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ON PROOFS OF THE CONSISTENCY

OF ARITHMETIC

1. The main aim and purpose of Hilbert’s programme was to defend
the integrity of classical mathematics (refering to the actual infinity) by

showing that it is safe and free of any inconsistencies. This problem was
formulated by him for the first time in his lecture at the Second International

Congress of Mathematicians held in Paris in August 1900 (cf. Hilbert,
1901). Among twenty three problems Hilbert mentioned under number 2

the problem of proving the consistency of axioms of arithmetic (under the
name “arithmetic” Hilbert meant number theory and analysis).

Hilbert returned to the problem of justification of mathematics in
lectures and papers, especially in the twentieth1, where he tried to describe

and to explain the problem more precisely (in particular the methods
allowed to be used) and simultaneously presented the partial solutions

obtained by his students.
Hilbert distinguished between the unproblematic, finitistic part of

mathematics and the infinitistic part that needed justification. Finitistic
mathematics deals with so called real sentences, which are completely

meaningful because they refer only to given concrete objects. Infinitistic
mathematics on the other hand deals with so called ideal sentences

that contain reference to infinite totalities. It should be justified by
finitistic methods – only they can give it security (Sicherheit). Hilbert

proposed to base mathematics on finitistic mathematics via proof theory
(Beweistheorie). It should be shown that proofs which use ideal elements in

order to prove results in the real part of mathematics always yield correct
results, more exactly, that (1) finitistic mathematics is conservative over

finitistic mathematics with respect to real sentences and (2) the infinitistic

1 More information on this can be found for example in (Mancosu, 1998).
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mathematics is consistent. This should be done by using finitistic methods

only.

2. It seems that the first result in this direction was obtained byWilhelm
Ackermann in 1924. In his paper “Begründung des ‘tertium non datur’

mittels der Hilbertschen Theorie der Widerspruchsfreiheit” (cf. Ackermann,
1924) Ackermann gave a finitistic proof of the consistency of arithmetic of

natural numbers without the axiom (scheme) of induction. In fact it was
a much weaker system than the usual systems of arithmetic but the paper

provided the first attempt to solve the problem of consistency. Add that
Ackermann used in (1924) a formalism with Hilbert’s ε-functions.

3. Next attempt to solve the second Hilbert’s problem was the paper by

Janos (later Johann, John) von Neumann “Zur Hilbertschen Beweistheorie”
published in 1927. He used another formalism than that in (Ackermann,

1924) and, similarly as Ackermann, proved in fact the consistency of
a fragment of arithmetic of natural numbers obtained by putting some

restrictions on the induction. It is worth mentioning here that in the
introductory section of von Neumann’s paper a nice and precise formulation

of aims and methods of Hilbert’s proof theory was given. It indicated how
was at that time the state of affairs and how Hilbert’s programme was

understood. Therefore we shall quote the appropriate passages.
Von Neumann writes that the essential tasks of proof theory are (cf.

von Neumann, 1927, 256–257):
I. First of all one wants to give a proof of the consistency of the classical

mathematics. Under ‘classical mathematics’ one means the mathematics
in the sense in which it was understood before the begin of the criticism

of set theory. All settheoretic methods essentially belong to it but not
the proper abstract set theory. [...]

II. To this end the whole language and proving machinary of the classical
mathematics should be formalized in an absolutely strong way. The

formalism cannot be too narrow.
III. Then one must prove the consistency of this system, i.e., one should

show that certain formulas of the formalism just described can never be
“proved”.

IV. One should always strongly distinguish here between various types of
“proving”: between formal (“mathematical”) proving in a given formal

system and contents (“metamathematical”) proving [of statements]
about the system. Whereas the former one is an arbitrarily defined

logical game (which should to a large extent be analogues to the
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classical mathematics), the latter is a chain of directly evident contents

insights. Hence this “contents proving” must proceed according to the
intuitionistic logic of Brouwer and Weyl. Proof theory should so to

speak construct classical mathematics on the intuitionistic base and in
this way lead the strict intuitionism ad absurdum2.

Note that von Neumann identifies here finitistic methods with intuitio-
nistic ones. This was then current among members of the Hilbert’s school.

