
ESSLLI 1998 COURSE

Tableau-Based Theorem Proving

Reiner H�ahnle

Department of Computer Science
University of Karlsruhe

D-76128 Karlsruhe
http://i12www.ira.uka.de/~reiner

June 30, 1998 { Draft version

This article is distributed as course material for attendees of my lecture \Tableau-Based
Theorem Proving" held at European Summer School on Logic, Language and Informa-

tion, ESSLLI, Saarbr�ucken, August 1998. It is a partial and preliminary version of a
chapter entitled \Tableaux and Connections" to be part of the Handbook of Automated
Reasoning, edited by J. A. Robinson & A. Voronkov, published by Elsevier. Reproduc-
tion is allowed only with permission. The preliminary nature of this document entails
that it has not been proof read by anyone else besides the author. The reader is advised
to be aware of errors and omissions. Most, but not all material presented in the course
is contained herein. Please report any errors you may �nd to reiner@ira.uka.de.

1

2 Reiner H�ahnle

Tableau-Based Theorem Proving 3

Abstract of the Course

Tableau-based approaches to automated deduction have gained a lot of ground in
recent years after many years during which they have been mainly considered for
teaching and in proof theoretic studies. One reason for this development is that
competitive implementations of �rst-order logic tableau provers are now available,
but another reason for the renewed interest is the large number of applications for
deduction in non-classical in linguistics, intelligent agents, knowledge representa-
tion to name just a few �elds. I will present various tableau-related calculi in a
uniform, modern framework with new, concise completeness proofs. Important im-
plementations as well as basic techniques for accommodating non-classical aspects
are discussed as well. A brief introduction into the required concepts of computa-
tional logic is included.

1. Introduction

Reasoning methods based on tableaux and their relatives gained a lot of attention in
the past decade after a long period of near stagnation. One reason is that theoretical
and implementational progress �nally permitted to build tableau-based theorem
provers [23, 42] that can compete [60] with state-of-the-art resolution-based systems.
Another reason is the increased need for deduction in various non-classical logics
for which tableau calculi are particularly well suited.
Today, a large number of re�nements of tableau-like calculi aimed at e�cient

automated proof search are available. In fact, there are so many of them that it has
become quite di�cult for the non-specialist keep track of the main developments.
The di�culty of this task is incrased by the plethora of names for closely related sys-
tems: connection tableaux, connection method, hypertableaux, matrices, matings,
model elimination, model generation, near-Horn logic programming, SL-resolution
all are relatives of each other.
In this paper I introduce the main lines of development of tableau-like calculi,

as far as they are relevant for automated reasoning, in a uniform framework. At
the same time I work out their mutual relationships and I classify the re�nements
according to various properties.
Most re�nements of tableau calculi are de�ned and implemented only for clause

normal form. Accordingly, after a brief treatment of tableaux for full �rst-order logic
in Section 3, the bulk of the material is presented on the clause level. In Section 4
the main types of re�nements of tableau-like calculi are de�ned and discussed. The
history of tableaux-like proof methods is long and vined. Many key ideas were
discovered several times independently. I trace the major developments in a very
brief historical Section 5.

4 Reiner H�ahnle

2. Preliminaries

Here some basic ingredients of computational logic are collected. This section cannot
replace a proper introduction into logic and elementary issues of theorem proving.
I recommend Fitting's book [18] as a background.

2.1. Syntax

A �rst-order signature � = hP�; F�i consists of a non-empty set P� of predicate
symbols and a set F� of function symbols. For skolemization we do not use symbols
from F� but from a special in�nite set Fsko of Skolem function symbols that is
disjoint from F�; the extended signature hP�; F� [Fskoi is denoted with ��. The
symbols in P�, F� and Fsko may be used with any non-negative arity. In addition,
there is an in�nite set Var of object variables.
Given a signature �, the sets T� of terms and A� of atoms over � are inductively

de�ned by:
(i) Object variables and 0-ary function symbols from � are terms.
(ii) If t1; : : : ; tn are terms, f is a n-ary function symbol from �, and p is a n-ary

predicate symbol from �, then f(t1; : : : ; tn) is a term and p(t1; : : : ; tn) is an atom
over �.
The logical operators are the connectives _ (disjunction), ^ (conjunction) and

: (negation), the quanti�er symbols 8 and 9, and the constant operators true and
false.
Given a signature �, the set L� of formulas1 over � is inductively de�ned by:
(i) true, false and atoms over � are formulas.
(ii) If � is a formula, then :� is a formula.
(iii) If �1; : : : ; �n, n > 1, are formulas none of which is a conjunction (disjunc-

tion), then �1 ^ : : :^ �n (resp. �1 _ : : :_ �n) is a formula.
(iv) If � is a formula and x 2 Var, then (8x)� and (9x)� are formulas. � is called

the scope of the quanti�er.
Formulas that are identical up to associativity of _ and ^ are identi�ed. A literal

is an atom or a negated atom.
A ground term (atom, literal, formula) is a term (atom, literal, formula) that

contains no object variables. The set of ground terms is abbreviated with T 0. No
di�erence is made between ground �rst-order formulas and propositional formulas.
The complement � of a formula � is de�ned by: � = if � is of the form : ,

and � = :� otherwise.
An occurrence of an object variable x in a formula is called bound if x occurs in

the scope of a quanti�er over x, it is called free otherwise. A formula without free
variable occurrences is a sentence.
A clause is a sentence of the form (8x1) � � � (8xn)L1 _ � � � _ Lm, where Li are

literals. For sake of readability the quanti�er pre�x of �rst-order clauses is usually

1 Implication and equivalence are considered to be de�ned operators, i.e., � ! is the same as
:�_ , and �$ is the same as (� ^) _ (:�_:).

Tableau-Based Theorem Proving 5

not written (but assumed to be present). Note that clauses are particular formulas.
When C, D are ground clauses C � D means that every literal of C occurs also in
D; L 2 D expresses that the literal L occurs in clause D. A clause is a tautology if
it contains p and :p for some atom p.
A substitution is a mapping � : Var! T�. It is extended to terms and (sets of)

formulas as usual:

{ �(c) = c, �(true) = true, �(false) = false

{ �(s(t1; : : : ; tn)) = s(�(t1); : : : ; �(tn)) for s 2 F� [P�
{ �(A �B) = �(A) � �(B) for � 2 f:;^;_g
{ �(QxA) = Qx�0(A) for Q 2 f8; 9g, where �0 = �nfx=tjt 2 T g
{ �(fA1; : : : ; Ang) = f�(A1); : : : ; �(An)g

If �(x) = x for all but �nitely many x 2 Var it is denoted � = fx1=t1; : : : ; xn=tng.
Application of substitutions is usually written post�x (note that �(���) = (��)� =
���). Without loss of generality we assume that the range of substitutions � never
contains object variables that occur bound in a formula � to which � is applied.
When the ti are ground terms one has a ground substitution. A renaming is a
substitution � which is a permutation such that the variables in its range are new
in the context, where � appears.
If T is a non-empty set of terms and jT�j = 1, then � is a uni�er of T . It is a

most general uni�er (MGU) if for all uni�ers � of T there is a substitution � such
that � = � � �.

Proposition 2.1. Uni�ability of a �nite set of terms can be decided and, when
positive, an idempotent MGU computed in linear time.

An instance of a clause C = 8x1 � � � 8xnL1 _ � � �_Lm is an expression (L1 _ � � �_
Lm)�, where � is a renaming. When � is a ground substitution one has a ground
instance of C.
A substring of a formula � which is itself a formula is called a subformula of

�. If is a subformula of � and � 6= then is a proper subformula of �. If
is a proper subformula of � such that there is no proper subformula � of � with �
being a proper subformula of �, then is an immediate subformula of �.
As we deal with arbitrary formulas we have to account for the fact that a dis-

junctive subformula may occur negated and thus is implicitly a conjunctive formula
etc. Also, the sign of a literal may be implicitly complemented.

De�nition 2.1. An occurrence of a subformula � of � 2 L� is
(i) positive if � = �,
(ii) negative (positive) if � is of the form : and the occurrence of � is positive

(negative) in ,
(iii) positive (negative) if is an immediate subformula of �, but � 6= : , and

the occurrence of � is positive (negative) in .

6 Reiner H�ahnle

2.2. Semantics

Given a �rst-order signature � a �rst-order structure M = hD; Ii consists of a non-
empty set D called domain and an interpretation I that assigns to each f 2 F� a

mapping I(f) :D�(f) !D and to each p 2 P� a relation I(p) � 2D
�(p)

.
A variable assignment is a mapping � : Var!D. The d-variant of � at x is

�dx(y) =

(
d if x = y

�(y) otherwise

In any �rst-order structure M a variable assignment � is extended to terms:

xM;� = �(x) for x 2 Var

f(t1; : : : ; tn)M;� = I(f)(tM;�
1 ; : : : ; tM;�

n) for f(t1; : : : ; tn) 2 T

Satis�ability of formulas � in M and �, written (M; �) j=� is de�ned as follows:

(M; �) j= true for allM and �
(M; �) j= false for no M and �

(M; �) j=p(t1; : : : ; tn) i� (tM;�
1 ; : : : ; tM;�

n) 2 I(p) for p(t1; : : : ; tn) 2 A
(M; �) j=:� i� not (M; �) j=�
(M; �) j=�1 ^ � � � ^ �n i� (M; �) j=�i for all i 2 f1; : : : ; ng
(M; �) j=�1 _ � � � _ �n i� (M; �) j=�i for at least one i 2 f1; : : : ; ng
(M; �) j=8x� i� (M; �dx) j=� for all d 2D
(M; �) j=9x� i� (M; �dx) j=� for at least one d 2D

A �rst-order �-structure M is a model of a set of formulas M � L�, denoted
M j=� M , if (M; �) j=� for all � 2 M and variable assignment �. � is a logical
consequence of M , denoted M j=� � if each model of M is also a model of �. � is
valid, written j=� �, when each �-structure M is a model of �.
A �rst-order �-structure M = hD; Ii is a term structure if D = T 0.

Proposition 2.2. For all � 2 L� and sets of L�-sentences M : M j=� � i� M [
f:�g is unsatis�able.

Theorem 2.1. If a sentence � 2 L� is satis�able, then it has a �-term model.

Assume f� contains at least one constant, then T 0
� 6= ;. A structure hT 0

� ; Ii,
where I(f)(t1; : : : ; tn) = f(t1; : : : ; tn) for all f 2 F�, is called Herbrand structure.

Theorem 2.2 (Clausal Version of Herbrand's Theorem). Let S be a �nite, unsat-
is�able set of clauses. Then there is a �nite set S of ground instances of S such
that S is unsatis�able.

A proof is, for example, in [58].

