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1 What is a quantifier?

Webster’s Ninth New Collegiate Dictionary gives two definitions:

a. a prefixed operator that binds the variables in a logical formula by specifying their
quantity. b. a limiting noun modifier (as five in “the five young men”) expressive of
quantity and characterized by occurrence before the descriptive adjectives in a noun
phrase.

Let’s start by thinking about quantifiers in natural language. Using definition (b) as a paradigm,
we can generate some clear examples:

1. five young men

2. no young men

3. all young men

4. some young men

5. two young men

6. more than six young men

7. at most four young men

8. a few young men

9. many young men

10. most young men

11. a young man

Notice that, grammatically, these quantifiers are determiners: they modify a noun phrase. (Other
determiners in English include the, my and those.) To form a sentence using a quantifier, one
generally needs to add two things: a (possibly modified) noun (obtaining five young men) and a verb
phrase (obtaining Five young men sang in harmony).1

In this respect, our natural-language quantifiers are different from the familiar quantifiers of
first-order logic, which just require you to add one thing (an open formula) to get a sentence. We
can better capture the grammatical form of English sentences using binary quantifiers: quantifiers
that take two open sentences and form a sentence:

1The noun can sometimes be omitted, when it is clear from context: cf. “Most went,” “Few went,” “Many went,” “Two
went,” “Some went,” and “All went.” Note, however, that “No went” and “A went” always seem bad.

1



• allx(Fx,Gx) — All Fs are G.

• at-least-twox(Fx,Gx) — At least two Fs are G.

• mostx(Fx,Gx) — Most Fs are G.

Why did we not do it this way from the start? Well, in a way, we did. Aristotelian logic and
medieval logic used binary quantifiers. It was Frege, Russell, Peano, and the other mathematical
logicians of the early twentieth century who got us using the unary quantifier. This was because
it was convenient to do so: the semantics and proof theory are simpler, and the unary quantifiers
are just what is needed to explicate mathematical concepts and facilitate mathematical proof. But
in part it was a reaction against the earlier logical tradition, which Frege regarded as too slavishly
wedded to traditional syntax. (See §3 of Frege’s Begriffsschrift, where he rails against the subject-
predicate analysis of the sentence.)

2 Semantics of binary quantifiers

The semantics of binary quantifiers is relatively straightforward. For comparison, here is how we
define truth in a model on an assignment for formulas headed by a unary quantifier:

• ∀αψ is true in M on a iff for every assignment a′ that agrees with a on the values of every
variable except possibly α, ψ is true inM on a′.

• ∃αψ is true in M on a iff for some assignment a′ that agrees with a on the values of every
variable except possibly α, ψ is true inM on a′.

And here’s how we’d do it for some binary quantifiers:

• allα(φ,ψ) is true inM on a iff for every assignment a′ such that φ is true inM on a′ and a′

agrees with a on the values of every variable except possibly α, ψ is true inM on a′.

• someα(φ,ψ) is true inM on a iff for some assignment a′ such that φ is true inM on a′ and
a′ agrees with a on the values of every variable except possibly α, ψ is true inM on a′.

• mostα(φ,ψ) is true inM on a iff for most assignments a′ such that φ is true inM on a′ and
a′ agrees with a on the values of every variable except possibly α, ψ is true inM on a′.

• at-least-twoα(φ,ψ) is true inM on a iff for at least two assignments a′ such that φ is true in
M on a′ and a′ agrees with a on the values of every variable except possibly α, ψ is true in
M on a′.

Whew! A mouthful. No wonder the early pioneers of logic didn’t do it this way.

3 Defining binary quantifiers in terms of unary ones

Indeed, what Frege noticed is that one could define the traditional binary quantifiers used in syl-
logistic logic in terms of monadic quantifiers and truth-functional connectives. You already know
how that can be done:

• someα(φ,ψ)a ∃x(φx ∧ψx)
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• allα(φ,ψ)a ∀x(φx ⊃ ψx)

• at-least-twoα(φ,ψ)a ∃x∃y(x ≠ y ∧φx ∧φx ∧ψx ∧ψy)

• at-most-oneα(φ,ψ)a ∀x∀y((φx ∧φy ∧ψx ∧ψy) ⊃ x = y)

4 Most—an essentially binary quantifier

Our success here might encourage us to think that this trick can always be pulled off: given any
binary quantifier, we can define it in terms of truth-functional connectives and unary quantifiers.
But it turns out that this is not the case. And the problem is not just that some binary quantifiers
(like a few) are vague, and others (like enough) context-sensitive. There are perfectly precise binary
quantifiers that cannot be defined in terms of unary quantifiers.