The distinction between those two notions was to be made explicit a few
years later – cf. (Hilbert and Bernays, 1934, pp. 34 and 43) and (Bernays

1934, 1935, 1941).

4. In 1930 Kurt Gödel obtain a result which undermined Hilbert’s prog-
ramme. Gödel proved that any consistent theory extending the arithmetic

of natural numbers and based on a recursive set of axioms is incomp-
lete (this result is called today Gödel’s First Incompleteness Theorem).

This result was announced for the first time by Gödel during a conference
in Königsberg in September 1930. It seems that the only participant of

the conference in Königsberg who immediately grasped the meaning of
Gödel’s theorem and understood it was J. von Neumann. After Gödel’s

talk he had a long discussion with him and asked him about details of
the proof. Soon after coming back from the conference to Berlin he wrote

a letter to Gödel (on 20th November 1930) in which he announced that
he had received a remarkable corollary from Gödel’s First Theorem, namely

a theorem on the unprovability of the consistency of arithmetic in arithmetic
itself. In the meantime Gödel developed his Second Incompleteness Theorem

2 I. In erster Linie wird der Nachweis der Widerspruchsfreiheit der klassischen
Mathematik angestrebt. Unter „klassischer Mathematik” wird dabei die Mathematik in
demjenigen Sinne verstanden, wie sie bis zum Auftreten der Kritiker der Mengenlehre
anerkannt war. Alle mengentheoretischen Methoden gehören im wesentlichen zu ihr, nicht
aber die eigentliche abstrakte Mengenlehre. [...]

II. Zu diesem Zwecke muß der ganze Aussagen- und Beweisapparat der klassischen
Mathematik absolut streng formalisiert werden. Der Formalismus darf keinesfalls zu eng
sein.

III. Sodann muß die Widerspruchsfreiheit dieses Systems nachgewiesen werden, d.h.
es muß gezeigt werden, daß gewisse Aussagen „Formeln” innerhalb des beschriebenen
Formalismus niemals „bewiesen” werden können.

IV. Hierbei muß stets scharf zwischen verschiedenen Arten des „Beweisens” unter-
schieden werden: Dem formalistischen („mathematischen”) Beweisen innerhalb des forma-
len Systems, und dem inhaltlichen („metamathematischen”) Beweisen über das System.
Während das erstere ein willkürlich definiertes logisches Spiel ist (das freilich mit der
klassischen Mathematik weitgehend analog sein muß), ist das letztere eine Verkettung
unmittelbar evidenter inhaltlicher Einsichten. Dieses „inhaltliche Beweisen” muß also ganz
im Sinne der Brouwer-Weylschen intuitionistischen Logik verlaufen: Die Beweistheorie
soll sozusagen auf intuitionistischer Basis die klassische Mathematik aufbauen und den
strikten Intuitionismus so ad absurdum führen.
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and included it in his paper “Über formal unentscheidbare Sätze der

‘Principia Mathematica’ und verwandter Systeme. I” (cf. Gödel, 1931). In
this situation von Neumann decided to leave the priority of the discovery

to Gödel.
In fact in (Gödel, 1931) one finds only a statement of the theorem on the

unprovability of consistency (called today Gödel’s Second Incompleteness
Theorem) and a remark that it can be proved by formalizing the proof of

the first theorem. Gödel promissed also there to publish the full proof in
the second part of the paper which would be ready soon. But this second

part was never written and Gödel published in fact no proof of his second
theorem. Moreover, his remark on the proof was not correct. The first proof

of the theorem on the unprovability of consistency appeared in the second
volume of Hilbert and Bernay’s monograph Grundlagen der Mathematik

(1939). It has turned out that the way in which the metamathematical
sentence “the theory T is consistent” is formalized in the formal language

of T is significant here. Hilbert and Bernays formulated certain so called
derivability conditions for formulas representing in T the metamathematical

notion of provability in T (in fact those conditons require certain internal
properties of provability to be formally derivable in T ). If those conditions

are fulfilled then the second incompleteness theorem holds.
Hilbert-Bernay’s conditions were not elegant. A useful and elegant form

of them was given by M. H. Löb in 1954 (cf. Löb, 1955). It was also shown
that there exist formal translations of the sentence “T is consistent” which

are provable in T and for which the second incompleteness theorem fails.
Examples of such formulas were given by J. B. Rosser and A. Mostowski3.