Tableau-Based Theorem Proving 7

3. The Tableau Method

3.1. Informal Introduction

It is common to view the tableau method as a proof by contradiction and case
distinction (this view was already stressed by pioneers Beth [10] and Hintikka [30]).
More precisely, it allows one to systematically generate subcases until elementary
contradictions are reached. Let us go through a small example:
Assume we want to prove the following simple theorem from elementary set

theory: for any sets P;Q;R; S, if (1) S\Q = ;, (2) P � Q[R, (3) P = ; ! Q 6= ;,
and (4) Q [R � S, then P \R = ;.
We give a proof by contradiction, therefore, assume P \R 6= ;. From (3) we know

that there is an element c 2 P (case 1) or there is an element d 2 Q (case 2). We
proceed with case 1. The assumption applied to c yields that c 62 P (case 1.1) or
c 62 R (case 1.2). Case 1.1 is contradictory. In case 1.2 apply (2) to c: if c 2 P then
c 2 Q or c 2 R. But we know already that c 2 P and c 62 R which leaves case 1.2.2,
c 2 Q, to consider. Using (1) similarly as the assumption yields case 1.2.2.1, c 62 S.
Finally, from (4) we have: if c 2 Q [R then c 2 S. Again, the second possibility is
a contradiction, and case 1.2.2.1.1, c 62 Q[R, remains. Thus, c 62 Q, contradiction.
The remaining case 2 is similar.
This proof is easier to follow if the case distinctions are displayed tree-like as

in Figure 1. We observe that case distinctions could be generated schematically
depending on the form of their premiss. At several points, premisses had to be
suitably instantiated. (1), (2) and (4) are universally quanti�ed, for instance, (1)
says that for all elements x, x cannot be both an element of S and of Q. In auto-
mated theorem proving �nding instances is done by uni�cation|one tries to �nd
a substitution that produces a contradiction in the current branch of the proof
(in the example this is fx=cg). In general one needs, of course, to apply a premiss
more than once during a proof. This multiplicity cannot be computed in advance
(otherwise, �rst-order logic would be decidable). One of the problems that tableau
methods must solve is to systematically enumerate \enough" (this is made precise
later) instances of universally quanti�ed formulas.
From premiss (3) one obtains existentially quanti�ed expressions saying that at

least one of P and Q must contain an element. In automated theorem proving
such witness elements are produced by Skolemization: the existentially quanti�ed
variable is replaced by a \new" (again, this is made precise later) term.

3.2. Non-clausal Tableaux with Uni�cation

3.2.1. Unifying Notation
The �rst step in formalizing the considerations in the previous section is to supply
formal rules that tell in which way a formula is analyzed according to its lead-
ing connective. Smullyan [58] observed that some work can be saved if non-literal
formulas are grouped into types which are treated identically: � for formulas of

8 Reiner H�ahnle

(1){(4) & Ass.

P 6= ;

c 2 P

1

c 62 P
1.1

�

c 62 R
1.2

c 62 P
1.2.1

�

c 2 Q
1.2.2

c 62 S

1.2.2.1

c 62 Q [R

1.2.2.1.1

c 62 Q

c 62 R

�

c 2 S

1.2.2.1.2

�

c 62 Q

1.2.2.2

�

c 2 R
1.2.3

�

Q 6= ;

d 2 Q

2

� � �

Figure 1. Structure of an informal proof by contradiction and case distinction.

conjunctive type, � for formulas of disjunctive type, for quanti�ed formulas of
universal, and � for quanti�ed formulas of existential type. Correspondence between
formulas and their types is summarized in Table 1.
The letters �, �, , and � are used to denote formulas of (and only of) the

appropriate type. In the case of - and �-formulas the variable x bound by the (top-
most) quanti�er is made explicit by writing (x) and 1(x) (resp. �(x) and �1(x));
accordingly 1(t) denotes the result of replacing all occurrences of x in 1 by t.
Associativity of ^ and _ justi�es conjunctive and disjunctive formulas with an
inde�nite number of arguments.
Some authors [37, 58] prefer to work with signed formulas. These are expressions

of the form T�, F�, where � is a formula. Signed formula tableaux relate more
directly to sequent calculi, because T-signed formulas play the rôle of formulas
standing left of a sequent arrow while F-signed formulas are on the right (see also
Section 4.7.1 below). In classical logic theorem proving there is no particular gain
from signs, but in non-classical logics their use is indispensable [6, 24].

3.2.2. Tableau Rules
With unifying notation decomposition rules for arbitrary formulas can be given in
a concise way.
In Table 2 expansion rule schemata for the various formula types are given. Pre-

misses and conclusions are separated by a horizontal bar, while vertical bars in the
conclusion denote di�erent extensions. The formulas in an extension are implicitly
conjunctively connected, and di�erent extensions are implicitly disjunctively con-

Tableau-Based Theorem Proving 9

� �1; : : : ; �n

�1 ^ : : :^ �n �1; : : : ; �n

:(�1 _ : : :_ �n) :�1; : : : ;:�n

::� �

:false true

:true false

� �1; : : : ; �n

�1 _ : : :_ �n �1; : : : ; �n

:(�1 ^ : : :^ �n) :�1; : : : ;:�n

 1

(8x)(�(x)) �(x)

:(9x)(�(x)) :�(x)

� �1

:(8x)(�(x)) :�(x)

(9x)(�(x)) �(x)
Table 1

Correspondence of formulas and their types.

nected. We use n-ary �- and �-rules, i.e., when the �-rule is applied to a formula
 = �1 _ : : :_ �n, then is broken up into n subformulas (instead of splitting it
into two formulas �1 _ : : :_ �r and �r+1 _ : : :_ �n, 0 < r < n).
Type formulas are simply stripped from their quanti�er while the quantifed

variable is renamed into a object variable not ocurring elsewhere. Instantiation of
free variables is delayed.
The �-rule is the most technical rule. Its purpose is to replace an existential

quanti�er with a witness element or Skolem term. It incorporates two important
optimizations: the �rst is that the choice of the witness element merely depends
on the free variables in �, not on all free variables on the current branch; secondly,
the leading function symbol f of the Skolem term may be the same for �-formulas
which are identical up to variable renaming, formally:

De�nition 3.1. Given a signature � = hP�; F�i, the function sko assigns to
each � 2 L�� a symbol sko� 2 Fsko such that (a) sko� > f for all f 2 Fsko occurring
in �, where > is an arbitrary but �xed ordering on Fsko, and (b) for all �; �0 2 L�

the symbols sko� and sko
0
� are identical if and only if � and �0 are identical up to

variable renaming (including renaming of the bound variables).

The purpose of condition (a) in the above de�nition of sko is to avoid cycles like:
sko� occurs in �0 and sko

0
� occurs in �.

Both improvements of the �-rule together have the consequence that its conclu-
sion can be computed locally to the formula �|no \global" information is required.

10 Reiner H�ahnle

�

�1
...

�n

�

�1 � � � �n

(x)

1(y)

y 2 Var is new
to the tableau.

�(x)

�1(sko�(x1; : : : ; xn))

x1; : : : ; xn are the
free variables in �.

Table 2
Rule schemata for tableaux with uni�cation.

3.2.3. Tableau Proofs
As was hinted at already, tableau proofs are trees whose nodes are formulas that are
(sub)goals in the proof and the tree structure gives the logical dependence between
them. Assume we want to prove that a set of sentences � logically implies a sentence
 . By Proposition 2.2 this amounts to checking that the set of sentences �[f: g
is unsatisfable.

De�nition 3.2. Let � be a �rst-order signature. A tableau (over �) is a �nitely
branching tree whose nodes are formulas from L�� . A branch in a tableau T is
a maximal path in T .2 Given a set � of sentences from L�, a tableau for � is
constructed by a (possibly in�nite) sequence of applications of the following rules:

(i) The tree consisting of a single node true is a tableau for � (initialization
rule).

(ii) Let T be a tableau for �, B a branch of T , and a formula in B[�. If the
tree T 0 is constructed by extending B by as many new linear subtrees as an instance
of a tableau rule schema in Table 2 with premiss has extensions, and the nodes
of the new subtrees are the formulas in the extensions of the rule instance, then T 0

is a tableau for � (expansion rule).
(iii) Let T be a tableau for �, B a branch of T , and and 0 literals in B [�.

If and 0 are uni�able with MGU �, and T 0 is constructed by applying � to all
formulas in T (i.e., T 0 = T�), then T 0 is a tableau for � (closure rule).

The last item of the previous de�nition incorporates two simpli�cations: �rst,
MGUs are used instead of arbitrary substitutions; second, and 0 are literals,
not arbitrary formulas. The former is crucial, because there are only �nitely many
MGUs of (complemented) formulas on a �nite tableau. If � is �nite this implies
that there are systematic procedures for enumerating the (�nite) tableaux for �.
The branches in a tableau correspond to di�erent subcases in a proof. Obvi-

ously, Def. 3.2(iii) is a means to produce a contradiction in a subcase/branch. A
tableau proof is �nished when this has been achieved for all branches. The following
terminology is standard:

De�nition 3.3. In a tableau T for a set � of sentences a branch B is closed i�
B [� contains a pair �;:� 2 L�� of complementary formulas, or false; otherwise,
it is open. A tableau is closed if all its branches are closed.

2 When no confusion can arise, branches are frequently identi�ed with the set of their nodes
(formulas).

Tableau-Based Theorem Proving 11

A tableau proof for (the unsatis�ability of) a set � � L� of sentences is a closed
tableau T for �.

[6;{] true

[7;3] (9x)(p(x))

[9;7] p(c)

[10;5] :(p(x1) ^ r(x1))

[11;10] :p(x1)

�

fx1=cg

[12;10] :r(x1)

[13;2] :p(x2) _ q(x2) _ r(x2)

[14;13] :p(x2)

�

fx2=cg

[15;13] q(x2)

[17;1] :(s(x3) ^ q(x3))

[18;17] :s(x3)

[20;4] :(q(x4) _ r(x4)) _ s(x4)

[21;20] :(q(x4) _ r(x4))

[23;21] :q(x4)

[24;21] :r(x4)

�

fx4=cg [22;20] s(x4)

�

fx3=cg

[19;17] :q(x3)

�

id

[16;13] r(x2)

�

id

[8;3] (9x)(q(x))

[25;8] q(d)

Figure 2. Partial tableau proof for � from Example 3.1.

