X; γ) and NF (γ,Kα). Let Γ be a set of RS(K)–formulae each
of which is a subformula of a Π3(K)–formula or Π2(K)–formula. Furthermore, suppose
Hγ [X]

α

K+∞
Γ . Then, for all π∈M α̂,

Hα̂+π[X, π]
Ξ(α̂+π)

Ξ(α̂+π)
Γ(π,K) ,

where α̂ = γ + Kα = γ + ωK·α. 12

Proof by induction on α.

Case 1: The last inference is (∀) with principal formula ∀xKF (x) ∈ Γ. Then, for all
t∈Term, there exists αt satisfying | t |≤ αt < α and

Hγ [X, t]
αt

K+∞
Γ, F (t) . (10)

Define γt := γ + ωK·α⊔+|⊔| and βt := γt + Kα⊔ = γ⊔ + ωK·α⊔ . Then NF (γt,Kα⊔). Also
B(X ∪ {t}, γt) by 9.4(iv). Therefore, using the induction hypothesis on (10),

Hβt+π[X, t, π]
Ξ(βt+π)

Ξ(βt+π)
Γ(π,K), F (t)(π,K) (11)

12An appropiate name for this collapsing technique would be stationary collapsing since in order for
this procedure to work, a single derivation has to be collapsed into a “stationary” family of derivations.
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holds for all t∈Term and π ∈ Mβt . If π ∈ M α̂ and t∈Term(π), then, by Lemma 9.4(iv),
π ∈ Mβt and Ξ(βt + π) < Ξ(α̂ + π). Therefore, from (11), we can conclude

Hα̂+π[X, π]
Ξ(α̂+π)

Ξ(α̂+π)
Γ(π,K), ∀xπF (x)(π,K)

by means of (∀). Since Γ(π,K), ∀xπF (x)(π,K) = Γ(π,K), this provides the desired result.

Case 2: The last inference is (
∧

) but does not fall under the previous Case. This implies
that the principal formula has a rank < K or is of the form A0 ∧ A1. The assertion then
follows by simplifying the considerations of the previous Case.

Case 3: The last inference is (
∨

) with principal formula C ∼=
∨

(Cι)ι∈J ∈ Γ. Thus
Hγ [X]

α0

K+∞
Γ, Cι0 for some ι0 ∈ J ↾ α satisfying | ι0 |< α and k(ι0) ⊂ Hγ [X]. Hence, by

the induction hypothesis , for all π ∈ M α̂0 ,

Hα̂0+π[X, π]
Ξ(α̂0+π)

Ξ(α̂0+π)
Γ(π,K), C

(π,K)
ι0 .

The conditions on ι0 ensure that | ι0 |< Ξ(α̂+π). As M α̂ ⊆ M α̂0 is guaranteed by 4.11(vi),
and Ξ(α̂0 + π) < Ξ(α̂ + π) holds by 9.4(iii), applying (

∨

) yields

Hα̂+π[X, π]
Ξ(α̂+π)

Ξ(α̂+π)
Γ(π,K), C(π,K) (= Γ(π,K))

for π ∈ M α̂.

Case 4: The last inference is (Cut). Then

Hγ[X]
α0

K+∞
Γ, A

and
Hγ [X]

α0

K+∞
Γ,¬A

for some α0 < α and RS(K)–formlae A,¬A with rk(A) ≤ K. Since then A as well as
¬A are subformulae of Π3(K) ∪ Π∈(K) formulae, we can apply the induction hypothesis
to both derivations. Whence, for all π ∈ M α̂0 ,

Hα̂0+π[X, π]
Ξ(α̂0+π)

Ξ(α̂0+π)
Γ(π,K), A(π,K)

and
Hα̂0+π[X, π]

Ξ(α̂0+π)

Ξ(α̂0+π)
Γ(π,K),¬A(π,K) .

We also have M α̂ ⊆ M α̂0 and

rk(A(π,K)), Ξ(α̂0 + π) < Ξ(α̂ + π).

So the desired derivation is obtained by (Cut).
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Case 5: The last inference is (RefK). Then

Hγ [X]
α0

K+∞
Γ, ∀xK∃yK∀zKF (x, y, z)

for some α0 < α and a formula C∈Γ of the form

C ≡ ∃uK[Tran(u) ∧ u 6= ∅ ∧ (∀x∈u)(∃y∈u)(∀z∈u)F (x, y, z)].

