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Abstract

We survey some of the recent work in the study of Abstract Elemen-
tary Classes focusing on the categoricity spectrum and the introduction
of certain conditions (amalgamation, tameness, arbitrarily large models)
which allow one to develop a workable theory. We repeat or raise for the
first time a number of questions; many now seem to be accessible.

Much late 19th and early 20th century work in logic was in a 2nd order frame-
work; infinitary logics in the modern sense were foreshadowed by Schroeder and
Pierce before being formalized in modern terms in Poland during the late 20’s.
First order logic was only singled out as the ‘natural’ language to formalize
mathematics as such authors as Tarski, Robinson, and Malcev developed the
fundamental tools and applied model theory in the study of algebra. Serious
work extending the model theory of the 50’s to various infinitary logics blos-
somed during the 1960’s and 70’s with substantial work on logics such as Lω1,ω

and Lω1,ω(Q). At the same time Shelah’s work on stable theories completed the
switch in focus in first order model theory from study of the logic to the study
of complete first order theories As Shelah in [She75, She83a] sought to bring
this same classification theory standpoint to infinitary logic, he introduced a
total switch to a semantic standpoint. Instead of studying theories in a logic,
one studies the class of models defined by a theory. He abstracted (pardon
the pun) the essential features of the class of models of a first order theory
partially ordered by the elementary submodel relation. An abstract elemen-
tary class AEC (K,≺K ) is a class of models closed under isomorphism and
partially ordered under ≺K , where ≺K is required to refine the substructure
relation, that is closed under unions and satisfies two additional conditions: if
each element Mi of a chain satisfies Mi ≺K M then M0 ≺K

⋃
iMi ≺K M

and M0 ≺K M2,M1 ≺K M2 and M0 ⊆ M1 implies M0 ≺K M1 (coherence
axiom). Further there is a Löwnenheim-Skolem number κ associated with K so
that if A ⊆M ∈ K, there is an M1 with A ⊂M1 ≺K M and |M1| ≤ |A|+ κ.
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In this paper we will review some of the reasons for considering AEC’s, out-
line several major lines of study in the subject, and offer a series of problems
whose solution would advance the various lines. The fundamental ideas dis-
cussed here are due to Shelah. However, we explore in some detail areas that
have been developed in the very recent past by such authors as Grossberg, Hytti-
nen, Kolesnikov, Lessmann, VanDieren, and Villaveces; generally speaking these
studies proceed by putting further model theoretic conditions on an AEC and
we will expound some of these conditions. In the closing pages we give a short
introduction to the mainline of Shelah’s research [She01, She0x, She00b, She00a].

Our survey focuses primarily on problems closely related to categoricity. We
have attempted to attribute both results and questions correctly. But many of
the questions are just writing out what people in the area are thinking about.
For expositional purposes, we frequently cite [Bal]; the default is that results in
that monograph are not new although the proofs may be. I thank Tapani Hytti-
nen, the anonymous referee, and especially Rami Grossberg for useful comments
on this article.

Increased interest in nonelementary classes arose recently for several reasons.
First, the increased emphasis, signaled in [She99, SV99] and emphasized in
[GV06a], on hypotheses such as amalgamation or tameness as fruitful conditions
to create a workable theory of AEC, has led to a number of new results. The
need for studying AEC became more clear for two reasons. On the one hand the
pursuit of specific problems in the first order setting has led to constructions
which can no longer be formalized by first order means. On the other, the
paradigm: study an interesting structure by studying its first order theory has
broken down in some significant cases because the first order theory is not
sufficiently nice.

The work of Kim and Pillay [KP97] showed that the essential distinction
between stable and simple theories [She80] lay in the fact that for a stable the-
ory, Lascar strong type equals strong type. Strong types are first order objects;
Lascar strong types are not. Analysis of this problem led to the introduc-
tion of hyperimaginaries and other properly infinitary objects and ultimately to
compact abstract theories CATS [BY03b]. In a slightly different direction, the
‘Hrushovski construction’ [Hru93, Hru92] leads in nice cases (when the generic
is ω-saturated) to the construction of first order theories with special proper-
ties. However, in certain notable cases, the best that has so far been found is
a Robinson theory (in the search for a bad field [Bal04, BH00]) or even only a
positive Robinson theory (in the search for a simple theory where strong type is
not equal to Lascar strong type [PW0x]). Despite the terminology, a (positive)
Robinson theory, refers to the class of models of a first order theory which omit
certain types; it can be described only in infinitary logic.