Example 3.1. We are now in a position to formalize the introductory example
from Section 3.1. Sets P;Q;R; S are represented by unary predicates p; q; r; s: their
characteristic functions. Then, over the signature � = hfp; q; r; sg; fgi, the claim
holds if and only if the set � consisting of L�-sentences (1) :(9x)(s(x) ^ q(x)),
(2) (8x)(:p(x)_ q(x)_ r(x)), (3) (9x)(p(x))_ (9x)(q(x)), (4) (8x)(:(q(x)_ r(x))_
s(x)), (5) :(9x)(p(x) ^ r(x)) is unsatis�able.
Figure 2 shows a tableau T for �. The nodes of the tableau are numbered starting

from 6 (the numbers 1{5 refer to the formulas in �); an expression [i; j] is in front
of the i-th node Ni, where j signi�es that Ni stems from an expansion rule applied
to Nj (respectively, to formula (j) in �).
All branches of T except the rightmost one can be closed by virtue of the closure

rule; a closure is indicated by an arc between its complementary literals, labelled
with the required MGU. T is not yet a tableau proof for �, but it can be extended

12 Reiner H�ahnle

to one by adding a copy of the subtableau with root node 17 below node 25 and
instantiating the free variables in that copy with d (instead of c).

3.2.4. Tableau Semantics and Soundness
Since our goal is to use tableaux as a framework for formal proofs, we require to
extend semantics from formulas to tableaux. Our guideline here is to ensure that
a tableau for � is closed i� � is unsatis�able. We �xed already that a tableau is
thought of as the disjunction of its branches which in turn are considered as con-
junctions of their labels. By a standard argument then, the equivalence above is
reduced to the question whether the tableau construction rules leave tableau satis�-
ability unaltered. This is a routine matter for all but the �-rule which requires some
care. Recall that two optimizations were incorporated into this rule (Section 3.2.2):
(i) the variables of the Skolem term are restricted to the free variables of �, (ii) the
leading function symbol sko� of the Skolem term is not unique in a tableau proof.
Tableau semantics must be carefully chosen to reect these restrictions. To meet (i)
it su�ces to treat free variables in a tableau essentially as if they were universally
quanti�ed.

De�nition 3.4. A tableau T for � � L� is satis�able if there is a structureM of �
such that for every variable assignment � there is a branch B of T with (M; �) j= B.
In that case we say that M is a model of T , denoted by M j= T .

For (ii) it is important that Skolem function symbols are interpreted in the \right"
way. The most elegant way to achieve this, is to de�ne formula semantics with
respect to only such interpretations|let us call them canonical interpretations. Of
course, one needs to show then that each satis�able formula can be satis�ed by a
canonical interpretation.

De�nition 3.5. A term structure M = hD; Ii is canonical i� for all variable as-
signments � and �(x) 2 L�� : if (M; �) j= �(x) then (M; �) j= �1(sko�(x1; : : : ; xn)),
where x1; : : : ; xn are the free variables in �.

Lemma 3.1 ([7]). Given a signature �, if the set � � L� of sentences is satis�able,
then there is a canonical structure M� over �� such that M� j= �.

Corollary 3.1. Let M� be a canonical structure over ��, � a variable assignment,
and � 2 L��; and let �0 be constructed from � by (a) replacing a positive occurrence
of some �(x) in � by �1(sko�(x)(x1; : : : ; xn)), or by (b) replacing a negative occur-

rence of �(x) in � by �1(sko�(x)(x1; : : : ; xn), where x1; : : : ; xn are the free variables
in �(x). Then (M�; �) j= � implies (M�; �) j= �0.

Lemma 3.2. Any tableau for a satis�able set of L�-sentences is satis�able.

Proof. By de�nition of tableaux there is a sequence T1; : : : ; Tm (m > 0), where
T = Tm and T1 is the initial tableau whose single node is true, and where Ti+1

Tableau-Based Theorem Proving 13

is constructed from Ti by applying a single tableau expansion or closure rule. By
Lemma 3.1, the input set is satis�ed by a canonical structure M� over ��. By
induction on m one proves that M� satis�es all of T1; : : : ; Tm and hence T . The
induction step is trivial and all cases, but the �-rule case are straightforward (see
[18] for a detailed proof). The latter, however, follows from the corollary.

Now assume we have a closed tableau T for a set of L�-sentences �. Obviously, no
structure and variable assignment can satisfy a closed branch, so T is unsatis�able.
By the preceding lemma, � is unsatis�able as well. This proves:

Theorem 3.1 (Soundness). If there is a tableau proof for a set � � L� of sen-
tences, then � is unsatis�able.

3.3. From Calculus to Proof Procedure

Tableau soundness gives the desirable property of tableaux with uni�cation that a
closed tableau for � signi�es validity of �. Remains the question whether for all
valid sentences a tableau proof exists and, if this is the case, how it can be found.
While the �rst question is answered a�rmatively in Section 3.4, for the second one
a fully satisfactory answer is not yet available. Let me point out why it is a di�cult
problem.
It is straightforward to derive a tableau proof procedure from De�nition 3.2, but

note that such a procedure is indeterministic: usually, a great number of rules is
applicable to any given tableau. More precisely, one �rst must select a branch B,
where a rule is applied, then decide whether an expansion rule or a closure rule is
used; in the �rst case one must choose a formula 2 B[�, in the second case a pair
of literals on B. Let us refer to these kinds of indeterminism with the phrases select
branch, select formula, select pair, and select mode in the following. Making these
choices deterministic in an arbitrary way almost certainly results in an incomplete
proof procedure.
In Figure 3, for example, the -formula is always preferred for expansion rule

application, delaying expansion of the inconsistent second formula inde�nitely. In
an obvious way, the formula Q^:Q is treated unfair. This motivates the following
de�nition.

� = fQ ^:Q;

(8x)P (x)g
true

P (x1)

P (x2)...
-rule

-rule

Figure 3. Incompleteness caused by unfair select formula.

14 Reiner H�ahnle

De�nition 3.6. The construction of a sequence (Tn)n>0 of tableaux for � � L�,
where Tn is obtained from Tn�1 by applying a tableau expansion rule, is fair if the
following holds for all branches B in the in�nite tableau that is approximated by
that sequence: (1) all �, �, and � occurring on B or in � were used to expand B
(by applying the appropriate expansion rule); (2) all occurring on B or in � were
used in�nitely often to expand B (by applying the -rule).

One may construct a fair sequence of tableaux for any set of sentences. Combin-
ing fair application of the expansion rule with fair application of the closure rule,
however, is a di�cult problem, because tableaux with uni�cation are destructive:

De�nition 3.7. A tableau calculus is non-destructive if all tableaux that can be
constructed from a given tableau T contain T as an initial subtree; otherwise the
calculus is destructive.

For example, at �rst sight it might seem to be a good idea to apply the closure
rule in a \greedy" manner that is as early as possible. Not so. One problem is that
several pairs of closure literals (with incompatible MGUs) may compete, but this is
not all. In Figure 4, independently from which branch is closed �rst, the variable x1
gets \used up" by a substitution that blocks closure of the other branch. Of course,
a second free variable instance of the -formula may be created, but then the same
happens one level below etc.

 = ((P (b) ^P (c))! P (x))! :(Q(x)! (Q(b) _Q(c)))
� = f(8x) ; P (a); :Q(d)g

true

:((P (b) ^ P (c))! P (x1))

P (b) ^ P (c)

:P (x1)

:(Q(x1)! (Q(b) _Q(c)))

Q(x1)

:(Q(b) _Q(c))

possible

closure
possible

closure

Figure 4. Incompleteness caused by unfair select mode.

A non-destructive tableau procedure does not su�er from this problem, because
it is (trivially) proof conuent :

De�nition 3.8. A tableau proof procedure is proof conuent if from every tableau
for an unsatis�able set of sentences a closed tableau can be constructed.

A destructive tableau proof procedure still might be proof conuent, but as wit-
nessed by the previous example, it might as well be not. A deterministic tableau
proof procedure which is not proof conuent is incomplete. At the present time,
no practical, proof conuent destructive tableau proof procedure is known (there is

Tableau-Based Theorem Proving 15

hope, however, see the discussion at the end of Section 3.3). Therefore, it is worth
discussing possible ways around the problem.3

An obvious way to enforce proof conuency of tableaux with uni�cation consists
in delaying any application of the closure until all tableau branches can be closed
simultaneously by a suitable substitution. This is the path chosen in Fitting's text
book [18]|it has its ine�cencies: �rst, one cannot discard closed branches until
the proof is essentially �nished which might lead to storage problems, and second,
after each expansion rule the whole tableau must be tested for closure which is very
redundant.
Another option for obtaining a complete tableau proof procedure comes from

the observation that its indeterminism is locally �nite|from each tableau only a
�nite number of successors can be constructed. Thus one can turn each tableau
into a �nitely branching OR node of an AND-OR search tree which may then be
searched in a breadth �rst manner. This approach is impractical because of space
requirements.
Stickel [59] suggested to replace breadth �rst search by depth f irst search with

backtracking and iterative deepening of the search depth (DFID search) which has
only a small overhead in run time as compared to breadth �rst search, but is a lot
more space e�cient [33]. Tableau proof search procedures based on DFID turn out
to be elegantly and e�ciently implementable in logic programming languages [59,
3, 8].
To increase e�ciency of search it is important to get rid of as many OR nodes as

possible. In the DFID setup this means to minimize the amount of backtracking. It
is obvious that one may choose any deterministic strategy for select branch as all
branches need to be closed eventually. In addition, it is not di�cult to implement a
fair strategy for select formula [18]. This leaves the|destructive|branch closure.
Ideally, one would like to have a fair selection rule not only for formula selection, but
for closure selection as well, thus yielding a proof conuent proof search procedure
for tableaux with uni�cation.

3.4. Tableau Completeness

The preceding discussion shows that it is di�cult to ensure completeness of tableaux
with uni�cation for a deterministic proof search procedure. On the other hand, it
is not too di�cult to show mere existence of a closed tableau for each unsatis�able
set of sentences. The presentation of the latter result closely follows [7].
It is convenient to work with a data structure that slightly abstracts from tableau

branches: so-called Hintikka sets (named after their inventor [30]) may contain an
in�nite number of formulas whose order is irrelevant. A model can be immediately
constructed for any Hintikka set.

3 Another reason is that some of the more important re�nements of the tableau calculus are not
proof conuent already on the propositional level. This discussed in Section 4.3 below.

16 Reiner H�ahnle

De�nition 3.9. A set H � L�� of sentences is a Hintikka set if it satis�es the
following conditions: (1) false 62 H and there are no complementary literals in H.
(2) If � 2 H, then all �i are in H. (3) If � 2 H, then some �i is in H. (4) If
(x) 2 H, then 1(t) 2 H for all ground ��-terms t. (5) If �(x) 2 H, then �1(t) 2 H
for some ground ��-term t.

Lemma 3.3 (Hintikka). Every Hintikka set is satis�able.

Proof. A term model M = hD; Ii of H is de�ned by: tI = t for all t 2 D, and
pI(t1; : : : ; tk) = true i� p(t1; : : : ; tk) 2 H for ground atoms p(t1; : : : ; tk) over �

�. By
induction on the structure of formulas in H it is easy to prove that M j= H.