Set B ≡ ∀xK∃yK∀zKF (x, y, z). From the induction hypothesis we then obtain, for all
τ ∈ M α̂0 ,

Hα̂0+τ [X, τ ]
Ξ(α̂0+τ)

Ξ(α̂0+τ)
Γ(τ,K), B(τ,K) . (12)

In the sequel, fix π ∈ M α̂. If τ ∈ M α̂0 , then


 Tran(Lτ ) ∧ Lτ 6= ∅;

therefore, using (12),

Hα̂+π[X, π, τ ]
Ξ(α̂0+τ)+ω

Ξ(α̂0+τ)

∨

Γ(τ,K), ∃uπ[Tran(u) ∧ u 6= ∅ ∧ B(u,K)] (13)

for all τ ∈ M α̂0 ∩ π.
Now let s∈Term(π). In view of Corollary 8.4, we get


 Lτ 6= s,
∧

¬Γ(τ,K),
∨

Γ(s,K).

Using (13) and (Cut),

Hα̂+π[X, π, s, τ ]
Ξ(α̂0+|s|)+ω+1

Ξ(α̂0+|s|)
Lτ 6= s,

∨

Γ(s,K), C(π,K) (14)

holds for all τ ∈ M α̂0 satisfying τ ≤|s |. Thence, applying (¬Adα̂0), we get

Hα̂+π[X, π, s]
Ξ(α̂0+|s|)+ω+2

Ξ(α̂0+π)
¬Adα̂0(s),

∨

Γ(s,K), C(π,K) (15)

for s∈Term(π). Putting to use (∨) and subsequently (∀), we arrive at

Hα̂+π[X, π]
Ξ(α̂0+π)

Ξ(α̂0+π)
∀vπ[Adα̂0(v) →

∨

Γ(v,K)], C(π,K) . (16)

Furthermore,


 Γ(π,K),
∧

¬Γ(π,K)
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by 8.2(i).
∧

¬Γ(π,K) is a conjunction of subformulae of Σ3(π)–formulae. As a consequence,
we can apply 8.13, yielding13

Hα̂+π[X, π]
Ξ(α̂0+π)

Ξ(α̂0+π)
Γ(π,K), ∃vπ[Adα̂0(v) ∧

∧

¬Γ(v,K)] . (17)

Since Ξ(α̂0 + π) < Ξ(α̂ + π), (Cut) can be applied on (16) and (17). Hence,

Hα̂+π[X, π]
Ξ(α̂+π)

Ξ(α̂+π)
Γ(π,K), C(π,K) (= Γ(π,K)). (18)

Case 6: The last inference is (Refσ
τ ). Thus

Hγ [X]
α0

K+∞
Γ, A(s) ,

where α0 + 1, τ < α, A(s) ∈ Π2(τ), σ ∈ Hγ , ∃zτ [Adσ(z) ∧ (∃u ∈ z)A(u)(z,τ)] ∈ Γ, and
σ∈C(m(τ), τ) ∩ m(τ).

Here the induction hypothesis provides us with

Hα̂0+π[X, π]
Ξ(α̂0+π)

Ξ(α̂0+π)
Γ(π,K), A(s)

for all π ∈ M α̂ ⊆ M α̂0 . Since also Ξ(α̂0 + π) + τ < Ξ(α̂ + π), because of τ < Ξ(γ) <
Ξ(α̂0 + π), applying (Refσ

τ ) gives the assertion. ⊓⊔

Corollary 10.2 The passage from Hγ [X]
α

K+∞
Γ to Hα̂+π[X, π]

Ξ(α̂+π)

Ξ(α̂+π)
Γ(π,K) (for π ∈

M α̂) only introduces inferences (Refσ
κ ) such that σ < α̂.

Proof. New instances of (Refσ
κ ) were only introduced when we removed an instance of

(RefK) and those satisfied σ < α̂. ⊓⊔

Theorem 10.3 Suppose A(X; γ, π, ξ, µ), NF (γ, ωµ·α), and Γ ⊂ Σ1(π) ∪ ∆o(π). Further-
more, assume that

Hγ [X]
α

µ
Γ

and that all the inferences of the form (Refσ
τ ) that appear in this derivation satisfy σ ≤ γ.