A paradigm example is Most, interpreted as meaning more than half. You might think, initially,
that the binary quantifier Most could be defined in terms of a unary quantifier M , where Mxφ is
true in a model just in case more objects in the domain satisfy φ than do not. But how? We might
start by formalizing Most cows eat grass as Mx(Cx ⊃ Gx), but this will be true in any model where
cows make up fewer than half the objects in the domain, no matter how many of them eat grass.
On the other hand, Mx(Cx∧Gx) will be true only in models where cows are the majority of objects
in the domain. So neither definition captures the meaning of Most cows eat grass. Of course, there
are other things we could try. (Try them on your own, and convince yourself that nothing like this
is going to work.)

5 Unary quantifiers beyond ∀ and ∃

We don’t need to look to binary quantifiers to find quantifiers that resist definition in terms of ∃ and
∀. Try defining M (our unary quantifier “most objects in the domain”) in terms of ∃ and ∀. There
are other unary quantifiers that cannot be defined in terms of ∃ and ∀, including “there are finitely
many,” “there are infinitely many,” and “there are an even number of.” Adding these quantifiers to
standard first-order logic yields more expressively powerful logics.2 (There is a cost, though: these
logics are usually harder to deal with than first-order logic, and various nice properties of first-order
logic fail to hold when the new quantifiers are added.)

Exercise (extra credit):

5.1 There’s no way to say “there are infinitely many Fs” in standard first-order
logic. Still, one can write sentences of first-order logic that only have mod-
els with infinite domains. Can you come up with one?

6 Generalized quantifiers

Logicians and linguists have tried to generalize the notion of a quantifier in a precise way. This
work is called the theory of generalized quantifiers.

2The bible for this kind of thing is Jon Barwise and Solomon Feferman’s Model-Theoretic Logics (Berlin: Springer,
1985).)
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Here is one common characterization, which will be suitable for our purposes:

Quantifier (1) An n-ary quantifier Q expresses a relation among n sets and the domain.

Sometimes an additional constraint is imposed, at least on logical quantifers: that the relation must
be topic-neutral. A relation is topic-neutral if it does not depend on the particular individuals that
belong to the sets.3 The point of this restriction is to rule out, for example, a unary quantifier
“everything except Jonathan.” You can think of a topic-neutral relation between sets as a purely
quantitative relation.

Let’s think this through with some examples (where D is the domain):

• ∀xφ expresses the condition {x : φx} = D.

• ∃xφ expresses the condition {x : φx} ∩D ≠ �.

• allx(φ,ψ) expresses the condition {x : φx} ⊃ {x : ψx}.

• mostx(φ,ψ) expresses the condition |{x : φx}| > |{x : ψx}|.

Set-theoretic Notation:

• {x : φx} — the set of things that satisfy φx.

• |S| — the number of members S contains (its cardinality).

• S ∩ T — the intersection of S and T (the set of members belonging to both
in common).

• S\T — the difference of S and T (the set containing all the members of S
that are not in T ).

In what follows I will sometimes use the abbreviation F for {x : Fx} when it is
clear that a set is intended.

7 Descriptions as quantifiers

A definite description is a phrase that denotes an object as the unique thing satisfying a certain
description, for example, the present king of France, the first dog born at sea, the bed, John’s father
(=? the father of John), and perhaps also 2 + 6 (=? the sum of 2 and 6). Although not all definite
descriptions have the form the φ, they can all be rephrased that way, so we’ll talk in what follows
as if all definite descriptions have that form.

There is no consensus among linguists and philosophers of language about the semantics, or
even the grammar, of definite descriptions in natural languages. Definite descriptions are, in many
ways, like terms: they can appear in many of the same places in a sentence as a name or pronoun:

John kicked Sam. John kicked the wall.
Superman is Clark Kent. Superman is the nerdy reporter.
Sam, Judy, and Pete went swimming. Sam, Judy, and the teacher went swimming.

3This notion can be defined precisely in terms of invariance under permutations of the domain. We won’t go into
this here, but you may wish to consult Section 5 of my Stanford Encyclopedia of Philosophy article on logical constants.

4

http://plato.stanford.edu/entries/logical-constants/


Those who are impressed by this usually take definite descriptions to be terms grammatically, and
referring expressions semantically. On the other hand, definite descriptions also pattern with quan-
tifiers:

Two men kicked Sam. The men kicked Sam.
Every dirty dog in the street barked. The dirty dog in the street barked.
Every boy loves some girl. Every boy loves the girl.

Those who are impressed by these similarities have taken definite descriptions to be quantifiers.
Here I’ll present the quantificational alternative. Later, when we’re discussing the “slingshot argu-
ment,” we’ll consider how a non-quantificational account of definite descriptions might go.

