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Finite Model Theory

In the 1980s, the term finite model theory came to be used to describe the study

of the expressive power of logics (from first-order to second-order logic and in

between), on the class of all finite structures.

The motivation for the study is that problems in computer science (especially in

complexity theory and database theory) are naturally expressed as questions

about the expressive power of logics.

And, the structures involved in computation are finite.
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Model Theoretic Questions

The kind of questions we are interested in are about the expressive power of

logics. Given a formula ϕ, its class of models is the collection of finite relational

structures A in which it is true.

Mod(ϕ) = {A | A |= ϕ}

What classes of structures are definable in a given logic L?

How do syntactic restrictions on ϕ relate to semantic restrictions on

Mod(ϕ)?

How does the computational complexity of Mod(ϕ) relate to the

syntactic complexity of ϕ?
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Descriptive Complexity

A class of finite structures is definable in existential second-order logic if,

and only if, it is decidable in NP.

(Fagin)

A closs of ordered finite structures is definable in least fixed-point logic if,

and only if, it is decidable in P.

(Immerman; Vardi)

Open Question: Is there a logic that captures P without order?

Can model-theoretic methods cast light on questions of computational

complexity?
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Compactness and Completeness

The Compactness Theorem fails if we restrict ourselves to finite structures.

The Completeness Theorem also fails:

Theorem (Trakhtenbrot 1950)

The set of finitely valid sentences is not recursively enumerable.

Various preservation theorems (Łoś-Tarski, Lyndon) fail when restricted to finite

structures.

The finitary analogues of Craig Interpolation Theorem and the Beth Definability

Theorem also fail.
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Tools for Finite Model Theory

It seems that the class of finite structures is not well-behaved for the study of

definability.

What tools and methods are available to study the expressive power of logic in the

finite?

• Ehrenfeucht-Fraı̈ssé Games (reviewed in this lecture);

• Locality Theorems (examined in Lecture 2);

• Complexity (the topic of Lectures 3 and 4);

• Asymptotic Combinatorics (later in this lecture and again in Lecture 5).
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Elementary Equivalence

On finite structures, the elementary equivalence relation is trivial:

A ≡ B if, and only if, A ∼= B

Given a structure A with n elements, we construct a sentence

ϕA = ∃x1 . . .∃xnψ ∧ ∀y
∨

1≤i≤n

y = xi

where, ψ(x1, . . . , xn) is the conjunction of all atomic and negated atomic

formulas that hold in A.
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Theories vs. Sentences

First order logic can make all the distinctions that are there to be made between

finite structures.

Any isomorphism closed class of finite structures S can be defined by a first-order

theory:

{¬ϕA | A 6∈ S}.

To understand the limits on the expressive power of first-order sentences, we

need to consider coarser equivalence relations than ≡.

We will also be interested in the expressive power of logics extending first-order

logic. This amounts to studying theories satisfying a weaker axiomatisibality

requirement than finite axiomatisability.
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Quantifier Rank

The quantifier rank of a formula ϕ, written qr(ϕ) is defined inductively as follows:

1. if ϕ is atomic then qr(ϕ) = 0,

2. if ϕ = ¬ψ then qr(ϕ) = qr(ψ),

3. if ϕ = ψ1 ∨ ψ2 or ϕ = ψ1 ∧ ψ2 then

qr(ϕ) = max(qr(ψ1), qr(ψ2)).

4. if ϕ = ∃xψ or ϕ = ∀xψ then qr(ϕ) = qr(ψ) + 1

Note: For the rest of this lecture, we assume that our signature consists only of

relation and constant symbols.

With this proviso, it is easily proved that in a finite vocabulary, for each q, there are

(up to logical equivalence) only finitely many sentences ϕ with qr(ϕ) ≤ q.
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Finitary Elementary Equivalence

For two structures A and B, we say A ≡p B if for any sentence ϕ with

qr(ϕ) ≤ p,

A |= ϕ if, and only if, B |= ϕ.

Key fact:

a class of structures S is definable by a first order sentence if, and only if,

S is closed under the relation ≡p for some p.

In a finite relational vocabulary, for any structure A there is a sentence θp
A

such

that

B |= θp
A

if, and only if, A ≡p B
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Partial Isomorphisms

The equivalence relations ≡p can be characterised in terms of sequences of

partial isomorphisms

(Fraı̈ssé 1954)

or two player games.

(Ehrenfeucht 1961)

A ≡p B

if, and only if, there is a sequence

I0 ⊇ I1 ⊇ · · · ⊇ Ip

of non-empty sets of partial isomorphisms from A to B such that

for each f ∈ Ii+1, a ∈ A and b ∈ B, there are:

• f ′ ∈ Ii such that f ⊆ f ′ and a ∈ dom(f ′)

• f ′′ ∈ Ii such that f ⊆ f ′′ and b ∈ rng(f ′′)

Anuj Dawar July 2008



12

Ehrenfeucht-Fraı̈ss é Game

The p-round Ehrenfeucht game on structures A and B proceeds as follows:

• There are two players called Spoiler and Duplicator.