Theorem 3.2 (Completeness). If the set � � L� of sentences is unsatis�able, then
there is a tableau proof for �.

Proof. Let (Tn)n>0 be a fair sequence of tableaux for � starting with the tableau
consisting of the single node true; this sequence approximates the in�nite tree T1.
We de�ne a particular ground substitution �1 as follows: let (Bk)k>0 be an enumer-
ation of the branches of T1 and (�i)i>0 an enumeration of the -formulas in T1.
For every -formula �i, if �i occurs on Bk let xijk be the new variable introduced by
the j-th application of the -rule to �i on Bk. Finally, let (tj)j>0 be an enumeration
of all ��-ground terms.
To ensure that Bk de�nes a model, the instances of �i on Bk�1 must \cover"

all ground terms tj . It su�ces to choose �1(xijk) = tj for all i; j; k > 0.
By construction of �1 and fairness of T1, if B is a branch in T1 and B�1

is open, then B�1 [� is a Hintikka set and so � is satis�able. This contradicts
the assumption, hence T1�1 is closed. T1� is a �nitely branching tree and the
distance of all formulas involved in closures to the root node is �nite. Then, by
K�onig's Lemma4, there is an n > 0 such that the �nite tableau Tn�1 is closed.
In general, �1 is not a most general uni�er of complementary literals used in

closures and cannot be used in an MGU closure rule application to Tn. Therefore, it
remains to show that �1 can be suitably decomposed: �1 = � ��r ��r�1 � � � ���1,
where �i is a most general closing substitution for the instance Bi�1�2 : : : �i�1 of
the i-th branch in Tn (0 < i < r + 1); � is the part of �1 not actually needed to
close Tn. The �i are constructed inductively:
Let �01 = �1. For 1 < i < r + 1, let �i be a most general substitution such that

(1) �0i�1 is a specialization of �i (there is a substitution �
0
i such that �0i�1 = �0i ��i)

and (2) �i is a closing substitution for Bi�1�2 : : : �i�1. Now �i is a most general
closing substitution of Bi�1�2 : : :�i�1. Otherwise, there is a closing substitution �00i
being more general than �i. The is-more-general relation is transitive, hence �00i is
more general than �0i�1 in contradiction to �i being already a suitable most general
substitution. Finally, let � = �0r .

4 \A tree that is �nitely branching but in�nite must have an in�nite branch." A proof is, for
example, in [18].

Tableau-Based Theorem Proving 17

It su�ces to apply the appropriate expansion rule exactly once to each �, �, or �-
formula on each branch to obtain a Hintikka set from a fairly constructed sequence
of tableaux. This has the practically relevant consequence that only to -formulas
must a rule be applied more than once per branch.

4. Clause Tableaux

In the present section a number of re�nements of the tableau procedure are in-
troduced. For a number of reasons, these re�nements are merely discussed on the
clause level:

{ Simpli�ed notation leads to easier detection of new re�nements
{ E�cient implementability
{ Completeness proofs stay managable
{ Comparability (most deduction procedures implemented on clause level)

Restricting attention to the clause level implies some limitations as well:

{ Some applications (such as software veri�cation) expect proofs on non-clausal
level: backtranslation from clauses can be tricky

{ For some non-classical logics a clause normal form is unknown

So there is considerable incentive to generalize the following results (partially this
has been done, for example, in [25]), but I think the material is more accessible in
the present, syntactically limited form.

4.1. Normal Form Computation

How �rst-order sentences are e�ciently transformed into clause sets is shown, for
example, in [49, 43].

4.2. Clause Tableau Proofs, Soundness, Completeness

4.2.1. Clause Tableaux
Let us start by stating suitably simpli�ed versions of De�nition 3.2 and 3.3.

De�nition 4.1. Let � be a �rst-order signature. A clause tableau (over �) is a
�nitely branching tree whose nodes are literals from L��. Given a clause set S
from L�, a clause tableau for S is constructed by a (possibly in�nite) sequence of
applications of the following rules:

(i) The tree consisting of a single node labeled with true is a tableau for S
(initialization rule).

(ii) Let T be a tableau for S, B a branch of T , and L1 _ � � � _ Lr an instance
of C 2 S. If the tree T 0 is constructed by extending B with r new subtrees and the
nodes of the new subtrees are labeled with Li, then T 0 is a tableau for S (extension
rule).

18 Reiner H�ahnle

(iii) Let T be a tableau for S, B a branch of T , and L and L0 literals in S. If L
and L0 are uni�able with MGU �, and T 0 is constructed by applying � to all literals
in T (i.e., T 0 = T�), then T 0 is a tableau for S (closure rule).

De�nition 4.2. In a clause tableau T for a set S a branch B is closed i� B
contains a pair of complementary literals; otherwise, it is open. A tableau is closed
if all its branches are closed.
A clause tableau proof for (the unsatis�ability of) a clause set S � L� is a closed

clause tableau T for S.

Example 4.1. A clause form of the formula set in Example 3.1 consists of clauses
(1) :s(x)_:q(x), (2) :p(x)_q(x)_r(x), (3) p(c)_q(d), (4) :q(x)_s(x), (5) :r(x)_
s(x), (6) :p(x)_:r(x). Observe that the nodes are a subset of the nodes in Figure 2.
Clause (5) is not used.

[7;{] true

[8;3] p(c)

[10;6] :p(x1)

�

fx1=cg

[11;6] :r(x1)

[12;2] :p(x2)

�

fx2=cg

[13;2] q(x2)

[15;1] :s(x3)

[16;4] :q(x4)

�

fx4=cg

[17;4] s(x4)

�

fx3=cg

[16;1] :q(x3)

�

id

[14;2] r(x2)

�

id

[9;3] q(d)

Figure 5. Partial clause tableau proof for S from Example 4.1.

Clause tableaux mainly constitute a syntactic simpli�cation of full �rst-order
tableaux. The main properties of the calculus are the same, in particular the dis-
cussion in Section 3.3 applies to them as well.
In contrast to the full �rst-order case the extension and closure rule only use

literals and clauses from the input set. This simpli�es some de�nitions.

4.2.2. Soundness and Completeness
Soundness of clause tableaux follows immediately from Theorem 3.1 by observing
that clauses are particular �rst-order formulas and extension rule 4.1.(ii) can be
composed of several applications of rule 3.2.(ii).

Tableau-Based Theorem Proving 19

Completeness could be obtained easily by suitable simpli�cation of the proof of
Theorem 3.2, but in the clausal case a more modular approach is useful. Following
Robinson [52], lifting a ground proof to a �rst-order proof is separated from proving
ground completeness of a calculus. The advantage is that the lifting part is similar
for all following tableau re�nements and must at most be sketched each time. So
it is su�cient to concentrate on ground completeness. Abstraction from �rst-order
issues greatly simpli�es completeness proofs of the more complicated calculi that
follow.

Theorem 4.1 (Lifting). Let S be an unsatis�able clause set, S an unsatis�able set
of ground instances of S and T a closed clause tableau for S. Then there is a closed
clause tableau T for S and a substitution � such that T = T� .

Proof. The main technical di�culty of this proof is that in De�nition 4.1.(iii) only
MGUs are to be used whereas S may contain arbitrary ground instances of clauses.
The following property of MGUs is needed:

If T 0 is a clause tableau, � a substitution such that T 0� is closed,
and � an MGU that closes any branch of T 0, then T 0�� = T 0� .

(4.1)

Proof of (4.1): by de�nition of an MGU and as � closes T 0, there is � 0 with �� 0 = � .
MGUs can be assumed to be idempotent, so T 0�� = T 0��� 0 = T 0�� 0 = T 0� .
Back to the main proof, let T 0 be constructed exactly as T but for each extension

step with C 2 S used in T , take instead an instance of the clause C 2 S of which
C is a ground instance. Obviously, T 0� = T for a suitable ground substitution � .
If B is an arbitrary open branch of T 0, then it is closed by � , so there is an MGU

� that closes B and rule 4.1.(iii) is applicable to obtain a clause tableau T 1 = T 0�.
By (4.1), T 1� = T 0� = T . Repeating this argument in a straightforward induction
over the number n of open branches in T 0 yields a closed clause tableau T = Tn

such that T� = T .

In the proof the sequence of branch closures was arbitrary which shows indepen-
dence of the select branch strategy.5

In the following it is su�cient to prove ground completeness for various instances
X of clause tableau restrictions:

Theorem 4.2 (Ground Completeness Schema). If the �nite ground clause set S is
unsatis�able, then there is a X-tableau proof for S.

We could proceed to prove ground completeness of unrestricted clause tableaux
right now, but in following sections ground completeness of various restrictions of
clause tableaux is proven of which completeness of the unrestricted calculus is an
immediate consequence.

5 When select clause is arbitrary, but fair, the theorem still holds in the weakened form that there
is a clause tableau T for S such that T� can be homeomorphically embedded into T .

20 Reiner H�ahnle

Theorem 4.3 (Completeness). If the clause set S is unsatis�able, then there is a
clause tableau proof for S.

Proof. Herbrand's Theorem 2.2 provides a �nite, unsatis�able set S of ground
instances of S. By Theorem 4.2 there is a closed ground clause tableau T for S and,
by Theorem 4.1, there is a closed clause tableau for S.

As announced already, the next goal is to �nd complete restrictions of clause
tableaux. It is su�cient to provide a suitable instance of Theorem 4.2, whenever
a ground X-tableau proof T lifts to a �rst-order X-tableau proof T . It is usually
su�cient to check that the proof of Theorem 4.1 can be used unaltered.
From the point of proof search, restricting the tableau calculus means to exclude

certain choices in select clause and select pair and to �x select branch in some way.

4.3. Connections

Connection conditions have been pioneered by Davydov [17], Bibel [11, 12], and
Andrews [1].

4.3.1. Strong Connections
Amajor drawback of the tableau calculus is that the extension rule 4.1.(ii) is applied
completely unguided which can clutter up tableaux with many nodes that do not
contribute to a proof.

Example 4.2. Consider the two clause tableaux for S = fp(x) _ q(x); r(x) _
s(x); :p(a); :q(a); :r(b); :s(b)g displayed in Figure 6. The tableau on the right
constitutes a minimal proof, while the second extension step in the tableau on the
left is completely unrelated to the initial step.

true

:p(a)

r(x1)

:r(b)

x1=b

s(x1)

p(x2)
...

q(x2)
...

true

:p(a)

p(x1)

x1=a

q(x1)

:q(a)

id

Figure 6. Redundant nodes in a tableau.

De�nition 4.3 ([36]). A connection tableau is a clause tableau in which every non-
leaf node L (except true) has L as one of its immediate successors.