Then, for α̂ = γ + ωµ·α,

Hα̂[X]
Ψξ

π(α̂)

Ψξ
π(α̂)

Γ .

13This is exactly the place, where the removal of an instance of (RefK) forces us to introduce an
instance of (Adα̂0).
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Proof. We proceed by main induction on µ and subsidiary induction on α.

Case 1: The last inference is (Refσ
π ). Then

Hγ[X]
α0

µ
Γ, A(s) ,

where α0 + 1, π < α, A(s) ≡ ∀xπ∃yπG(x, y, s) ∈ Π2(π), σ, s ∈ Hγ, σ ≤ γ, and
∃zπ[Adσ(z) ∧ (∃u∈z)A(u)(z,π)] ∈ Γ, and σ∈C(m(π), π) ∩ m(π). Applying Inversion, i.e.
7.1, we have, for all t∈Term(π),

Hγ [X, t]
α0

µ
Γ, ∃yπG(t, y, s) (19)

For t∈Term(π) and γt := γ + ωµ·α0+|t|, by 9.6(iv), it holds A(X∪ {t}; γt, π, σ, µ) and also
γt∈Hγ⊔ [X, t]. Therefore we can apply the subsidiary induction hypothesis to (19), so that
with γ′

t := γt + ωµ·α0 , for all t∈Term(π),

Hγ′
t
[X, t]

Ψσ
π(γt+ωµ·α0 )

Ψσ
π(γt+ωµ·α0 )

Γ, ∃yπG(t, y, s) (20)

Set δt := Ψσ
π(γt + ωµ·α0), γ∗ := γ + ωµ·α0+π and let η := Ψσ

π(γ + ωµ·α0+π). With the aid of
the Bounding Lemma, 7.6, we then obtain from (20),

Hγ∗ [X, t]
δt

δt
Γ, ∃yηG(t, y, s) (21)

for t∈ Term(π) satisfying δt ≤ η. Due to A(X; γ, π, σ, µ) and NF (γ, ωµ·α0+π), it follows
σ, π, γ + ωµ·α0+π ∈ C(γ + ωµ·α0+π, π). Also σ∈C(m(π), π)∩m(π). Thus Mσ is stationary
in π. From this we gather that η = Ψσ

π(γ + ωµ·α0+π) ∈ Mσ ∩ π. Whence,


 Adσ(Lη). (22)

Furthermore, one computes that if t∈Term(η), then δt < η. Therefore

Hα̂[X]
η

η Γ, ∀xη∃yηG(x, y, s) (23)

follows from (21). (23) in conjunction with |s |< Ψ0
π(γ) < η yields

Hα̂[X]
η+1

η Γ, s
◦
∈Lη ∧ ∀xη∃yηG(x, y, s) . (24)

Since η < π,

Hα̂[X]
ωη+ω

η Γ, ∃zπ[Adσ(z) ∧ (∃u∈z)A(u)(z,π)] (= Γ) (25)

by (24) and (22). Finally, it remains to verify η < Ψξ
π(α̂). We have γ+ωµ·α0+π < γ+ωµ·α =

α̂ as α0 + 1, π < α and π ≤ µ. From NF (γ, ωµ·α) it follows γ, µ, π, σ ∈ C(α̂, Ψξ
π(α̂)); so

γ + ωµ·α0+π ∈ C(α̂, Ψξ
π(α̂)) ∩ α̂, hence η < Ψξ

π(α̂). Therefore,

Hα̂[X]
Ψξ

π(α̂)

Ψξ
π(α̂)

Γ
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by (25).

Case 2: The last inference is (Refσ
κ ) for some κ < π. Then

Hγ[X]
α0

µ
Γ, A(s) ,

where α0 + 1, κ < α, A(s) ≡ ∀xκ∃yκG(x, y, s) ∈ Π2(κ), σ ∈ Hγ , ∃zκ[Adσ(z) ∧ (∃u ∈
z)A(u)(z,κ)] ∈ Γ, and σ ∈C(m(κ), κ) ∩ m(κ). Therefore A(s) ∈∆0(π) and unlike in the
previous Case we can apply the subsidiary induction hypothesis directly, yielding

Hα̂0 [X]
Ψξ

π(α̂0)

Ψξ
π(α̂0)

Γ, A(s) .