Those results weakened in a sense (the metamathematical and philo-
sophical meaning of) Gödel’s Second Incompleteness Theorem. In fact this

theorem does not say simply that Peano arithmetic, if consistent, cannot
prove its own consistency (and similarly for any consistent extension of

it). It turns out that the way in which the metamathematical property
of consistency is expressed in the language of the considered theory plays

here the crucial role. The crude numerical adequacy in the sense of strong
representability is not enough here – one needs in fact that the formal

representation “reflects” the very structure of the notion of provability (cf.
Feferman, 1960). Nevertheless Gödel’s theorem indicated certain limitations

of formalized systems and showed that certain corrections in Hilbert’s
programme are necessary.

3 For technical as well as philosophical and historical information on Gödel’s theorems
see, e.g., (Murawski, 1999).
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In spite of those new circumstances Hilbert defended the very idea

of his programme. In the Preface to the first volume of Grundlagen der
Mathematik he wrote:

[...] the occasionally held opinion that from the results of Gödel follows the
non-executability of my Proof Theory, is shown to be erroneous. This result
shows indeed only that for more advanced consistency proofs one must use
the finite standpoint in a deeper way than is necessary for the consideration
of elementary formalisms4.

5. Through von Neumann about Gödel’s incompleteness theorems
learned (in November 1930) Jacques Herbrand. He found them to be of great

interest. They also stimulated him to reflect on the nature of intuitionistic
proofs and of schemes for the recursive definition of functions. In a letter

to Gödel of 7th April 1931 Herbrand suggested the idea of extending the
schemes for the recursive definition of functions. His remarks inspired Gödel

to formulate the notion of general recursive function (in the lectures he gave
at Princeton in 1934 – cf. Gödel, 1934).

From the point of view of the present paper however more important
is Herbrand’s paper “Sur la non-contradiction de l’arithmétique” published

in 1931 already after the Gödel’s “Über formal unentscheidbare Sätze...”.
Herbrand probably started to write his paper before Gödel’s paper reached

him (the manuscript sent for publication to the Journal für reine und
angewandte Mathematik was dated “Göttingen, 14 July 1931”; it was

sent just before Herbrand left for a vacation trip in the Alps, and was
received on 27 July 1931 – on that day Herbrand was killed in a fall).

Nevertheless, he had opportunity to examine Gödel’s results (in particular
his second theorem) and in the last section of his paper he was dealing with

them.
Herbrand’s paper presents a proof of the consistency of a fragment of

arithmetic of natural numbers. It was certainly intended to be a contribution
to the realization of Hilbert’s programme. The fragment considered by

Herbrand is arithmetic with induction for formulas containing no bounded
variables and induction for formulas containing bounded variables but

4 [...] die zeitweilig aufgekommene Meinung, aus gewissen neueren Ergebnissen
von Gödel folge die Undurchführbarkeit meiner Beweistheorie, als irrtümlich erwiesen
ist. Jenes Ergebnis zeigt in der Tat auch nur, daß man für die weitergehenden
Widerspruchsfreiheitsbeweise den finiten Standpunkt in einer schärferen Weise ausnutzen
muß, als dieses bei der Betrachtung der elementaren Formalismen erforderlich ist.
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containing no function symbols except eventually the successor function.

The proof uses Herbrand’s fundamental theorem5 (section 1 consists of
a very clear presentation of this theorem).

It is worth noting here that Herbrand, similarly as von Neumann (see
above), uses the name “intuitionistic” to describe methods which are allowed

in the metamathematics, hence finitistic methods. This identification was
then current in Hilbert’s school.