The first order theory of the field of complex numbers with exponentiation
is intractable; the ring of integers and their order is first order definable. But
Zilber suggested in a sequence of papers [Zil05, Zil04, Zil00, Zil02] the notion
of considering the Lω1,ω(Q)-theory of (C,+, ·, exp). The intuition is that the
essential wildness will be contained by forcing the kernel of the exponential
map to always be exactly the standard integers. In his proof of categoricity
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for quasiminimal excellent classes Zilber discovered a special case of Shelah’s
notion of excellence that is easy to describe. He works in a context where there
is a well-behaved notion of closure, cl which defines a combinatorial geometry.
The aim is to show that if X is isomorphic to Y , then cl(X) is isomorphic
to cl(Y ). In general, this condition is non-trivial; it follows from excellence.
In this context, excellence means that for every n, if A = {a1, . . . an} is an
independent set then for any a ∈ cl(A) the type of a over Z =

⋃
i<n cl(A−{ai})

is determined by the type of a over a finite subset of Z. Shelah works in a
more general situation, where combinatorial geometry is replaced by a ‘forking’-
like notion. Consequently his notion is harder to describe and we omit the
description here. Crucially, in both cases a condition (excellence) on countable
models has important consequences (e.g. amalgamation) in all cardinalities.

Various other attempts to formalize analytic structures (notably Banach
spaces [Hen72, HI02]) provide examples of ‘homogeneous model theory’ ([She70,
BL03] and many more); Banach spaces are also an example of CATS [BY03a].
Strictly speaking, the class of Banach spaces is not closed under unions of chains
so doesn’t form an AEC. But, Banach space model theory can be thought of as
the study not of Banach spaces, but of structures whose completion is a Banach
Space and this provides an interpretation of classes of Banach spaces as AEC’s.
Further mathematical examples include locally finite groups [GS83] and some
aspects of compact complex manifolds (Although here, the first order theory is
an attractive topic for model theorists (e.g. [Moo, Rad04]).).

Many, but not all, of these ‘infinitary’ formalizations can be captured in
the framework of AEC’s. (In particular, CATS are inherently different.) The
work that I’ll describe here has a complementary motivation. Stability theory
provided a very strong tool to classify first order theories and then for extremely
well-behaved theories (those below the ‘main gap’) to assign invariants to models
of the theories. This insight of Shelah spread beyond stable theories with the
realization that very different tools but some of the same heuristics allowed the
study of o-minimal theories. By these techniques, o-minimality and stability,
model theorists have learned much about the theories of both the real and the
complex numbers and many other algebraic structures. But Shelah asks an in
some ways more basic question. What are the properties of first order logic that
make stability theory work? To what extent can we extend our results to wider
classes, in particular to AEC?

Most known mathematical results are either extremely cardinal dependent:
about finite or countable structures or at most structures of cardinality the con-
tinuum; or completely cardinal independent: about every structure satisfying
certain properties. Already first order model theory has discovered problems
that have an intimate relation between the cardinality of structures and alge-
braic properties of the structures:

1. Stability spectrum and counting models

2. A general theory of independence

3. Decomposition theorems for general models
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There are structural algebraic, not merely combinatorial features, which are
non-trivially cardinal dependent. (For example, the general theory of indepen-
dence is intimately related with the class of cardinals in which the theory is
stable and even for stable first order theories, stability in κ depends on the
cofinality of κ.)

As usual a class of models K with a distinguished notion of submodel has
joint embedding property (jep) if any two members of K have a common exten-
sion and K has the amalgamation property (ap) if any two extensions of a fixed
model M have a common extension (over M).

If we were to take the fundamental analogy to be that an abstract elementary
class represents a complete first order theory then we would add to the definition
that the class (K,≺K ) has the amalgamation and the joint embedding property.
But completeness is a bit much to ask even in Lω1,ω. Here completeness (all
models Karp equivalent) is not necessarily compatible with Löwenheim number
ω. Some uncountable models do not have countable Karp equivalent submodels.
The standard first order proof of the theorem, ‘categoricity in power implies
completeness’ is a triviality but it assumes both the upwards and downwards
Löwenheim-Skolem theorem for a set of sentences. Even for a sentence of Lω1,ω

in a countable language the reduction for an arbitrary categorical sentence ψ to
one which is complete and has essentially the same spectrum is not at all trivial
[She75, She83a]. It is substantially easier if ψ is assumed to have arbitrarily large
models ([Bal] VII.2) than without that hypothesis ([Bal] VII.3). The difficult
case is carried out in full in [She75, She83a]; the easier case is hinted at in
[She75, She83a] but spelled out in the expository [Bal04, Bal]. In either case
a notion of stability (counting the number of types) is used to obtain even the
completeness result.