Due to Ψξ
π(α̂0) + κ < Ψξ

π(α̂), the same inference (Refσ
κ ) leads to

Hα̂[X]
Ψξ

π(α̂)

Ψξ
π(α̂)

Γ .

Case 3: The last inference is (
∨

) with principal formula C ∼=
∨

(Cι)ι∈J ∈ Γ. Then

Hγ [X]
α0

µ
Γ, Cι0

for some α0 < α and ι0∈J ↾ α. By subsidiary induction hypothesis , we obtain

Hα̂0 [X]
Ψξ

π(α̂0)

Ψξ
π(α̂0)

Γ, Cι0 ,

whence,

Hα̂[X]
Ψξ

π(α̂)

Ψξ
π(α̂)

Γ, C (= Γ)

via (
∨

).

Case 4: The last inference is (
∧

) with principal formula C ∼=
∧

(Cι)ι∈J ∈ Γ. This means

Hγ[X, ι]
αι

µ
Γ, Cι

and | ι |≤ αι < α for ι ∈ J . The conditions on Γ force C ∈ ∆0(π). Due to k(C) ⊂
Hγ [X](∅) ∩ π ⊆ C(γ + 1, Ψ0

π(γ + 1)) ∩ π, we must have | ι |< Ψ0
π(γ + 1) for all ι∈J . Let

γι := γ + ωµ·αι+|ι|. From NF (γι, ω
µ·αι) it follows A(X ∪ {γι}; γι, π, ξ, µ) for all ι∈J . The

subsidiary induction hypothesis then yields

Hδι [X, ι]
Ψξ

π(δι)

Ψξ
π(δι)

Γ, Cι

for all ι ∈ J , where δι := γι + ωµ·αι ∈ C(α̂, Ψξ
π(α̂)). | ι |≤ αι < α implies δι < α̂; thus

Ψξ
π(δι) < Ψξ

π(α̂). So, using (
∧

), we conclude

Hα̂[X]
Ψξ

π(α̂)

Ψξ
π(α̂)

Γ .
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Case 5: The last inference is (Cut). Then there exist α0 < α and an RS(K)–formula A
with rk(A) < µ, so that

Hγ [X]
α0

µ
Γ, A (26)

and

Hγ[X]
α0

µ
Γ,¬A. (27)

Subcase 5.1: Suppose µ = K+∞. For κ := Ξ(α̂0) one obtains, by applying 10.1 to (26)
and (27),

Hα̂0+κ[X]
Ξ(α̂0+κ)

Ξ(α̂0+κ)
Γ, A(κ,K)

and
Hα̂0+κ[X]

Ξ(α̂0+κ)

Ξ(α̂0+κ)
Γ,¬A(κ,K) ,

recalling Γ(κ,K) = Γ (since π < κ) and κ = Ξ(α̂0)∈Hα̂′+κ[X]. Whence,

Hγ′ [X]
Ξ(α̂0+κ)+1

Ξ(α̂0+κ)
Γ (28)

by means of (Cut), where γ′ := γ + ωK·α′ · 2.
Since we have lowered the cut rank from µ = K + ∞ to Ξ(α̂0 + κ) < K, the main

induction hypothesis can be applied to (28); hence

Hη[X]
Ψξ

π(η)

Ψξ
π(η)

Γ ,

where η := γ′ +ωΞ(α̂0+κ)2+Ξ(α̂0+κ) = γ +ωK·α′ +ωK·α′ +ωΞ(α̂0+κ)2+Ξ(α̂0+κ). Since η < α̂ und
Ψξ

π(η) < Ψξ
π(α̂), we deduce

Hα̂[X]
Ψξ

π(α̂)

Ψξ
π(α̂)

Γ .

In the sequel, we shall assume µ < K.

Subcase 5.2: rk(A) < π.
Then rk(A) < Ψξ

π(α̂0) and A ∈ ∆0(π), hence ¬A ∈ ∆0(π). Therefore, applying the
subsidiary induction hypothesis to (26) and (27),

Hα̂0 [X]
Ψξ

π(α̂0)

Ψξ
π(α̂0)

Γ, A and Hα̂0 [X]
Ψξ

π(α̂0)

Ψξ
π(α̂0)

Γ,¬A ;

whence

Hα̂[X]
Ψξ

π(α̂)

Ψξ
π(α̂)

Γ

by means of (Cut) since Ψξ
π(α̂0) < Ψξ

π(α̂).
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Subcase 5.3: rk(A) > π and rk(A) /∈Reg.
We can select σ∈Hγ [X] so that

Ωσ ≤ rk(A) < Ωσ+1.