• At the ith round, Spoiler chooses one of the structures (say B) and one of the

elements of that structure (say bi).

• Duplicator must respond with an element of the other structure (say ai).

• If, after p rounds, the map ai 7→ bi is a partial isomorphism, then Duplicator

has won the game, otherwise Spoiler has won.

Theorem (Fraı̈ss é 1954; Ehrenfeucht 1961)

Duplicator has a strategy for winning the p-round Ehrenfeucht game on A and B

if, and only if, A ≡p B.
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Using Games

To show that a class of structures S is not definable in FO, we find, for every p, a

pair of structures Ap and Bp such that

• Ap ∈ S, Bp ∈ S; and

• Duplicator wins a p round game on Ap and Bp.

Examples:

• Sets of even cardinality;

• Linear orders of even cardinality;

• 2-colourable graphs;

• connected graphs.
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Undefinability in First-Order Logic

For many of these examples, one can show undefinability by more classical

methods.

Let QFLO be the theory consisting of sentences:

• < is a linear order with end points;

• every element except the minimal one has a unique predecessor;

• every element except the maximal one has a unique successor;

• for each n: there are at least n elements.

We can show QFLO is complete by showing a countably saturated model.

If ϕ was a sentence defining evenness, both QFLO ∪ {ϕ} and QFLO ∪ {¬ϕ}

would be consistent.
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Asymptotic Probabilities

Let S be any isomorphism closed class of σ-structures (where σ is a finite,

relational signature).

Let Cn be the set of all σ-structures whose universe is {0, . . . , n− 1}.

We define µn(S) as:

µn(S) =
|S ∩ Cn|

|Cn|

The asymptotic probability, µ(S), of S is defined as

µ(S) = lim
n→∞

µn(S)

if this limit exists.
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Asymptotic Probabilities

Many interesting properties (of graphs, for instance) have asymptotic probability

either 0 or 1.

• µ(connectivity) = 1

• µ(3-colourability) = 0

• µ(planarity) = 0

• µ(Hamiltonicity) = 1

• µ(rigidity) = 1

• µ(k-clique) = 1 for fixed k

By contrast, µ(even number of nodes) is not defined and

µ(even number of edges) = 1/2.
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0–1 Law

Theorem (Glebskı̆i et al. 1969; Fagin 1974)

For every first order sentence in a relational signature ϕ, µ(Mod(ϕ)) is defined

and is either 0 or 1.

This provides a very general result on the limits of first order definability.

Compare the results (recall La Roche tutorial to the effect that even cardinality is

not definable in first-order logic

in the language of equality;

in the language of linear order.
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Extension Axioms

Given a relational signature σ,

an atomic type τ(x1, . . . , xk) is the conjunction of a maximally

consistent set of atomic and negated atomic formulas.

Let τ(x1, . . . , xk) and τ ′(x1, . . . , xk+1) be two atomic types such that τ ′ is

consistent with τ .

The τ, τ ′-extension axiom is the sentence:

∀x1 . . .∀xk∃xk+1(τ → τ ′).
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Asymptotic Probability of Extension Axioms

Fact:

For any extension axiom ητ,τ ′ , µ(Mod(ητ,τ ′)) = 1.

Proof Idea:

• Given a σ-structure A of size n, and a k-tuple a in A satisfying τ , there is a

probability ∼ 1

αn that there is no extension of a satisfying τ ′.

• There are roughly ∼ nk

β
tuples in A satisfying τ .

• The expected number of counterexamples to η in A is ∼ γ nk

αn .

• The probability that A satisfies η goes to 1 as n grows.

where α, β and γ are constants.
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Finite Collections of Extension Axioms

Note:

If ∆ is a finite set of extension axioms, then

µ(Mod(∆)) = 1.

For any finite set of classes S1, . . . , Sm, each of asymptotic probability 1,

µ(S1 ∩ . . . ∩ Sm) = 1.
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The Gaifman Theory

Let Γ be the set of all extension axioms for a fixed signature σ.

By compactness, Γ has a model (albeit an infinite one).

Moreover, Γ is complete.

To prove this, we show If A |= Γ and B |= Γ, then, for every p,

A ≡p B.

The extension axioms gurantee that Duplicator has a response to any move by

Spoiler.

Thus, any two models of Γ are elementarily equivalent.

Anuj Dawar July 2008



22

Proof of 0–1 Law

Let ϕ be any σ-sentence.

By completeness of Γ, either

Γ |= ϕ or Γ |= 6= ϕ.

By compactness, in the first case, there is a finite ∆ ⊆ Γ such that ∆ |= ϕ.

Since µ(Mod(∆)) = 1, it follows that µ(Mod(ϕ)) = 1.

Similarly, in the second case, µ(Mod(¬ϕ)) = 1, and therefore

µ(Mod(ϕ)) = 0.
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