Moreover, unlike the first order case, completeness does not immediately
yield the amalgamation property. The only known proof [She83a, She83b] that
a categorical sentence in Lω1,ω has the amalgamation property invokes the weak
continuum hypothesis and introduces the much more intricate notion of excel-
lence. Moreover few models in every cardinal up to ℵω is assumed; indeed,
categoricity in every cardinal up to ℵω is essential to get eventual categoricity
[HS90, Bal]. Similarly, although Zilber’s quasiminimal excellent classes do have
the amalgamation property the existing proof deduces the result from the proof
of excellence, which has non-trivial algebraic content (e.g [Zil00]).

We will discuss first AEC with arbitrarily large models and then move to a
harder case where that assumption is not made.

Question 1 Must the class of models of a sentence in Lω1,ω (or more generally
an AEC) that has arbitrarily large models and is categorical in a sufficiently large
cardinal have the amalgamation property (at least for sufficiently large models).
This is an interesting question even assuming the weak GCH; the necessity of
such an assumption presents a different set of problems.

Grossberg (e.g [Gro02]) has posed this question for AEC and for Lω1,ω. For
sentences of Lω1,ω, Shelah’s result reported above gives a partial answer modulo
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weak gch. He deduces excellence and thus amalgamation from categoricity up
to ℵω. But although Grossberg’s question is on the ‘assume arbitrarily large
models side’, it is more demanding than Shelah’s result in asking that cate-
goricity in one cardinality suffice. Trying to obtain a proof (even for Lω1,ω)
from the arbitrarily large model assumption without passing through excellence
is a ‘warm-up’ strategy for the AEC version.

Shelah’s presentation theorem is a crucial tool for the study of AEC. It as-
serts that every AEC K may be seen as the class of reducts of a collection
of models defined by a first order theory (in a language of size LS(K)) which
omit a specified collection of (at most 2LS(K)) types. Let us state a crucial
corollary. Fix a vocabulary τ . For each pair of a first order theory and set of
types Φ (in a vocabulary τ ′ extending τ), and each linear order I, EM(I,Φ)
denotes the reduct to τ of the τ ′-structure which satisfies Φ. The presenta-
tion theorem implies that for each K, there is a Φ such that EM( ,Φ) is a
functor into K (which takes subordering to ≺K ). A straightforward use of
Ehrenfeucht-Mostowski models over indiscernibles yields: If K has a model of
cardinality greater than i

(2LS(K))+
then K has arbitrarily large models. In the

vernacular, we say the Hanf number for AEC with vocabulary of size at most
κ and Löwenheim-Skolem number at most κ is at most H(κ) = i(2κ)+ . We
call this function H as we use it to compute Hanf numbers. It might be more
appropriate to call it ER as it actually computes the bound for applying the
Erdos-Rado theorem to obtain indiscernibles.

Many of the ideas expounded here were presaged in earlier work such as
[MS90, KS96] dealing with languages Lκ,ω with strong hypotheses (e.g. com-
pactness, measurability) on the cardinal κ. The earliest result in this series
was:

Theorem 2 [MS90] Let κ be strongly compact. If a sentence ψ ∈ Lκ,ω is
categorical in λ+ > µ0 = i(2κ)+ then it is categorical in all cardinals greater
than µ0.

In view of the set-theoretic requirements on the syntax of the underlying
logic, we don’t discuss this line but deal with the more general notion of AEC.

For most of the rest of this paper, we will assume K is an AEC with the
amalgamation property. It is then trivial to reduce to the study of AEC with
both the amalgamation and joint embedding properties. Under these hypothe-
ses, when K has arbitrarily large models, we are able to work inside a monster
model which is behaves much like the first order situation but is weaker in a
significant way. We have amalgamation only over submodels, thus the monster
model is homogeneous only over submodels. The stronger condition, assuming
that there is a ‘monster model’ that is homogeneous over sets, gives rise to the
area known as homogeneous model theory. For the major literature in this area
consult such authors as Hyttinen, Lessmann, and Shelah.

Working within a model-homogeneous ‘monster model’ (i.e. in an AEC with
amalgamation), we define the Galois type of a over M to be the orbit of a under
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automorphisms of the monster which fix M . We write S(M) for the collection
of Galois types over M . Then we can define a model M to be κ-saturated
if every Galois type over a submodel of M with cardinality < κ is realized
in M . A somewhat more general definition (without assuming ap) occurs in
[She87, She99].