The key trick of Herbrand’s proof of the consistency of the indicated
fragment of aritmetic is the elimination of the induction axiom scheme

through the introduction of functions. The definition conditions for those
functions are such that, for every set of arguments, a well-determined

number can be proved in a finitary way to be the value of the function. It
should be noted that those functions are (general) recursive functions. This

is in fact the first appearance of the notion of a general recursive function
as opposed to primitive recursive (cf. Gödel’s definition of general recursive

functions from 1934 “suggested by Herbrand” – see Gödel, 1934, p. 26).
As indicated above, in the last section of his paper (1931) Herbrand

considered the problem of connections between his result and Gödel’s
theorem on the unprovability of consistency. He explains very clearly why

the latter does not hold for the fragment of arithmetic he considers. The
reason is that the metamathematical description of the system cannot be

projected into the system itself (because the system is too weak).

6. First proof of the consistency of the arithmetic of natural numbers
was given by Gerhard Gentzen in the paper “Die Widerspruchsfreiheit

der reinen Zahlentheorie” (1936) (cf. also his paper “Neue Fassung des
Widerspruchsfreiheitsbeweises für die reine Zahlentheorie” from 1938).

According to Gödel’s Second Incompleteness Theorem a proof of the
consistency of the full arithmetic of natural numbers should use means

stronger than those available in the arithmetic itself (modulo the restrictions
concerning the way of expressing in the formal language the property of

consistency). Indeed the analysis of Gentzen’s proof shows that it is just
in the concept of a reduction process applied by Gentzen in (1936) that

the transgression of the methods formalizable in the formal system under

5 This theorem contains a reduction (in a certain sense) of predicate logic to
propositional logic, more exactly it shows that a formula is derivable in the axiomatic
system of quantification logic if and only if its negation has a truth-functionally
inconsistent expansion. Herbrand intended to prove this theorem by finitistic means. The
theorem was contained in Chapter 4 of his doctoral dissertation presented to the Sorbonne
in 1930 and published in the same year – cf. Herbrand, 1930.
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consideration comes about. By assigning ordinals to the derivations one sees

that the transfinite induction up to ε0 suffices for the proof6.
It is worth noting here that the first version of Gentzen’s consistency

proof was submitted in 1935 but was withdrawn after criticism directed
against the means used in the proof which were considered to be too strong.

Gentzen took care of the criticism and modified his original proof before
it was published (the modified proof was published in the paper (1936)).

Fortunately the text of the original proof was preserved in galley proof.
It became publically known because of the paper by Bernays (1970) and

was recently published in the name of Gentzen (cf. Gentzen, 1974). Bernays
remarks in (1970) that Gentzen’s original proof was certainly easier to follow

than the first published proof and at least as easy to follow as the second
Gentzen consistency proof from (1938).

7. Gentzen’s proof was apparently accepted by Hilbert and Bernays in

the second volume of Grundlagen der Mathematik (1939). Indeed, in the
Preface Bernays wrote there (p. VII):

In any case one can say on the basis of Gentzen’s proof that the short-lived
failure of proof theory was caused solely by the whimsicality of the methodo-
logical demand put on it7.

In the same Preface it was also announced that W. Ackermann is
working on extending his earlier consistency proof (published in 1927) along

the lines indicated by Gentzen, i.e., by applying the transfinite induction.
Indeed, in 1940 appeared Ackermann’s paper “Zur Widerspruchsfreiheit der

Zahlentheorie” in which the consistency of the full arithmetic of natural
numbers was proved by using methods from his paper (1927) and the

transfinite induction.
Since then other proofs along Gentzen’s lines have been published. One

should mention here among others papers by Lorenzen (1951), Schütte
(1951, 1960) and Hlodovskii (1959).

6 The countable ordinal ε0 is defined as the smallest ordinal ε such that ω
ε = ε or as

the limit of the sequence ω, ωω, ωω
ω

,...

7 Jedenfalls kann schon auf Grund des Gentzenschen Beweises die Auffassung vertre-
ten werden, daß das zeitweilige Fiasko der Beweistheorie lediglich durch eine Überspan-
nung der methodischen Anforderung verschuldet war, die man an die Theorie gestellt
hat.
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Gödel, K.: 1931, ‘Über formal unentscheidbare Sätze der ‘Principia Mathe-

matica’ und verwandter Systeme. I’, Monatshefte für Mathematik und
Physik 38, 173–198. Reprinted with English translation ‘On Formally

Undecidable Propositions of Principia Mathematica and Related
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