We said that a binary quantifier can be thought of as expressing a relation among sets. For
example, at-least-twox(Fx,Gx) says that |F ∩ G| ≥ 2 (the set of elements common to F and G has
two or more members), and mostx(Fx,Gx) says that |Fx ∩ Gx| > |Fx\Gx| (the set of elements
common to F and G has more members than the set of elements that belong to F but not G).
Can we give a parallel treatment of the? Well, what must be the case if The F is G is to be true?
Surely, there must be an F . And presumably there can’t be more than one F . Finally, this F must
be G. Taken together, these conditions are plausibly necessary and sufficient for the truth of The
F is G. But clearly, these conditions can be represented as relations among sets. thex(Fx,Gx) iff
|F| = |F ∩G| = 1.

We can define truth in a model on an assigment for our new quantifier as follows. (Note the
parallel with the definitions for our other binary quantifiers.)

the theα(φ,ψ) is true in M on an assignment a iff there is exactly one assignment a′ such that φ
is true inM on a′ and a′ differs from a at most in the value of α, and ψ is true inM on a′.

So is the in English the quantifier the(, )? As I mentioned, this is a highly contentious question.
The match is pretty close. We don’t use the F when there is more than one (salient) F , or when there
aren’t any.4 So it is tempting to suppose that the F is G just means that there is a unique (salient) F
and it is G. If that’s right, then the in English is a quantifier.

However, the quantificational analysis also predicts that a sentence like The present king of
France is bald should come out false. And that has seemed odd to many philosophers. Surely, they
say, if there is no present king of France, then The present king of France is bald fails to make a
determinate claim—and so fails to be either true or false. One who uses this sentence to make an
assertion may presuppose that there is a present king of France, but it seems odd to say (with the
quantificational account) that the sentence entails this.

8 Definite descriptions and scopes

One straightforward prediction of the quantificational account is that definite descriptions, like
other quantifiers, have scopes. This means that certain English sentences will be predicted to have
two readings, depending on how the scope ambiguity is resolved. Consider, for example:

(1) Fifteen presidential candidates are not campaigning in California.

This might mean either of two things:

(1w) fifteenx(Px,¬Cx)
There are fifteen presidential candidates who are not campaigning in California.

4Why the qualification “salient”?
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(1n) ¬fifteenx(Px,Cx)
It’s not the case that there are fifteen presidential candidates who are campaigning in Califor-
nia. (There might be only six who are.)

In (1w), the quantifier takes wide scope over the negation. In (1n), it takes narrow scope (and the
negation takes wide scope).

Do we see this phenomenon with definite descriptions? Consider:

(2) The present king of France is not washing my car.

(2w) thex(Kx,¬Wx)
The present king of France is such that: he is not washing my car.

(2n) ¬thex(Kx,Wx)
It’s not the case that the present king of France is washing my car.

On the quantificational reading, (2w), but not (2n), entails that there is a present king of France. Can
we use (2) to mean both (2w) or (2n)? Or can we get only one reading? Ask yourself whether (2) can
be true if (as is actually the case) there is no present king of France.

9 Russell’s theory of descriptions

Historically, the quantificational account of definite descriptions is due to Bertrand Russell, while
the nonquantificational approach was championed by Frege and Strawson.5

9.1 Definite descriptions as “incomplete symbols”

Our approach so far has been to analyze the as a binary quantifier. Russell’s actual approach was
a bit different. He did not have the theory of generalized quantifiers at his disposal. So instead of
representing the as a quantifier, as we did above, he represented the F as a kind of term, which he
then showed how to eliminate in favor of (standard) quantifiers.

Russell’s definite description terms are constructed using an upside-down iota ( ι). ιis a variable-
binding operator, just like ∀ and ∃, but unlike them it forms a term, not a formula. If φ is a formula
and α is a variable, then ιαφ is a term. For example:

• the F = ιxFx

• the F that Gs b = ιx(Fx ∧Gxb)

Terms formed using ιcan occur in formulas wherever other kinds of terms (variables and individual
constants) can occur. For example:

• the F is H: H ιxFx

• the F Gs the H that Gs the K: G( ιxFx)( ιx(Hx ∧Gx ιyKy))
5If you’d like to explore this debate, an excellent place to start is Gary Ostertag’s anthology Definite Descriptions: A

Reader (Cambridge: MIT Press, 1998). Stephen Neale’s book Descriptions (Cambridge: MIT Press, 1990) is an influential
presentation and defense of the quantificational view.
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(Put parentheses around iota-terms when there is threat of ambiguity.)
Russell understood the terms formed using his upside-down iota not as genuine terms, but as

“incomplete symbols.” In effect, he took formulas containing iota-terms to be abbreviations for
formulas not containing them.