We begin by discussing classes which have arbitrarily large models. Invoking
the presentation theorem, we are able to build Ehrenfeucht-Mostowski models
over sequences of order indiscernibles. As Shelah remarks in the introduction
to [She01], this yields the non-definability of well-ordering and so gives us an
approximation to compactness. Most of these notes concern this case and build
on [She99]. We return at the end to the much more difficult situation, where
one attempts to find information about AEC simply from the information that
it has one (or few models) in some specific cardinalities. We will sketch some of
Shelah’s extensive work on this subject; our emphasis on classes with arbitrarily
large models represents the extent of our understanding, not importance.

Assuming K has arbitrarily large models, the proof that categoricity in λ
implies stability in all cardinals smaller than λ has the same general form as
in the first order case. But, one must replace the Ehrenfeucht-Mostowski hull
of a cardinal by the hull of a sufficiently homogeneous linear order and make
judicious use of the coherence axiom to carry through the proof [She99, Bal].
Thus, the argument is significantly more complicated. This is in interesting
contrast with the Laskowski-Pillay study of ‘gross-models’ [LP]; a model is gross
if every infinite definable subset of it has full cardinality. Morley’s theorem can
be proved in this context using the normal first order notion of type. Thus, the
categoricity implies stability is routine. Intriguingly, the Laskowski-Pillay work
was inspired by investigations of Moosa on the first order theory of compact
complex manifolds.

The fundamental test question for the study of AEC is:

Conjecture 3 (Shelah’s categoricity conjecture) There is a cardinal µ(κ)
such that for all AEC with Löwenheim number at most κ, if K is categorical in
some cardinal greater than µ(κ) then K is categorical in all λ ≥ µ(κ).

The best approximation to the categoricity conjecture takes µ(κ) as the
‘second Hanf number’: H2 = H(H(LS(K))). The initial step in the analysis
[She99] (see also [Bal]) requires the lifting to this setting of a clever integration
of Morley’s omitting types theorem and Morley’s two cardinal theorem.

Theorem 4 [She99] Suppose K has the amalgamation property and arbitrarily
large models. Suppose K is λ+ categorical with λ > H2. Then, K is H2-
categorical and indeed categorical on the interval [H1, λ

+].

The proof requires using the omitting types theorem twice. The second time
one names as many constants (H1) as required for the first use. Categoricity
on the interval is then proved by induction, making essential use of Theorem 7.
Theorem 4 leads to a natural question.
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Question 5 Prove or disprove. Suppose K has the amalgamation property and
arbitrarily large models. Suppose K is λ+-categorical with λ > H1. Then, K is
H1-categorical.

In order to understand further progress on the categoricity transfer prob-
lem, we introduce an important notion (first named in [GV06a]; the cardinal
parameters were added in [Bal05]).

Definition 6 The AEC K is (χ, λ)-(weakly) tame if for any (saturated) model
M of cardinality λ, if p, q ∈ S(M) (the Galois types over M) are distinct then
there is a submodel N of M with N ≤ χ so that p � N 6= q � N .

Of course any first order theory is tame; i.e. (ℵ0,∞)-tame. And by
[She83a, She83b], it is consistent with ZFC that every categorical AEC de-
fined by a sentence of Lω1,ω is tame. But aside from the first order case (and
homogeneous model theory where again every class is tame), there is no example
where (ℵ0,∞)-tameness has been deduced from categoricity except as a corol-
lary to the Morley theorem for the class. (E.g. Zilber’s quasiminimal excellent
classes and categorical classes in Lω1,ω are each shown to be tame in [Bal]; but
the result is not needed for the transfer of categoricity proof given but only an
observation.)

Nontameness can arise in natural mathematical settings. An Abelian group
is ℵ1-free if every countable subgroup is free. An Abelian group H is White-
head if every extension of Z by H is free. Shelah constructed (in ZFC) an
Abelian group of cardinality ℵ1 which is ℵ1-free but not a Whitehead group.
(See [EM90] Chapter VII.4.) Baldwin and Shelah [BS] code this into an ex-
ample of nontameness. Essentially a point codes an abelian group which is
the right end of a short exact sequence; every countable approximation to the
group splits but the whole group does not. Thus the AEC is not (ℵ0,ℵ1)-tame.
Baldwin and Shelah [BS] also show that nontameness is essentially a distinct
phenomena from non-amalgamation by showing any AEC K which exemplifies
a nontameness property (satisfying a mild condition) can be transformed to one
which does satisfy amalgamation and still fails the tameness. But this transfor-
mation destroys categoricity and even stability. In my view, the most significant
(nontrivial) sufficient condition for tameness is due to Shelah:

Theorem 7 [She99] Suppose K has the amalgamation property and arbitrarily
large models. Suppose K is λ-categorical with λ > H1. For every κ with H1 ≤
κ < λ, K is (χ, κ)-weakly tame for some χ < H1.