Tableau-Based Theorem Proving 21

The tableau on right in Figure 6 is a connection tableau, the tableau on the left
is not. It is excluded by the connection restriction.
Connection tableaux are complete, but the proof is deferred until the next sec-

tion. The de�nition of connection tableaux implies that when T 6= true at least one
of the new branches generated by the tableau extension rule can be closed. This sug-
gests an implementation-oriented de�nition of connection tableaux obtained from
De�nition 4.1 by changing the �rst two rules:

(i0) For any instance L1 _ � � � _ Lr of C 2 S the tree constructed by extending
true with r new subtrees with nodes Li is a connection tableau for S.

(ii0) Let T be a tableau for S, B a branch of T ending with L, L1 _ � � �_ Lr an
instance of C 2 S. If L, Li (where i 2 f1; : : : ; rg) are uni�able with MGU � and
the tree T 0 is constructed by extending B with r new subtrees, where the nodes of
the new subtrees are Li, then T 0� is a connection tableau for S. This is called an
extension step.
Closures of open branches are unchanged and called reduction step. It is important

to note that while clause tableaux are independent of select clause, connection
tableaux are not:

Proposition 4.1. Ground connection tableaux are not proof conuent.

Proof. Consider S = fp; :p; qg and let q be the initial clause. It impossible to
make any further extension step, although S is clearly unsatis�able. (Examples
independent of the initial clause can be found in [35].)

4.3.2. Weak Connections
The extension rule (ii0) of connection tableaux has a natural weakening:
(ii00) Let T be a tableau for S, B a branch of T containing L, L1 _ � � � _ Lr an

instance of C 2 S. If L, Li (where i 2 f1; : : : ; rg) are uni�able with MGU � and
the tree T 0 is constructed by extending B with r new subtrees, where the nodes of
the new subtrees are Li, then T 0� is a clause tableau for S. (This is called a weakly
connected extension step.)
Let us call the resulting calculus weak connection tableaux.

De�nition 4.4. A clause set is minimally unsatis�able (mu) when it is unsatis�-
able and each of its proper subsets is satis�able. A clause is relevant in S when it
is contained in a mu subset of S.

It can be shown that weak connection tableaux are proof conuent provided that
select clause is implemented in a fair manner and the initial clause is relevant.
Unfortunately, testing for membership in a mu set is as expensive as testing unsat-
is�ability itself. This limits the usefulness of weak connection tableaux in practice,
but in Section 4.5 a slight relaxation will build the basis of a whole class of inter-
esting calculi which are proof conuent regardless of the initial clause.

22 Reiner H�ahnle

4.4. Regularity

One of the most important strategies in resolution theorem proving is subsumption.
In the tableau-based theorem proving it can be approximated by regularity :

De�nition 4.5. A clause tableau is regular when all of its branches contain at
most one occurrence of the same literal.

Example 4.3. Regularity can help to avoid applying substitutions that lead to
redundant proofs. Consider the tableau for S = fp(0); :p(x)_p(s(x)); :p(s(s(0)))g
in Figure 7. The �rst possible substitution for the middle branch renders the right
branch irregular and is thus avoided.

Implementing regular tableaux is not straightforward, because an admissible clo-
sure substitution can potentially unify as well formerly di�erent literals on branches
closed already. For e�ciency reasons one discards closed branches immediately, so
there must be a mechanism to exclude such critical substitutions. It was suggested
in [36] to create an inequality constraint of the form t1 6= t01 _ � � �_ tm 6= t0m, when-
ever two uni�able literals (:)p(t1; : : : ; tm) and (:)p(t01; : : : ; t

0
m) are encountered on

one branch. Then substitutions are applied to constraints as well and must ensure
their satis�ability. In the example above, the second extension step generates the
constraint s(0) 6= s(x2) which is not satis�ed by x2=0.

true

p(0)

:p(x1)

x1=0

p(s(x1))

:p(x2)

x2=0
irregular!

x2=s(x1)

p(s(x2))

:p(s(s(0)))

id

Figure 7. Advantage from regularity.

The following standard lemma is needed in the proof of of ground complete-
ness of regular connection tableaux. Its easy proof is given, for instance, in [39,
Lemma 2.3.2, p. 63]. The completeness theorem was �rst proven (di�erently) in
[35]. The present proof is due to [26].

Lemma 4.1. Let S be a mu ground clause set with C 2 S, D � C, and SD =
(S � fCg)[fDg. Then for any mu subset S00 of SD: (i) D 2 S00; (ii) D 6� D00 for
all D 6= D00 2 S00.

Tableau-Based Theorem Proving 23

Theorem 4.4. If the �nite ground clause set S is unsatis�able, then there is a
regular connection tableau proof for S.

Proof. We show by induction on the number k of literal occurrences in S: for any
relevant non-unit clause Cj 2 S, there is a closed regular connection tableau for S
whose initial step uses Cj. When there is no such clause there must be a mu subset
of unit clauses in S; it is trivial to �nd a regular connection tableau proof for such
a set.
k 2 f0; 1; 2g : either S is satis�able or it contains only unit clauses or the empty
clause and the claim is trivially satis�ed.
k > 2 : (see Figure 8) let Cj = L1 _� � �_Li _� � �_Ln be a relevant non-unit clause
in S and let T be the regular connection tableau resulting from an initial step with
Cj.
For all i 2 f1; : : : ; ng let SLi = (S � fCjg) [fLig. By Lemma 4.1.(i), C0

j = Li is

contained in an mu subset S0i of Si. Hence, Li occurs in a clause C
i of S0i. Moreover,

S0i contains less literals than S.
If Ci is a unit clause, then the i-th branch of T can be closed immediately, result-

ing in a regular connection tableau. Otherwise, applying the induction hypothesis
on Ci and S0i yields a closed regular connection tableau Ti for Si � S0i, where the
�rst extension step uses Ci.
By Lemma 4.1.(ii), Li occurs at most in C0

j and is therefore only used in unit
extension steps in Ti (highlighted by boldface type in the �gure). As shown in the
�gure, each Ti is glued together with T at Li maintaining connectedness. In the
resulting tableau irregularity can at most occur with the Li. But as Li occurs on
top of each Ti (circled occurrence) the unit extension steps with Li simply can be
replaced by reduction steps with the circled occurrence of Li. As Si � fC0

jg � S,
the result is a regular connection tableau for S.

4.5. Orderings and Selection Functions

4.5.1. Redundancy and Saturation in Tableaux
Let us take up the theme expressed in the regularity restriction, namely to avoid
redundancy in tableau proofs.
Any open branch B in a ground clause tableau T for S, or equivalently, any

consistent set of ground literals B de�nes an interpretation IB on S via IB j= L i�
L 2 B. A natural notion of redundancy then would be the following: ClauseC 2 S is
redundant on B when IB j= C. The idea is that tableaux being a refutation calculus
it is not interesting to use clauses that are already modelled by branch B. Such
clauses are not used in extension steps. Irregular extension steps and tautologous
clauses are redundant in this sense, but a stronger notion of redundancy is desirable.

De�nition 4.6. An open clause tableau branch B has a saturation wrt S i� it has
an extension B � B such that IB j= S.

It is, of course, not realistic to consider all possible extensions of a branch (the
empty branch, for example, always has a saturation when S is satis�able), so we

24 Reiner H�ahnle

S
8 > > > > > > > < > > > > > > > :

C
1 . . .

C
j
=
L
1
_
��
�_
L
i
_
��
�_
L
n

. . .
C
m

t
r
u
e

L
1

��
�

L
i

t
r
u
e

L
i

L
i

w
it
h
C
i

L
i��

�

L
n

t
r
u
e

L
1

��
�

L
i

L
i

L
i

�

L
i

���
�

L
n

S
L
i

8 > > > > > > > > > > > > > < > > > > > > > > > > > > > :

C
1 . . .

C
0 j
=
L
i

. . .

C
i
=
��
�_
L
i
_
��
�

. . .
C
m

Figure 8. Illustration of the proof of Theorem 4.4

.

Tableau-Based Theorem Proving 25

check only one of them to guide tableau extension. Informally, we will consider
extensions of B that contain literals from all clauses of S not yet satis�ed by IB .

4.5.2. Tableaux with Selection Function
Let f be a selection function on clauses: a function mapping each clause into a
(possibly empty) subset of its literals.

Bf = B [ff(C) j C 2 S; IB 6j= Cg (4.2)

If Bf is consistent and all clauses with no selected literals were used on B, then
IBf

j= S by construction and proof search can be stopped here. In general, how-

ever, Bf does not induce an interpretation, because it may contain complementary
literals. In this case, one of the clauses not yet satis�ed by IB is selected for ex-
tension whose selected literal(s) contribute to a contradiction in Bf . Formally, let

f(C) denote the set of complements of literals selected by f in C. Then extension
steps (De�nition 4.1.(ii)) are restricted to clauses in

fC j C 2 S; IB 6j= C and (f(C) \Bf 6= ; or f(C) = ;)g (4.3)

By de�nition, if L 2 f(C) \ Bf , either L 2 B or L 2 f(D) for some clause
D 2 S. In the �rst case the extension is a weak connection step in the sense of
(ii00) on page 21. The second case and when no literal is selected is called a restart
step (and C a restart clause) to emphasize that the tableau proof bears no direct
connection with the current branch. The �rst clause used in a tabelau is always a
restart step. No new restart clauses are added once f is �xed, they can be computed
in advance.

Example 4.4. Consider the clause set S = f:q _ :s; :r _ s; p _ q _ r; :pg in
which the lexicographically largest literal is selected (these are underlined). Initially,
B = ftrueg and Bf = f:s; s; r;:pg. The �rst two clauses are the only restart
clauses of which the �rst is selected (see Figure 9). Branch B = f:qg implies
Bf = B [fs; r;:pg which models S. On the other branch B = f:sg one has
Bf = B [fs; r;:pg, so an extension step (the only one) with the second clause is
possible. The only open branch is now B = f:s;:rg with Bf = B [fr;:pg and
only extension with the third clause is allowed. The �rst open branch, f:s;:r; pg
is closed by a further extension while the last open branch B = f:s;:r; qg yields
Bf = B [f:pg and thus the second model of S.

Theorem 4.5. If the �nite ground clause set S is unsatis�able, then for any selec-
tion function f there is a tableau proof with selection function f for S.