Set τ := Ωσ+1. Then τ ≤ µ, A(X; γ, τ, 0, µ), and Γ ∪ {A,¬A} ⊂ ∆0(τ). Using the
subsidiary induction hypothesis we get

Hα̂0 [X]
Ψ0

τ (α̂0)

Ψ0
τ (α̂0)

Γ, A and Hα̂0 [X]
Ψ0

τ (α̂0)

Ψ0
τ (α̂0)

Γ,¬A ,

whence,

Hα̂0 [X]
Ψ0

τ (α̂0)+1

Ψ0
τ (α̂0)

Γ , (29)

as rk(A) < Ψ0
τ (α̂0). Employing predicative cut elimination, 7.4, we obtain

Hα̂0 [X]
ϕη(η+1)

ν
Γ (30)

with η := Ψ0
τ (α̂0) and ν := Ωσ. Note that π ≤ ν. Furthermore, A(X; α̂0, π, ξ, ν) and

NF (α̂0, ω
ν·ϕη(η+1)). Also ν < µ. Therefore, letting ζ := α̂0 + ων·ϕη(η+1), we can use the

main induction hypothesis on (30) to conclude

Hζ [X]
Ψξ

π(ζ)

Ψξ
π(ζ)

Γ .

Noting that ζ < α̂ and Ψξ
π(ζ) < Ψξ

π(α̂), this implies

Hα̂[X]
Ψξ

π(α̂)

Ψξ
π(α̂)

Γ .

Subcase 5.4: rk(A) ≥ π and rk(A)∈Reg.
Let τ := rk(A). Then either A or ¬A is of the form ∃xτF (x) with F (L0)∈∆0(τ).
If α0 < τ , then ¬A never gets used as a principal formula of an inference in Hγ [X]

α0

µ
Γ,¬A ,

and therefore, Hγ [X]
α0

µ
Γ . Thus, by subsidiary induction hypothesis , Hα̂0 [X]

Ψξ
π(α̂0)

Ψξ
π(α̂0)

Γ ,

whence Hα̂[X]
Ψξ

π(α̂)

Ψξ
π(α̂)

Γ since Ψξ
π(α̂0) < Ψξ

π(α̂).

Now assume τ ≤ α0. Observe that A(X; γ, τ, 0, µ) and Γ, A ⊂ ∆0(τ)∪Σ1(τ). Applying
the subsidiary induction hypothesis to (26) and using the Bounding Lemma 7.6, we obtain

Hα̂0 [X]
Ψ0

τ (α̂0)

Ψ0
τ (α̂0)

Γ, A(Ψ0
τ (α̂0),τ) . (31)
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From (27), by employing 6.15(iii) and Ψ0
τ (α̂0)∈Hα̂′ [X], we get

Hα̂0 [X]
α0

µ
Γ,¬A(Ψ0

τ (α̂0),τ). (32)

Since A(X; α̂0, τ, 0, µ) and NF (α̂0, ω
µ·α0), the subsidiary induction hypothesis can be used

on (32), furnishing

Hδ[X]
Ψ0

τ (δ)

Ψ0
τ (δ)

Γ,¬A(Ψ0
τ (α̂0),τ) , (33)

where δ := α̂0 + ωµ·α0. Using (Cut) on (31) and (32), we obtain

Hδ[X]
Ψ0

τ (δ)+1

Ψ0
τ (δ)

Γ . (34)

If τ = π, then (34) implies

Hα̂[X]
Ψξ

π(α̂)

Ψξ
π(α̂)