The combination of Shelah’s downward categoricity argument and the tame-
ness argument gives the result for ‘tame’ instead of ‘weakly tame’ ifH1 is allowed
to grow to H2. The argument for Theorem 7 in [She99] is flawed. A short and
correct argument due to Hyttinen, correcting and elaborating various exegises
given separately by Baldwin and Shelah, appears in [Bal]. This result poses
several questions.
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Question 8 Suppose K has the amalgamation property and arbitrarily large
models. Suppose K is λ-categorical with λ > H1.

1. Is there any way to reduce the upper bound on χ in Theorem 7 (or find a
lower bound above LS(K))?

2. Is there any way to replace weakly tame by tame?

3. And most important, (compare 1.16 of [GV06a]), can κ = λ in Theorem 7?

A positive answer to Question 8.3 would yield a full solution of the cate-
goricity problem for AEC with amalgamation and arbitrarily large models.

Is there any way to weaken the categoricity hypothesis in Theorem 7 to
stability?

Question 9 Suppose K has the amalgamation property and arbitrarily large
models. Prove or disprove: If K is κ-stable with κ > H1 then K is (weakly)
(H1, κ)-tame.

In the light of Theorem 4 and Theorem 7, it is interesting to examine Ques-
tion 9 at the successor of the categoricity cardinal in the hypothesis of Theo-
rem 4. How much would it help to know stability in λ++?

Shelah speaks rather loosely of locality in various places. We have broken
this notion into three precise concepts. Following [GV06a], we have chosen tame
as the name of one of these. We call the others locality and compactness. There
is considerable to be learned about the relations among the parameterized ver-
sions of these notions; the following survey just touchs on some of the natural
questions that arise. Essentially, they are a few of the many ways one might
make specific the general question, ‘Are there AEC which are eventually cate-
gorical without the many nice properties such as tameness, excellence, locality
of the known examples?’

Definition 10 1. K has (κ, λ)-local Galois types if for every continuous
increasing chain M =

⋃
i<κMi of members of K with |M | = λ and for

any p, q ∈ S(M): if p � Mi = q � Mi for every i then p = q.

2. Galois types are (κ, λ)-compact in K if for every continuous increasing
chain M =

⋃
i<κMi of members of K with |M | = λ and every increasing

chain {pi : i < κ} of members S(Mi) there is a p ∈ S(M) with p � Mi = pi

for every i.

The proof of Theorem 7 is very much about tameness rather than locality.

Question 11 Is there any way to replace (weakly) tame by local in Theorem 7?

The constructions in [BS] that create amalgamation destroy categoricity;
can this be avoided? More precisely,
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Question 12 Find an AEC (in a countable language) which is categorical in all
uncountable powers, has the amalgamation property, and which is not (ℵ0,∞)-
tame (or (ℵ0,∞)-local).

Grossberg and Kolesnikov [GK] recently completed an important analysis of
the relationship between excellence and tameness. They work in classes which
are posited to have an independence relation analogous to forking in the first
order case. They show in particular that if the class satisfies the extension prop-
erty for independence, the appropriate version of stationarity and the forking
has < λ-character then (λ, λ+)-tameness and (λ, λ+)-locality follow. Further,
they show that if K is χ-excellent (under an extended definition for this con-
text), then K is (χ,∞)-tame. There is no simple test, such as failure of the
order property in the first order case, to generate a wealth of examples of classes
satisfying these hypotheses. It is not even clear that eventual categoricity yields
the properties. But as with tameness, these hypotheses provide a platform on
which to develop a stability theory for AEC.

A positive answer to either Question 8.1) or Question 11 would seem to
require essentially new methods. The distinction between syntactic (given by a
set of formulas in some logic) and semantic or Galois types (given by the ability
to amalgamate embedding or as orbits in a suitably homogeneous model) leads
to a quest for further examples.

Question 13 What are some AEC’s which are not basically given syntactically?
Which of the many examples of extended logics in [BF85] give rise to AEC’s?