It is not hard to convince yourself that, unlike most(, ), the binary quantifier the(, ) can be defined
using standard first-order quantifiers:

(R1) thex(φx,ψx) ≡ ∃x(φx ∧∀y(φy ⊃ y = x)∧ψx)
(The φ is ψ iff there is a unique φ and it is ψ.) This is essentially the equivalence Russell uses
to eliminate definite descriptions, but there is a twist due to his use of ιterms rather than binary
quantifiers. As a first attempt at translating (R1) to Russell’s notation, we might try:

(R2) ψ ιxφx ≡ ∃x(φx ∧∀y(φy ⊃ y = x)∧ψx).
However, there is a problem with (R2) as it stands. The problem stems from the fact that definite
descriptions, like other quantifiers, have scopes. As noted above, we should get two different read-
ings of “the present king of France is not washing my car.” How can we represent these two distinct
quantificational readings using the iota-term notation? As it stands, we can’t. The formula

¬W ιxKx (1)

is ambiguous between a narrow-scope and a wide-scope reading. (R2), as it is currently stated, says
that it is equivalent to both

¬∃x(Px ∧∀y(Py ⊃ y = x)∧ Rx) (2)

(taking ψx to be Rx) and
∃x(Px ∧∀y(Py ⊃ y = x)∧¬Rx) (3)

(taking ψx to be ¬Rx). But (1) can’t be equivalent to both (2) and (3), because they aren’t equivalent
to each other! Our rule (R2) is not sound.

What we need to solve this problem is a way of indicating the scope of definite descriptions
written using iota-terms. Russell and Whitehead do this in Principia Mathematica by putting a copy
of the iota term in square brackets in front of the description’s scope.6 So, the narrow-scope reading
of (1) would be written

¬[ ιxPx]R ιxPx (4)

and the wide-scope reading would be written

[ ιxPx]¬R ιxPx. (5)

(Note that the bracketed iota-term serves no function other than to indicate scope.) Using this
notation, we can write a (sound) version of our equivalence rule:

(R3) [ ιxφx]ψ ιxφx ≡ ∃x(φx ∧∀y(φy ⊃ y = x)∧ψx).
Following Russell and Whitehead, we will adopt the convention that if the scope-indicator is

omitted, the iota-term will be assumed to have the narrowest possible scope. Thus,

¬R ιxPx (6)

is to be read as
¬[ ιxPx]R ιxPx, (7)

which according to (R3) is equivalent to

¬∃x(Px ∧∀y(Py ⊃ y = x)∧ Rx). (8)

6See Stephen Neale, Facing Facts, 95–6.
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10 Proofs

Since for any formula containing the quantifier the or Russell’s ιoperator we can always find an
equivalent formula that uses only the standard quantifiers, it is easy to extend our proof system to
accommodate definite descriptions.

Russellian Equivalences: Whenever you have the right-hand side of an instance of (R1) or (R3),
you may replace it with the left-hand side, and vice versa, with justification “RE.” This is a
substitution rule, so it may be used even on subformulas.

Examples:

1 thex((Fx ∧Gx),Hx) hyp.

2 ∃x((Fx ∧Gx)∧∀y((Fy ∧Gy) ⊃ y = x)∧Hx) RE 1 (φx = Fx ∧Gx, ψx = Hx)

1 ∃x(Gx ∧∀y(Gy ⊃ y = x)∧ (Fx ⊃ Hx)) hyp.

2 [ ιxGx](F ιxGx ⊃ H ιxGx) RE 1 (φx = Gx, ψx = Fx ⊃ Hx)

Important note: Although terms formed using ιare grammatically terms, they do not function
semantically as terms (on Russell’s account). Thus

• In specifying a model, you do not specify an interpretation for these terms.

• You cannot use these terms to get substitution instances when doing ∀ Elim, ∀ Intro, ∃ Elim,
or ∃ Intro.7

• In particular, you cannot instantiate ∀x(x = x) with ιxFx to get ιxFx = ιxFx. You’d better
not be able to, because ιxFx = ιxFx implies ∃xFx. So you’d be able to prove the existence
of an F for any F ! (Contrary to what you may be thinking, this is not a good thing.)

Exercises:

10.1 How would you express the following sentences in logical notation? Do it
first using the generalized quantifier the(, ), and then using the Russellian

ιoperator.

(a) The man who killed Kennedy is a murderer.

(b) The shortest spy is the tallest pilot.

(c) Not every woman likes her father.

10.2 Give a deduction of ∃xFx from [ ιxFx]( ιxFx = ιxFx).

10.3 Show that the = Elim rule is still valid when one term has the form ιxFx,
not just when both terms are individual constants. That is, give a deduction
that shows the validity of the following:

a = ιxFx, Ga, / G ιxFx

7This may seem too restrictive. After all, if we have the farthest star is a gas giant, can’t we conclude something is a
gas giant? Yes—but you can get this conclusion even with the restrictive rules we have. (Convince yourself of this.)
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