Proof. Assume there is a tableau with selection function f and an open branch
B in which all possible extension steps were made. As S is �nite, B is �nite as

26 Reiner H�ahnle

true

:q

Bf=
B[fs;r;:pg

:s

:r

p

:p
�

q

Bf=
B[f:pg

r
�

s
�

Figure 9. Tableau with selection function.

well. We claim that Bf is consistent from which Bf j= S follows by construction
(in particular, all clauses with no selected literal are satis�ed). If Bf is inconsistent
there is a literal L 2 ff(C) j C 2 S; IB 6j= Cg such that L occurs (I) in B or (II)
in f(D) for some clause D not yet satis�ed by B. In case (I) a weakly connected
extension step is possible on B in case (II) a restart step is admissible. Either way,
the assumption that all possible extension steps were made on B is contradicted.

The proof is independent of the sequence of extension steps chosen, so tableaux
with selection function are proof conuent. Moreover, a slight generalization of the
proof shows that completeness is retained even when f is changed during tableau
construction.

4.5.3. Related Calculi
A number of recently suggested restrictions of clause tableaux can be considered
as special cases of tableaux with selection function, for example, ordered tableaux
[32, 25].

De�nition 4.7. A ground atom (A-)ordering is a binary relation < on atoms
which is irreexive and transitive.

A-orderings give a complete tableau restriction which can be expressed via se-
lection functions as follows: simply use f<(C) = fL j L maximal in C wrt <g and
delete the requirement IB 6j= C in (4.2,4.3). The latter relaxation plus the require-
ment jf(C)j > 0 gives the version of tableaux with selection function discussed in
[27]. On the other hand, [46] show that tableaux with selection functions can be
modi�ed to accomodate strongly connected extension steps.

Tableau-Based Theorem Proving 27

4.5.4. First-Order Issues
Lifting is straightforward for tableaux with selection function f provided that f lifts.
Call f stable wrt substitutions if f(C�) � f(C)� for all clauses C and substitutions
�. For A-orderings this translates into the requirement p < q implies p� < q� for
all substitutions � and atoms p; q.
Implementation of �rst-order tableaux with selection function generates similar

problems as regularity. The �rst point concerns the condition IB 6j= C in (4.2,4.3).
Unless B contains ground literals this imposes hardly any restriction in the �rst-
order case, but one may generate inequality constraints: let � = fx1=t1; : : : ; xr=trg
be an MGU such that IB� j= C�; for each such � a constraint of the form x1 6=
t1 _ � � � _ xr 6= tr is added. Further constraints to be added are derived from (4.3)
and take on the form L 2 f(C) [45, 27].
Checking these latter constraints for satisfaction can be expensive (NP-complete),

so one may decide to suppress their generation. The resulting calculus might be
called tableaux with input selection function [27], because the selection restriction is
only enforced on clauses that serve as input for extension steps, but not on instances
of clauses appearing in a tableau. This has another advantage: it was noted after the
proof of Theorem 4.5 that the selection function may be arbitrarily changed during
tableau construction. This implies immediately that selection functions need not be
stable wrt substitutions in input selection tableaux, rather, stability wrt variable
renamings is su�cient [27].

4.6. Hyper Tableaux

Hyper calculi share the feature that several deduction steps are combined into
one. This yields a speed-up in proof search, but the main advantage is that some
intermediate results are not computed in the �rst place and this can limit the search
space considerably. In the ground case one stipulates a similar condition as (4.3)
on extending clauses saying that all selected literals of an extending clause must
be weakly connected to the current branch, formally:

fC j C 2 S; IB 6j= C and f(C) � Bg (4.4)

A ground clause tableau constructed with this restriction on extension steps
(De�nition 4.1.(ii)) is called a hyper tableau. An extension step is combined with as
many closure rule applications as there are selected literals in the extending clause.
In general, hyper tableaux are not complete (for example, when all literals are

selected), but completeness is regained for consistent selection functions that do
not both select a literal and its complement in any input clause.6

6 Consistent selection functions can be considered as interpretations (If (L) is true i� f(L) is
selected in a clause). From this point of view hyper tableaux can be seen as a tableau counterpart
to semantic resolution [57] and would be better called semantic tableaux if the latter were not
used already for the whole framework.

28 Reiner H�ahnle

Theorem 4.6. If the �nite ground clause set S is unsatis�able, then for any con-
sistent selection function f there is a hyper tableau proof with selection function f
for S.

Proof. The proof is very similar to the proof of Theorem 4.5. Consider a maximal,
open branch B in a hyper tableau for S and Bf . Bf �B is consistent, because f is
consistent, so when Bf is inconsistent there are literals L 2 ff(C) j C 2 S; IB 6j= Cg
such that L occurs in B. Obtain B0 by removing all such literals from Bf . Now
B0 is consistent and we claim IB0 j= S. By construction B0 � B, so it su�ces to
prove IB0 j= C for clauses C not used on B (this implies jf(C)j > 0). This holds,
because at least one literal in f(C) is still present in B0, otherwise f(C) � B and
a hyper extension step is possible with C on B contradicting the assumption that
all possible extension steps were made on B.

4.6.1. Positive Hyper Tableaux
Many hyper tableau calculi focus on one speci�c selection function fN which selects
exactly the negative literals in a clause. This suggests a notation of clauses as rules
of the form

p1; : : : ; pn ! q1; : : : ; qm (4.5)

where pi, qj are atoms. All literals in the premiss are selected. The ensuing calculi
are called positive hyper tableaux, because negative literals occur only as leaves of
closed branches in a hyper tableau with fN . Therefore, reduction steps cannot occur
and are not required. It is also easy to see that a maximal open branch B has a
saturation B0 = B [f:p j p 2 (A �B)g.

4.6.2. First-Order Issues
As before, selection functions should be liftable. On the �rst-order level for a hyper
extension step of branch B with clause C, a set B0 � B as well as a simultaneous
MGU of ffL;L0g j L 2 B0; L

0 2 f(C)g must be computed. This is easily seen
to be an instance of the �rst-order clause subsumption problem which is NP-hard
[20]. This complexity is implicitly present in proof search without hyper steps as
well, although on a di�erent level. It certainly does not indicate inferiority of hyper
tableaux.
A more interesting question is: how is dealt with completeness problems arising

from di�culty of fair substitution selection in destructive calculi? For positive hyper
tableaux, several strategies can be found in the literature:
The �rst option is to �x a heuristics for formula selection and trade incomplete-

ness for success in certain problem domains [13, 54]. Another form of incompleteness
(in expressivity) ensues from restriction to range-restricted sets of clauses:

De�nition 4.8. A �rst-order clause of the form (4.5) is range-restricted when all
variables occurring in the premiss occur also in the conclusion.

Tableau-Based Theorem Proving 29

Observe that positive range-restricted clauses are ground. If S is range-restricted,
then a positive hyper tableau for S is ground. As an immediate consequence, fair
selection of clauses used in extension steps yields a proof conuent calculus of which
e�cient implementations were realized [41, 19, 29, 28].
Let us call variables occurring in more than one literal of the conclusion and

not in the premiss critical. In [4] ground instances of clauses restricted to critical
variables are enumerated to obtain a proof conuent calculus which is somewhat
better than enumerating all ground instances.
Baumgartner [2] improves on that: like in the range-restricted case, a tableau

is treated as if it were ground: substitutions are only applied to instances of input
clauses (matching). If an instance L� (with critical variables) of a literal occurrence
L on a tableau branch is required, then � is applied to an instance of the clause
containing L and the result is added to the input clause set. The latter possibility
regains completeness. Needless to say, lifting is not trivial in such a calculus.
This version of �rst-order hyper tableaux is not destructive as only input clauses

are instantiated. The destructive part of the substitution of the closure rule is
recorded \outside" of the tableau as additional instances of input clauses. They can
be arranged in a fair manner easily. This can also be seen as a kind of constraint
on substitutions to guide the proof search.
In principle, a proof conuent, destructive calculus could be obtained if one could

compile these \outside" clauses (and their fair selection) into the selection rule.
Consequences for such a calculus would be: (i) clause selection is probably not
de�ned branch-local, because \outside" clauses touch on several branches; (ii) one
needs to work up to renamability of clauses; (iii) a suitable ordering might be used
to enumerate required instances of literals fairly. All three ingredients are actually
contained in a very recent suggestion for a proof conuent destructive calculus by
Beckert [5].

4.7. Tableaux with Cuts and Lemmas

So far we discussed restrictions of tableau calculi aimed at diminishing the search
space. Some problems, however, have extremely long tableau proofs. Already on
the ground level there exist classes of formulas Sn such that the smallest tableau
proof is exponential in the size of Sn whereas short resolution proofs exist [14].
The reason is that resolution incorporates an analytic cut rule or (and this is just
another name) lemma generation.

Example 4.5. Let fp1; : : : ; png be di�erent ground atoms. Consider the clause set

Sn = fL1 _ � � � _ Ln j Li 2 fpi;:pig; i 2 f1; : : : ; ngg (4.6)

Obviously, Sn is unsatis�able. D'Agostino [15] proved that the smallest closed
clause tableau for Sn has at least n! inner nodes, whereas Sn contains merely n2n

literals. Even simple truth table checking has linear cost in the size of Sn.

30 Reiner H�ahnle

Now consider the clause set Tn = fpi _ :pi j i 2 f1; : : : ; ngg. Sn [Tn has a
short proof (displayed for n = 3 in Figure 10). The point is that the tautologies
in Tn can be used to enumerate all interpretations over fp1; : : : ; png. Then each
clause in Sn is contradicted by exactly one interpretation. The resulting tableau
has n2n + 2n+1 � 1 2 O(jSn [Tnj) nodes.

true

p1

p2

p3

:p1 :p2 :p3

:p3

:p1 :p2 p3

:p2

p3

� � �

:p3
� � �

:p1

p2

p3

� � �

:p3
� � �

:p2

p3

� � �

:p3

p1 p2 p3

Figure 10. Clause tableau proof for S3 [T3.

The e�ect of the clauses Tn can also be achieved by adding a new tableau exten-
sion rule

p :p
(4.7)

called atomic cut rule. It is closely related the well-known cut rule part of sequent
calculi [21].

4.7.1. Tableaux and Sequent Calculi
A propositional clausal sequent is an expression of the form �) �, where � is
a tuple of clauses and � is a tuple of atoms. �) � is valid i� the formulaV
G2�G !

W
D2�D is valid. Hence, a clause set S is unsatis�able if the sequent

S) is valid. The propositional clausal sequent calculus consists of only three rules:

�; L1;�
0) � � � � �; Ln;�0) �

�; L1 _ � � � _ Ln;�0) �
_ -left

�;�0) P;�

�;:P;�0) �
:-left

�

�; P;�0) �; P;�0
axiom

(4.8)

It is straightforward to show that a sequent is valid i� it has a proof tree in which
all leaves are marked with a �. Moreover, there is a strong duality between clause
tableaux and clausal sequent calculi, summarized in Table 3.7

7 This duality extends to the non-clausal and �rst-order case, see [58].

Tableau-Based Theorem Proving 31

Clausal Sequents Clause Tableaux

Axiom rule Closed branch

_-left rule Tableau extension

Atoms/unit clauses left of) positive branch literals

Atoms right of) negative branch literals

sequent proofs interpreted as log-
ical conjunction of their end
sequents

tableaux interpreted as logical
disjunction of their branches

sequents interpreted as logical
disjunction of their elements

branches interpreted as logical
conjunction of their literals

Validity proof Unsatis�ability proof
Table 3

Duality between sequent and tableau calculi.