A few examples appear in [Gro02, BL00, Bal], but there should be many
more. Zilber’s work on excellent classes raises several issues here [Zil05, Zil04].
He phrases his work for certain models (those satisfying the countable clo-
sure condition) in a class defined in Lω1,ω. So the class could be described
in Lω1,ω(Q); but such a formulation is of no value for the proof. The hardest
part of the argument, the verification of excellence, is in the standard vein of al-
gebraic model theory. But here infinitary conditions are being interwoven with
not only algebraic but analytic arguments. Zilber’s model theoretic perspective
produces an intriguing group of conjectures about the complex numbers. In
particular, even a very simple case of showing the complex exponential field is
‘strongly exponentially closed’ in the sense of [Zil04], has only been answered
using Schanuel’s conjecture and Hadamard factorization [Mar].

In another direction, one might try to weaken the categoricity assumption for
proving tameness. The following version doesn’t shed much light since we don’t
have any clear way at hand to verify it (aside from categoricity). Shelah called
this notion rigid. I discuss this notion because a number of central steps in the
analysis of categoricity in [She99], existence of non-splitting extensions, (H1, λ)-
tameness, and unions of saturated models are saturated are fundamentally about
AEC which are epi.

Definition 14 The AEC K is epi if there is an EM-template Φ such that the
functor EM( ,Φ) is an epimorphism from linear orders onto the models of K.
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For example, the core of the proof of Theorem 7 shows:

Corollary 15 If K is epi then K is (H1,∞)- tame.

Categoricity is used in the proof of Theorem 7 to get that the AEC is epi.
(Of course this terminology isn’t used.)

Grossberg and VanDieren [GV] strengthen the hypothesis of Theorem 4 by
adding (µ,∞)-tameness for some µ < λ with powerful results.

Theorem 16 [GV06a] Suppose K has the amalgamation property and arbi-
trarily large models. Suppose K is λ and λ+ categorical for some λ > LS(K)
and is (µ,∞)-tame for some µ < λ. Then K is categorical in all cardinals above
λ.

There are a number of variations on this result and on the elimination of the
(categorical in λ)-hypothesis [Les05, GV, BL00, GVV, Vana] to get ‘upwards
categoricity from a single cardinal’ . We don’t go into this further here except to
remark that any full proof from these hypotheses involves an intensive investi-
gation of EM models to show that a union of a short chain of saturated models
is saturated [She99, Bal]. Natural extensions, which remain open as far as I
know, are to replace categoricity in a single successor cardinal by categoricity
in a regular or an arbitrary cardinal; a different idea is needed to replace the
role of two cardinal models.

The stability spectrum theorem is fundamental for the study of first order
theories; it is the essence of the classification of theories. But no similar result
is known for general abstract elementary classes. The stability spectrum of an
AEC K is the function from cardinals to cardinals which gives the supremum
of the cardinals of the number of Galois types over a model in K of fixed
cardinality.

Question 17 Is the stability spectra of an abstract elementary classes (even in
a countable language with LS(K) = ω) one of a finite set of functions? Does
ω-stable imply stable in all cardinals?

Baldwin, Kueker, and VanDieren [BKV00] give a positive response to the
last question but only under the extremely strong hypotheses of both (ℵ0,∞)-
tameness and (ℵ0,∞)-locality. Grossberg and VanDieren earlier noted in
[GV06a] (they state stronger hypotheses):

Theorem 18 Let µ ≥ LS(K). If K is (µ,∞)-tame and µ-stable then K is
stable in all κ with κµ = κ.

This follows by the standard argument after you have shown every Galois
type does not µ-split over a set of size µ and (using tameness) that Galois types
(over appropriate base models) have unique non-splitting extensions. In the
first order case, the converse to Theorem 18 requires the definition of κ(T ) and
a simple argument [Bal88] uses a considerable amount of the forking calculus.
A natural question is
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Question 19 What is the ‘correct’ notion of superstablity for AEC?

There are a number of suggestions [She99, GV, Gro02] revolving around
variants in defining a concept analogous to the κ(T ) in first order logic: the
length of a string of ‘forking’ extensions. Further complications arise from find-
ing an appropriate notion of dependence. Below we discuss another candidate
for superstability from [She01, She0x] where there is no assumption that K has
arbitrarily large models. We ask naively

Question 20 Is there a µ so that stability for all λ > µ is a robust concept for
AEC? How does it interact with the purely structural notion: Every union of a
chain of saturated members of K is saturated.