Γ ,

noting that Ψ0
π(δ) < Ψξ

π(α̂).
From now on, let π < τ . Again, we can select σ∈Hγ [X] so that Ωσ ≤ Ψ0

τ (δ) < Ωσ+1 ≤
τ. Through the use of predicative cut elimination, (34) yields

Hδ[X]
η

ν
Γ , (35)

where we put η := ϕΨ0
τ (δ)(Ψ

0
τ (δ) + 1) and ν := Ωσ. Set γ′ := δ + ωµ·α0. Then δ < γ′ and

NF (γ′, ων·η) since ν < µ as well as η < ν ≤ α0. Since π < τ and π∈C(γ + 1, Ψ0
τ (γ + 1)),

we get π < Ψ0
τ (δ); thence π ≤ ν. Note that A(X; γ′, π, ξ, ν). Since ν < µ, we can use the

main induction hypothesis on (35), so that with ρ := γ′ + ων·η,

Hρ[X]
Ψξ

π(ρ)

Ψξ
π(ρ)

Γ . (36)

One readily verifies ρ < α̂ and ρ∈C(α̂, Ψξ
π(α̂)). Therefore, by (36),

Hα̂[X]
Ψξ

π(α̂)

Ψξ
π(α̂)

Γ .

⊓⊔

Theorem 10.4 Let ρ0 := 1 and ρn+1 := Kρ\ .

(i) 14 If A is a Π3–sentence of L and KP + Π3–Ref ⊢ A, then there is an n < ω such
that, for all π∈Mρn ,

Hρ\+π

Ξ(ρn+π)

Ξ(ρn+π)
ALπ .

14The meaning of (i) can be greatly enhanced by developing the collapsing functions on the basis of a
Π3–reflecting ordinal, say κ0. It will then be possible, given a proof of a Π3–sentence in KP + Π3–Ref ,
to determine a κ0–recursively stationary set of reflection points; thereby providing an Herbrand analysis
for provable Π3–sentences of KP + Π3–Ref .
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(ii) The property of being an admissible set above ω can be expressed by a ∆0–formula.
(For definiteness, let this be the formula displayed in Aczel und Richter [1974].) If
B is a Σ1–sentence and

KP + Π3–Ref ⊢ ∀x[Ad(x) → Bx],

then there is a k < ω such that

Hρ‖

Ψ0
Ω1

(ρk)

0
B

LΨ′
Ω∞

(ρ‖) .

Proof. (i) According to Theorem 8.11, there is an m < ω satisfying

H′
K·ωm

K+m
ALK .

Applying Corollary 7.5 several times, we get

H′
ρm+2

K+∞
ALK .

Letting γ := ρm+4, we have NF (γ,Kρm+∈) and B(∅; γ). So we can apply Theorem 10.1
to get

Hρ\+π

Ξ(ρn+π)

Ξ(ρn+π)
ALπ

for all π∈Mρn , provided that n > m + 4.

(ii): By the same procedure as in (i), we obtain an n < ω satisfying

Hρ\+π′

Ξ(ρn+π0)

Ξ(ρn+π0)
¬A⌈(LΩ∞),BLΩ∞ ,

where π0 := Ξ(ρn). Since

H′
Ω1·ω

Ω1+ω
A⌈(LΩ∞) ,

it follows

Hρ\+π′

Ξ(ρn+π0)+1

Ξ(ρn+π0)
BLΩ∞ . (37)

Letting γ := ρn+2, α := Ξ(ρn + π0) + 1 and µ := Ξ(ρn + π0), we have γ, α ∈ Hγ,
NF (γ, ωµ·α), and A(∅; γ, Ω1, 0, µ). Also, by Corollary 10.2, σ < γ holds for all inferences
(Refσ

τ ) appearing in (37). Therefore, by Theorem 10.3, we obtain

Hα̂

δ

δ
BLΩ∞

for α̂ := γ + ωµ·α and δ := Ψ0
Ω1

(α̂). Using predicative cut elimination, Theorem 7.4, this
leads to

Hα̂

ϕδδ

0
BLΩ∞ .
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For k := n + 3, one easily verifies α̂ < ρk and ϕδδ < Ψ0
Ω1

(ρk). Hence,

Hρ‖

Ψ0
Ω1

(ρk)

0
BLΩ∞ .

⊓⊔

Corollary 10.5

|KP + Π3–Ref |≤ Ψ0
Ω1

(εK+∞).

(|KP + Π3–Ref | denotes the proof–theoretic ordinal of KP + Π3–Ref .)
⊓⊔

Remark 10.6 The bound given in 10.5 is indeed sharp. But we will not give a proof for
that in this paper.