While literal occurrences can be shared among several tableau branches, they
are duplicated in sequents. In the light of this and the duality between sequent and
tableau proofs, rule (4.7) is exactly the same as the usual cut rule of sequent calculi,
where the cut formula � is restricted to atomic formulas:

�;�0) �; �;�0 �; �;�0) �;�0

�;�0) �;�0
(4.9)

4.7.2. Tableaux with Lemmas
The main problem of the atomic cule (4.7) is that its application is completely
unrestricted. A �rst restriction is obtained by allowing its application only if the
following extension rule constitutes a strong connection step:

...

�

Li Li

L1 � � � Li � � � Ln

This way no more branches are generated if one had applied the extension step
immediately.On the other hand, in n�1 of the new branches the literal Li is present.
Applying n�1 atomic cuts before an extension step and writing the resulting proof

32 Reiner H�ahnle

tree as a \macro rule" yields the extension rule with local lemmas:

L1 L1 L1 � � � L1

L2 L2 � � � L2

L3 � � � L3

...
. . . Ln�1

Ln

L1 _ � � � _ Ln 2 S (4.10)

The complemented literals are called local lemmas: for example, Li is obtained
as a lemma after the current branch B is closed with the help of Li. (Recall that
closed branches are unsatis�able, so this amounts to B j= Li.) The lemma is local
to certain branches as opposed to being global (on the whole tableau).

4.7.3. Tableaux with Folding Up
Depending on the sequence of branch closures, there are n! di�erent local lemma
versions of an extension with an n-literal clause. Not all of these are equally useful.
To remedy this situation, a version of local lemma generation called folding up rule
has been suggested. It can be seen as \lazy lemma generation".

Example 4.6. Consider the clause set S = fp _ t; p _ :t; :p _ q _ s; :q _ r; :r _
:p; :s_rg and the partial tableau proof for S displayed in Figure 11. After closure
of branch B = fp; q; r;:pg one knows that S [fp; qg j= :r. This lemma is useless,
though, because branch fp; q; r;:rg to the left is closed anyway. But inspection of
the proof obtained so far shows that in fact S [fpg j= :r holds, because q was not
used to close B.

true

p

:p q

:q r
:r

:r :p

s

:s r

t

p :t

Figure 11. Illustration of Example ex:fold-up.

In clause tableaux with folding up rule each local lemmamay be moved up in the
tableau until the lowest literal that was used in its proof [35, 34] and it can be used
to close any branch below its new position.

Tableau-Based Theorem Proving 33

With the folding up rule, in the previous example lemma :r may be moved up
to p and lemma :p from the right subtree is moved up to true (the latter is also
possible with a suitable variant of the local lemma rule). In Figure 12 new lemma
positions are boxed, moves are indicated by dashed arrows, while additional closures
through new lemmas are indicated by solid arrows.

true

p
:p

:p

:r

q

:q r

:r :p

s

:s r

t

p :t

Figure 12. Tableau with folding up rule.

One can show that folding up does not change the indeterministic power of
tableau with local lemmas that is the length of shortest proofs does not change.
In a deterministic implementation folding up can nevertheless be very bene�cial,
because an ill choice of select clause can be remedied.

4.7.4. Tableaux with Factoring
Tableaux with factoring (also called tableaux with merging) are closely related to
the subsumption rule in resolution theorem proving [52]. Assume branch B is not
yet closed, but there is a \more general" branch B0 that has been closed already.
Formally, a branch B0 is more general than a branch B i� B0 � B�. Instead of
trying to close B, one may simply refer to B0 then, apply � to B and consider it
as closed. Soundness of tableaux with factoring is straightforward to prove; on the
other hand it is su�cient to observe that tableaux with factoring can be simulated
by tableaux with local lemmas: assume B was closed by referring to a more general
branch B0 and that L is the top-most literal on B0 not on B. Now replace the
extension rule that produced L with a local lemma version putting L on B. As
B0 is more general than B, there must be L0 2 B and substitution � such that
L0� = L, so B can be closed with �.
An improvement of tableaux with factoring called tableaux with regressive merg-

ing was introduced in [63] and is essentially the same as tableaux with the folding
up rule; details can be found in [62].

4.7.5. Problems of Strengthening Tableaux
Strengthening of tableau procedures at �rst seems a sure win, because length of
proofs can be drastically reduced. On the propositional level this holds without

34 Reiner H�ahnle

reservation and it can safely be claimed that any competitive propositional proof
procedure embodies some variant of cut. On the �rst-order level, however, additional
literals introduced as cuts or lemmas create additional possibilities for branch clo-
sure. The negative e�ects from this increase of the search space can easily outweigh
the possibility of �nding shorter proofs.

Example 4.7. Let S = f:p(x)_q(x)_r(x); p(a); :q(a); p(b); :q(b); :r(b)g. In the
partial connection tableau in Figure 13 the left branch was closed �rst by extension
with p(a) (where only p(b) leads to success). This forces extension with q(a) in the
middle branch and generation of some lemmas (framed literals). The lemmas allow
to extend the right branch with another instance of the �rst clause which would
have been impossible without them. Detection of the wrong �rst extension is thus
possibly delayed a long time.

In the example, a regularity check would help (r(a) becomes irregular on the
rightmost branch) and also restriction of lemma usage to reduction steps. Although
this helps somewhat, more complex examples create the same problems as before.

true

:p(x)

p(a)

fx=ag

q(x)

p(x)

:q(a)

id

r(x)

p(x)

:q(x)

:p(y)

fy=xg

q(y)

id

r(y)
...

Figure 13. Search space increase caused by local lemmas.

On the other hand, local lemmas are not strong enough on the �rst-order level.
In the clause tableau in Figure 5, for example, the lemma :q(c) can be folded up
to the true node, but is useless to close the open branch on the right, because a
di�erent instance is required. But in fact it is justi�ed to derive even (8x):q(x)
as a lemma. This is always possible when the proof of (that is: the tableau below)
the lemma does not instantiate any variables that occur outside of it. It remains to
be seen whether such an optimization can be e�ciently implemented and does not
blow up the search space beyond any usefulness.

4.8. Tableaux and Logic Programming

Some calculi for extensions of logic programs have a natural interpretation as vari-
ants of clause tableaux. This includes [47, 48, 40, 51, 3]. Their treatment is beyond

Tableau-Based Theorem Proving 35

the scope of this course.

5. Historical Remarks

Despite their recent ourishing, the history of tableau methods is much older than
that of resolution. They can be traced back to the cut-free version of Gentzen's
sequent calculus [21]. Hintikka [30] and Beth [10] abstracted from structural rules in
sequent calculi (essentially treating sequents as sets of formulas), improved the proof
representation, and introduced signed formulas. They also stressed the semantic
view of tableaux as a procedure that tries systematically to �nd a counter example
for a given formula (a model in which its negation is true) as opposed to Gentzen's
purely proof theoretical motivation.8 Further improvements were made by Sch�utte
[53]; Smullyan's elegant formulation [58], employing unifying notation which greatly
simpli�ed matters, became very popular while similar contributions by Lis [37]
unfortunately went unnoticed.
Many important improvements directed to automated proof search in se-

quent/tableau/model elimination calculi were made quite early: free variables
[31, 50], uni�cation [38, 11, 1], proof representation and connection re�nements
[17, 11, 1].
The relative success of resolution-based theorem proving, however, eclipsed this

progress and serious implementations of tableau-like calculi are spurious before the
late 1980s [13, 44].
In the last decade tableau-like calculi became focal points of research again,

spurred by the success of e�cient implementations and the demand for a compu-
tational treatment of non-classical logics. The tableau community gathers in an
international conference,9 where many of the relevant results are now published.
The Handbook of Tableau Methods [16] contains extensive and fairly up-to-date
information, not only with respect to automated reasoning.

References

[1] Peter B. Andrews. Theorem proving through general matings. JACM, 28:193{214, 1981.
[2] Peter Baumgartner. Hyper Tableaux | The Next Generation. In Harrie de Swart, editor,

Proc. International Conference on Automated Reasoning with Analytic Tableaux and Related

Methods, Oosterwijk, The Netherlands, number 1397 in LNCS, pages 60{76. Springer-Verlag,
1998.

[3] Peter Baumgartner and Uli Furbach. Model Elimination without Contrapositives and its
Application to PTTP. Journal of Automated Reasoning, 13:339{359, 1994.

[4] Peter Baumgartner, Ulrich Furbach, and Ilkka Niemel�a. Hyper tableaux. Technical Report
8/96, Institute for Computer Science, University of Koblenz,Germany, 1996. http://www.uni-
koblenz.de/universitaet/fb4/publications/GelbeReihe/RR-8-96.ps.gz.

8 The proof theoretic tradition is very much alive today as witnessed, for example, by Girard's
work [22], but it is not really relevant for automated deduction.
9 http://www.cs.albany.edu/ nvm/tab99/

36 Reiner H�ahnle

[5] Bernhard Beckert. Integrating and Unifying Methods of Tableau-based Theorem Proving. PhD
thesis, University of Karlsruhe, Department of Computer Science, July 1998.

[6] Bernhard Beckert and Rajeev Gor�e. Free variable tableaux for propositional modal logics.
In Proc. International Conference on Theorem Proving with Analytic Tableaux and Related
Methods, Pont-a-Mousson, France, volume 1227 of LNCS, pages 91{106. Springer-Verlag,
1997.

[7] Bernhard Beckert and Reiner H�ahnle. Analytic tableaux. In W. Bibel and P. Schmitt, edi-
tors, Automated Deduction: A Basis for Applications, volume I, chapter 1. Kluwer, 1998. To
appear.

[8] Bernhard Beckert and Joachim Posegga. leanTAP : Lean tableau-based deduction. Journal of
Automated Reasoning, 15(3):339{358, 1995.

[9] Karel Berka and Lothar Kreiser, editors. Logik-Texte. Kommentierte Auswahl zur Geschichte
der modernen Logik. Akademie-Verlag, Berlin, 1986.

[10] Evert W. Beth. Semantic entailment and formal derivability.Mededelingen van de Koninkli-
jke Nederlandse Akademie van Wetenschappen, Afdeling Letterkunde, N.R., 18(13):309{342,
1955. Partially reprinted in [9].