While it is straightforward in regular cardinals κ to show stability in κ implies
the existence of a saturated model in κ, considerations like those above would be
necessary to extend this to any κ in which K is stable. Note that the converse
(non-stable in λ implies no saturated model in λ) is a rather technical argument
in the first order case.

The positive results on the categoricity spectrum for classes with arbitrarily
large models depend at least indirectly on subtle applications of EM-models
[Bal05]. The work of [GV06a, GV06b, GV, GVV, HV] proceeds in quite a
different direction. Largely eschewing the use of EM-models the authors try to
identify construction and ‘stability theoretic conditions’ that allow one to carry
out more refined versions of the first order analysis (aiming towards geometric
stability) in suitably restricted AEC.

Grossberg and VanDieren originated this trend in their analysis of the stabil-
ity spectrum for tame AEC in [GV06a]; it continued in further work on the sta-
bility spectrum [BKV00] and the analysis of categoricity in [GV06b, GV, BL00]
and under even stronger hypotheses in [HV, Hyt]. This kind of work suggests
several directions of inquiry.

Some of the crucial notions in this development are limit models, a new
notion of strong type, towers of models and the means for analyzing them,
variations on splitting (with assorted cardinal parameters). Determining the
interrelations of these notions provides a fertile field of study. The notion of
limit model is essential for studying structures with cardinality LS(K) because
under the usual notion of Galois type (the domain of a type must be a model),
the concept of a saturated model in cardinality LS(K) is vacuous.

The work of [HV] is novel as it introduces a notion of type defined by map-
pings (i.e. a kind of Galois type) but considers types over arbitrary subsets.
Key to this is the observation that the proof of transitivity in establishing an
equivalence relation by tpA(a) = tpB(b) if there is an automorphism of the
universe taking a to b uses amalgamation not of the domain models (in the
sense of Shelah’s definition [She83a, She99, Gro02]) but rather amalgamation
of the models in which the types are realized. They work in the general con-
text of AEC with arbitrarily large models and amalgamation and make the
additional assumptions that K has a prime model and extend amalgamation

11



to disjoint amalgamation. Making effective use of this notion of Galois type
requires the condition we’ll call H-local: if A ⊂ B and for every finite a in
A, tpA(a) = tpB(a), then A ≺K B. This condition is easily seen to hold for
all syntactically defined AEC (e.g. models of an arbitrary sentence of Lω1,ω.)
They further prove that for tame AEC satisfying their general conditions, their
notion of weak type coincides with Galois types. (In general a and b have the
same Galois type implies they have same weak type implies they have the same
syntactic type.)

One can ask for mathematical examples to justify the study of particular
families of hypotheses. For example,

Question 21 Is there an example of an AEC K with LS(K) = ω which is
(ℵ0,∞)-tame and is not defined by a sentence in Lω1,ω(Q) ?

Excellence is another condition to impose; in [GH89], the class K is defined
in Lω1,ω. Excellence requires a notion of independence; essentially excellence
consists in requiring the existence of ‘prime models’ over independent n-cubes.
See [Bal04] for an intuitive introduction. Grossberg and Hart [GH89] prove a
‘main gap’ theorem in their context. It would be interesting to try to replace ω-
stable (part of the definition of excellence in this context) by stable. Grossberg,
Kolesnikov and Lessmann [GK, Kol05, GL05] deal with AEC that are equipped
with an independence notion. Thus, this work is in the tradition of [She87, BS90]
and has some similarity to Shelah’s [She0x, She00b] study of frames.

Much of the work described here has been under the hypothesis of amalga-
mation. Naturally, the original more general question remains.

Question 22 Explore AEC which have arbitrarily large models but without as-
suming the amalgamation property.

Shelah and Villaveces [SV99] and VanDieren [Vanb] weaken ‘amalgamation
property’ to ‘no maximal models’. With the use of the Devlin-Shelah diamond
they are able to prove the existence of a ‘dense’ family of amalgamation bases
and carry over much of the analysis. In [Vanb], under further model theoretic
hypotheses, the uniqueness of limit models is established. With the increased
understanding of categoricity transfer problem for classes with amalgamation,
the following is much more accessible.

Question 23 Prove Theorem 4 and Theorem 16, but weakening the hypothesis
of amalgamation property to no maximal models. To get the full information
we have for classes with amalgamation, prove (an appropriate variant) of The-
orem 7 under the weaker hypothesis.