11 Conclusions

A notation system which is suitable for an ordinal analysis of KP+Πn+2–reflection (n > 1)
can be derived from collapsing functions based on Π1

m indescribable cardinals, where
0 < m ≤ n. Here one employs the thinning–operation

Mk+1(X) = {π∈X : πis Π1
k indescribable on X},

where π is Π1
k indescribable on X if for all U1, . . . , Ui ⊆ Vπ and every Π1

k sentence F ,
whenever 〈Vπ,∈, U1, . . . , Ui〉 |= F , then there exists a ρ∈X ∩ π such that

〈Vρ,∈, U1 ∩ Vρ, . . . , Ui ∩ Vρ〉 |= F.

As a matter of fact, if κ is Π1
k+1 indescribable and X ⊆ κ is stationary in κ then Mk(X) is

also stationary in κ. So, analogously to Definition 4.8, given a Πn+1 indescribable cardinal
R, one defines a hierarchy of subsets MR,α

n of R (using Mn in place of M) which induces
a collapsing function ΞR

n+1 by letting

ΞR

n+1(α) = leastν[ν∈MR,α
n ].

We have already pointed out that the use of large cardinals in the development of collaps-
ing functions is merely an exaggeration that simplifies proofs, but could be avoided by
employing their recursively large analogoues (see Rathjen [1993c]). However, regarding a
consistency proof for KP + Π3–Ref (or, more generally, KP + Πn+2–reflection) we would
like to have some kind of constructive justification for the well–foundedness of 〈T (K), <〉.
First, let us delimit in which metatheory such a consistency proof can be accomplished.
A rough estimate would be first order arithmetic augmented by the scheme of transfinite
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induction along the ordering of T (K). To see this, note that 〈T (K), <〉 is primitive re-
cursive (after some coding) and that recursive RS(K) derivations suffice for the results
of Sections 6 through 10. Now, recursive RS(K) derivations can be formalized in first
order arithmetic (see Schwichtenberg [1977]). But we can do even better. For a particular
arithmetic theorem of KP + Π3–Ref , say A, an n can be determined (depending on the
proof of A) such that there is a cut free controlled recursive derivation of A that utilizes
solely ordinals from Tn(K) = C(ρ\, ′), where ρ0 = 1 and ρk+1 = Kρ\ . So the upshot is that
any arithmetic theorem of KP + Π3–Ref is provable in first order arithmetic augmented
by the schemes of transfinite induction for all the orderings <n arising by restricting < to
Tn(K). Finally, by results of Friedman and Sheard [1993], Theorem 4.5, the consistency
(even the 1–consistency) of the latter theory is provable in primitive recursive arithmetic
plus a scheme expressing that there is no infinite primitive recursive15 descending sequence
in the notation system determined by C(εK+∞, 0) ⊆ T (K).

By now we have managed to reduce the consistency of KP + Π3–Ref to the principle
(say FT (<)) that every concrete strictly decreasing sequence of members of C(εK+∞, 0)
terminates in a finite number of steps. How can we assure ourselves of the validity of
FT (<)? Takeuti (see [1985],[1987]) refers to such proofs as accessibility proofs. In his work
he has given accessibility proofs for the ordinal diagrams that he used for his consistency
proof of Π1

1 comprehension. As to the methods allowed for such proofs, Takeuti delimits a
kind of concrete constructivity. In the words of Takeuti [1987, p.96]: “We believe that our
standpoint is a natural extension of Hilbert’s finitist standpoint, similar to that introduced
by Gentzen, and we call it the Hilbert–Gentzen finitist standpoint.”

However, Takeuti does not formally lay bare what he counts as acceptable from his
stance, this especially applies to what he calls (using Hilbert’s jargon) “performing a
Gedankenexperiment”. Of course, ultimately, justification can only come about by halt-
ing at some intuitively convincing grounds, and no explanation can substitute for each
individuals understanding. Incidentally, the author convinced himself of the accessibility
of T (K) along the lines delineated by Takeuti.

Nonetheless, it might be desirable to obtain different accessibility proofs based on
different styles of constructivity. There are prospects that extensions of Martin–Löf’s in-
tuitionistic type theory with higher universes can provide a uniform setting for consistency
proofs. Palmgren (in [1990]) has outlined an intuitionistic theory of types with transfinite
universes that provides a means of understanding constructive Mahlo numbers.
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