[11] Wolfgang Bibel. Tautology testing with a generalized matrix method. Theoretical Computer
Science, 8:31{44, 1979.

[12] Wolfgang Bibel. Automated Theorem Proving. Vieweg, Braunschweig, second revised edition,
1987.

[13] Frank Malloy Brown. Towards the automation of set theory and its logic. Arti�cial Intelli-
gence, 10(3):281{316, 1978.

[14] Stephen Cook and Robert Reckhow. The relative e�ciency of propositional proof systems.
Journal of Symbolic Logic, 44:36�, 1979.

[15] Marcello D'Agostino. Are tableaux an improvement on truth tables? Cut-free proofs and
bivalence. Journal of Logic, Language and Information, 1:235{252, 1992.

[16] Marcello D'Agostino, Dov Gabbay, Reiner H�ahnle, and Joachim Posegga, editors. Handbook
of Tableau Methods. Kluwer, Dordrecht, to appear in 1998.

[17] Gennady V. Davydov. Synthesis of the resolution method with the inverse method. Jour-
nal of Soviet Mathematics, 1:12{18, 1973. Translated from Zapiski Nauchnykh Seminarov
Leningradskogo Otdeleniya Mathematicheskogo Instituta im. V. A. Steklova Akademii Nauk
SSSR, vol. 20, pp. 24{35, 1971.

[18] Melvin C. Fitting. First-Order Logic and Automated Theorem Proving. Springer-Verlag, New
York, second edition, 1996.

[19] Hiroshi Fujita and Ryuzo Hasegawa. A model generation theorem prover in KL1 using a
rami�ed-stack algorithm. In Koichi Furukawa, editor, Proceedings 8th International Confer-

ence on Logic Programming, Paris/France, pages 535{548. MIT Press, 1991.
[20] M. R. Garey and D. S. Johnson.Computers and Intractability. Freeman, San Francisco, 1979.
[21] Gerhard Gentzen. Untersuchungen �uber das Logische Schliessen.Mathematische Zeitschrift,

39:176{210, 405{431, 1935. English translation [61].
[22] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1{102, 1987.
[23] Christian Goller, Reinhold Letz, Klaus Mayr, and Johann Schumann. SETHEO V3.2: recent

developments. In Alan Bundy, editor,Proc. 12th Conference on Automated Deduction CADE,
Nancy/France, LNAI 814, pages 778{782. Springer-Verlag, 1994.

[24] Reiner H�ahnle and Gonzalo Escalada-Imaz. Deduction in many-valued logics: a survey.Math-
ware & Soft Computing, IV(2):69{97, 1997.

[25] Reiner H�ahnle and Stefan Klingenbeck. A-ordered tableaux. Journal of Logic and Computa-
tion, 6(6):819{834, 1996.

[26] Reiner H�ahnle, Neil Murray, and Erik Rosenthal. Completeness for linear regular negation
normal form inference systems. In Zbigniew W. Ra�s and Andrzej Skowron, editors, Foun-
dations of Intelligent Systems, 10th International Symposium, ISMIS'97, Charlotte, North
Carolina, USA, number 1325 in LNCS, pages 590{599. Springer-Verlag, 1997.

[27] Reiner H�ahnle and Christian Pape. Ordered tableaux: Extensions and applications. In Didier

Tableau-Based Theorem Proving 37

Galmiche, editor, Proc. International Conference on Automated Reasoning with Analytic

Tableaux and Related Methods, Pont-�a-Mousson, France, volume 1227 of LNCS, pages 173{
187. Springer-Verlag, 1997.

[28] Ryuzo Hasegawa, Hiroshi Fujita, and Miyuki Koshimura. MGTP: a model generation theo-
rem prover|its advanced features and applications. In Didier Galmiche, editor, Proc. Inter-
national Conference on Automated Reasoning with Analytic Tableaux and Related Methods,
Pont-�a-Mousson, France, volume 1227 of LNCS, pages 1{15. Springer-Verlag, 1997.

[29] Ryuzo Hasegawa, Miyuki Koshimura, and Hiroshi Fujita. MGTP: A parallel theorem prover
based on lazy model generation. In Deepak Kapur, editor, Proc. 11th International Confer-

ence on Automated Deduction, LNAI 607, pages 776{780. Springer-Verlag, 1992.
[30] K. J. J. Hintikka. Form and content in quanti�cation theory. Acta Philosohica Fennica, 8:7{

55, 1955.
[31] Stig Kanger. Provability in Logic, volume 1 of Acta Universitatis Stockholmiensis. Almqvist

& Wiksell, Stockholm, 1957.
[32] Stefan Klingenbeck and Reiner H�ahnle. Semantic tableaux with ordering restrictions. In Alan

Bundy, editor, Proc. 12th Conference on Automated Deduction CADE, Nancy/France, vol-
ume 814 of LNCS, pages 708{722. Springer-Verlag, 1994.

[33] R. E. Korf. Depth-�rst iterative deepening: an optimal admissible tree search. Arti�cial In-
telligence, 27:97{109, 1985.

[34] R. Letz, K. Mayr, and C. Goller. Controlled integration of the cut rule into connection tableau
calculi. Journal of Automated Reasoning,, 13(3):297{338, December 1994.

[35] Reinhold Letz. First-Order Calculi and Proof Procedures for Automated Deduction. PhD
thesis, TH Darmstadt, June 1993.

[36] Reinhold Letz, Johann Schumann, Stephan Bayerl, and Wolfgang Bibel. SETHEO: A high-
perfomance theorem prover. Journal of Automated Reasoning, 8(2):183{212, 1992.

[37] Z. Lis. Wynikanie semantyczne a wynikanie formalne (logical consequence, semantic and
formal. Studia Logica, 10:39{60, 1960. Polish, with Russian and English abstracts.

[38] Donald W. Loveland. A simpli�ed format for the model elimination procedure. Journal of
the ACM, 16(3):233{248, July 1969.

[39] DonaldW. Loveland.Automated Theorem Proving. A Logical Basis, volume6 of Fundamental
Studies in Computer Science. North-Holland, 1978.

[40] Donald W. Loveland. Near-Horn Prolog and beyond. Journal of Automated Reasoning, 7:1{
26, 1991.

[41] Rainer Manthey and Fran�cois Bry. SATCHMO: A theorem prover implemented in Prolog.
In Proceedings 9th Conference on Automated Deduction, LNCS, New York, pages 415{434.
Springer-Verlag, 1988.

[42] Max Moser, Ortrun Ibens, Reinhold Letz, Joachim Steinbach,ChristophGoller, Johann Schu-
mann, and Klaus Mayr. SETHEO and E-SETHEO|the CADE-13 systems. Journal of Au-
tomated Reasoning, 18(2):237{246, April 1997.

[43] Andreas Nonnengart, Georg Rock, and Christoph Weidenbach. On generating small clause
normal forms. In H�el�ene Kirchner and Claude Kirchner, editors, Proc. 15th International
Conference on Automated Deduction, Lindau, Germany, number 1421 in LNCS, pages 397{
411. Springer-Verlag, 1998.

[44] F. Oppacher and E. Suen. Controlling deduction with proof condensation and heuristics.
In J�org H. Siekmann, editor, Proc. 8th International Conference on Automated Deduction,
pages 384{393, 1986.

[45] Christian Pape. Vergleich und Analyse von Ordnungseinschr�ankungen f�ur freie Variablen
Tableau. (In German). InternerBericht 30/96, Universit�atKarlsruhe, Fakult�at f�ur Informatik,
1996.

[46] Christian Pape and Reiner H�ahnle. Restart tableaux with selection function. In Georg Gott-
lob, Alexander Leitsch, and Daniele Mundici, editors,Fifth Kurt-G�odel-Colloquium, KGC'97,
Vienna, volume 1289 of LNCS, pages 219{232. Springer-Verlag, 1997.

[47] David A. Plaisted. Non-Horn clause logic programming without contrapositives. Journal of

38 Reiner H�ahnle

Automated Reasoning, 4:287{325, 1988.
[48] David A. Plaisted. A sequent-style model elimination strategy and a positive re�nement.

Journal of Automated Reasoning, 6:389{402, 1990.
[49] David A. Plaisted and Steven Greenbaum. A structure-preserving clause form translation.

Journal of Symbolic Computation, 2:293{304, 1986.
[50] Dag Prawitz. An improved proof procedure. Theoria, 26:102{139, 1960. Reprinted in [55].
[51] David W. Reed and Donald W. Loveland. A comparison of three prolog extensions. Journal

of Logic Programming, 12:25{50, 1992.
[52] J. A. Robinson. A machine-oriented logic based on the resolution principle. JACM, 12(1):23{

41, January 1965. Reprinted in [55].
[53] Kurt Sch�utte. Beweistheorie, volume 103 of Die Grundlehren der mathematischen Wis-

senschaften in Einzeldarstellungen mit besonderer Ber�ucksichtigung der Anwendungsgebiete.
Springer-Verlag, 1960.

[54] Benjamin Shults. A framework for using knowledge in tableau proofs. In Didier Galmiche,
editor, Proc. International Conference on Automated Reasoning with Analytic Tableaux and

Related Methods, Pont-�a-Mousson, France, volume 1227 of LNCS, pages 328{342. Springer-
Verlag, 1997.

[55] J�org Siekmann and GrahamWrightson, editors. Automation of Reasoning: Classical Papers
in Computational Logic 1957{1966, volume 1. Springer-Verlag, 1983.

[56] J�org Siekmann and GrahamWrightson, editors. Automation of Reasoning: Classical Papers
in Computational Logic 1967{1970, volume 2. Springer-Verlag, 1983.

[57] James R. Slagle. Automatic theoremprovingwith renamableand semantic resolution.Journal
of the ACM, 14(4):687{697, 1967. Reprinted in [56].

[58] Raymond M. Smullyan. First-Order Logic. Dover Publications, New York, second corrected
edition, 1995. First published 1968 by Springer-Verlag.

[59] Mark E. Stickel. A Prolog technology theorem prover: A new exposition and implementation
in Prolog. Theoretical Computer Science, 104(1):109{129, 1992.

[60] Geo� Sutcli�e and Christian Suttner. The results|of the CADE-13 ATP system competition.
Journal of Automated Reasoning, 18(2):271{286, April 1997.

[61] M. E. Szabo, editor. The Collected Papers of Gerhard Gentzen. North-Holland, Amsterdam,
1969.

[62] Kevin Wallace. Proof Truncation Techniques in Model Elimination Tableaux. PhD thesis,
University of Newcastle, Australia, December 1994.

[63] Kevin Wallace and Graham Wrightson. Regressive merging in model elimination tableau-
based theorem provers. Journal of the Interest Group in Pure and Applied Logics, 3(6):921{
938, October 1995. Special Issue: Selected Papers from Tableaux'94.