The study of infinitary logic often appeared to have a heavy dependence on
axiomatic set theory. This was perhaps exacerbated by studies (e.g. [MS90,
KS96]) of logics Lκ,ω or Lκ,κ where κ was a large (compact or measurable)
cardinal. But some extensions beyond ZFC are needed for the harder theme
in studying AEC; we no longer assume that K has arbitrarily large models.
Certain landmark results depend on set theory. In particular, Shelah originally
assumed � to prove:
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Theorem 24 [She75] If a sentence of Lω1,ω(Q) is ℵ1-categorical then it has a
model of power ℵ2.

But, in [She87] and as expounded in [Gro02, Bal] the result can be given an
extremely beautiful proof in ZFC; it is not quite possible to describe the result
just in the language of AEC’s [She, Bal]. In contrast two other results:

Theorem 25 Suppose 2ℵ0 < 2ℵ1 .

1. If the AEC K is ℵ1-categorical then K is ω-stable.

2. Suppose 2λ < 2λ+
. If the AEC K is λ-categorical, with λ ≥ LS(K) but

fails the amalgamation property in λ then it has 2λ+
models of cardinality

λ+.

actually require the set theoretic hypothesis. This necessity is outlined in
[She87], and more clearly in the revised version of that paper [She]; see [Gro02]
for a good account of the positive Theorem 25 2). Complete proofs of both re-
sults including finding counterexamples in Lω1,ω showing the necessity of weak
CH appear in [Bal]. The most striking result which has no apparent upward
Löwenheim-Skolem assumption is Shelah’s proof of the appropriate version of
the Morley conjecture for Lω1,ω:

Theorem 26 [She83a, She83b] Assume for each n < ω, 2ℵn < 2ℵn+1 . If ψ is
a sentence in Lω1,ω in a countable vocabulary that is categorical in all cardinals
less than ℵω the ψ defines an excellent class that is categorical in all cardinals.

The only full account of this is [She83a, She83b]; there are several accounts
of the deduction of categoricity from excellence (e.g. [Les, Bal]. The excellence
is actually derived from the hypothesis that there are less than the maximum
number of models in each cardinal below ℵn (there is a further set theoretic
hypothesis hidden here; ‘maximum’ is a little more complicated than usual; see
[She83a, She83b]).

The Lω1,ω work depends heavily the assumption that LS(K) = ω and for this
reason it does not apply nor extend in a straightforward manner to Lω1,ω(Q).
More generally, to extend this kind of result to K with LS(K) > ω requires
different methods. Shelah has a number of works in this area, which have not yet
been published. Assuming, 2λ < 2λ+

< 2λ+
, Shelah asserts in the introduction

to [She01] that categoricity of an AEC in three successive cardinals implies the
existence of a model in the next cardinal. Further, he asserts that categoricity
in the third cardinal can be replaced by ‘fewer than the maximal number of
model. Further works approaches the goal of showing that for an arbitrary AEC,
categoricity on a sufficiently long interval of cardinals implies the existence of
arbitrarily large models.

Shelah’s work [She0x, She00a, She00b] introduces the notion of a frame and
the stronger notion of a good frame. He regards this as a notion of ‘supersta-
bility’ for this context. In short, a frame describes more extensive conditions
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on the models in an AEC K of cardinality κ which suffice to move upward (say
from categoricity in κ to existence or uniqueness of models in larger powers).
In the other direction, the existence of a frame in cardinality κ is derived from
categoricity in cardinals above κ; a major theme is to reduce the number of
cardinals above κ in which one must make the categoricity hypothesis.

In one direction one can hope to generalize to AEC the fundamental results
of first order stability theory; to classify AEC by some kind of stability notion,
develop a robust notion of independence, and compute the possible spectra of
an AEC under natural conditions.

A greater challenge is to relate this general study more directly to problems
from mainstream mathematics. Broadly speaking, in the first order case, it
was found that the studying the first order theory of a structure, the reals,
the complexes, and others allowed one to get serious information about the
structure. If the most optimistic scenario concerning Zilber’s conjectures worked
out, there would be evidence for the Lω1,ω(Q)-theory playing a similar role.
But there is no candidate at present for associating a more general AEC with
a structure. It seems more likely to me that the significance of these ideas will
rest more in their role of enabling us to understand that Cantor’s paradise is not
merely combinatorial; rather future generations will understand a rich world of
complex mathematical structures of unlimited cardinality. In particular, the fact
that combinatorial principles (Devlin-Shelah diamond) which are derived from
the weak GCH, allow the development of a smooth model theory may eventually
be viewed as evidence for the naturality of the weak GCH. Further, as we begin
to consider in depth structures with cardinality beyond the continuum, we may
focus even more on considering naturally defined classes of structures rather
than individual structures.
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