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Since the time of the Babylonians mathematicians have been ex-
ploring the notions of algorithm and computable function and devices
for carrying out calculations. However, Church 1936 and Turing 1936
were more interested in investigating incomputable problems. They
gave the present definitions of computable functions (A-definable func-
tions, recursive functions, Turing machines, called a-machines) pri-
marily to diagonalize over them and produce incomputable (unsolv-
able) problems in ordinary mathematics in order to refute Hilbert’s
Entscheidungsproblem (decision problem).

Turing 1939 introduced the more powerful notion of an oracle ma-
chine (o-machine) and relative computability of one set B from another
set A to help understand the information content of unsolvable prob-
lems. The o-machine also gives the notion of an effectively continuous
function, the analogue of a continuous function in analysis.

The Turing o-machine, not the Turing a-machine, is the funda-
mental notion of computability theory. It is a computability notion,
not an incomputability notion. It links the fundamental notions of
computability theory and analysis because any continuous function in
analysis is a Turing functional relative to a real parameter X C w. In
a calculus or analysis book, continuous functions are presented almost
immediately, but in many computability books, Turing functionals are
not presented until the second half of the book, if at all.

We give an historical development of these notions and an expla-
nation of why there has been so much emphasis on Turing a-machines
and the Church-Turing Thesis 3.2 , and so little on Turing o-machines
and on the Post-Turing Second Thesis 6.1. We also explore how the
twin themes of computability and incomputability reinforced and stim-
ulated the development of one another.

1 Calculus, Continuity, and Computability

Open any book on calculus or introductory analysis. The definition of a
continuous function will be usually presented in the first couple of chapters.
Now open an introductory book on computability theory. The correspond-
ing definition of an effectively continuous function, one given by an Turing
oracle machine or by recursive functions relativized to an oracle A C w,
rarely occurs in the very beginning of the book, and sometimes does not
occur at all. The book usually starts with the definition of Turing’s auto-
matic machine (a-machine), now called a Turing machine, and its formal
equivalence with recursive functions and other formalisms demonstrated by
Turing, Church, and Kleene.



1.1 When to Introduce Relative Computability?

It is clear that many of the leading authors of introductory textbooks and
references on computability introduce relative computability and effective
continuity relatively late in their books. For example, Kleene’s book 1952,
Introduction to Metamathematics, was the first real book on computabil-
ity theory and the principal reference for at least fifteen years until Rogers
1967 appeared. Kleene introduced relative computability in Chapter 11 on
page 266 by adding the characteristic function of the oracle set A to the
Herbrand-Godel general recursive functions. Rogers 1967 took the Tur-
ing machine approach and immediately defined computability using regular
Turing machines (a-machines). Rogers quickly became the most readable
textbook on computability and remains a popular reference. Rogers intro-
duced relative computability only in Chapter 9 on page 128 using Turing’s
original definition 71939 of an ordinary Turing machine with the additional
capacity to consult an oracle A occasionally during the computation. In
another popular introduction, Computability, Cutland 1980 introduces rel-
ative computability relatively late on page 167. Boolos and Jeffrey in Com-
putability and Logic 1974 do not discuss it at all. The more recent and very
extensive Odifreddi, Classical Recursion Theory Vol. 1 1989 and Vol. I1 1999
introduces relative computability only on page 175 by adding the character-
istic function of oracle set A to the Kleene p-recursive functions. Lerman
1983 defines relative computability from an oracle by adding the character-
istic function of the oracle to the Kleene p-recursive function. This occurs
on page 11 but Lerman is assuming that the reader has already mastered
a first course in computability using a text such as Rogers 1967 or Soare
1987.

Kleene’s second and more introductory book, Mathematical Logic, 1967
p- 267, has a brief discussion of reducing one predicate to another and on
degrees of unsolvability. The only genuine introduction to computability I
found which introduces relative computability immediately is Martin Davis,
Computability and Unsolvability, 1958, which defines it on page 20 of Chap-
ter 1 using oracle Turing machines.

My own previous book, Soare 1987, introduces oracle machines and rela-
tive computability on page 47 of Chapter III, but not in Chapter 1. Because
of the increasing importance of Turing reducibility and effective continuity
as the key concept of the subject, I considered introducing it in Chapter 1 of
my new book Computability Theory and Applications [CTA], and then draw-
ing the ordinary Turing machines as a special case. I was dissuaded by my
graduate students who convinced me that beginning students need time to



become familiar with the basic notions of Turing machines and computably
enumerable sets before learning of oracle Turing machines. Nevertheless, 1
have introduced oracle machines and relative computability as soon as fea-
sible in Chapter 3 of the new book CTA, and I have made it the central
notion of the book.

1.2 Between Computability and Relative Computability?

If most computability books begin with ordinary Turing machines in Chap-
ter 1 and do not cover oracle machines and relative computability until late
in the book, what do they cover in between? Many books study numer-
ous properties of Turing machines and computable functions. There is fine,
but one must remember that, viewed as a function F' from 2% to 2“ if F' is
defined by an a-machine, then F' is merely a constant function on reals (sub-
sets of w) because any oracle A produces the same output B from F' because
F, being an a-machine does not consult any oracle. Constant functions are
important in calculus, but no one would spend weeks on them.

Many books follow the example of Post 1944 and study strong reducibil-
ities such as many-one reducible (A <,, B) or tt-reducibility (A <y B).
This is analogous to having a calculus book spend many weeks on spe-
cific examples of continuous or differentiable functions, such as polynomials,
trigonometric functions, and rational functions, before even defining a con-
tinuous or differentiable function. Both strong reducibilities in computabil-
ity and polynomials in calculus are excellent examples and are very useful,
but they cannot take the place of the general case of continuity or relative
computability (effective continuity), fundamental concepts of the subjects.

1.3 The Development of Relative Computability

There are historical reasons for the emphasis on ordinary Turing computabil-
ity and the Church-Turing Thesis and a lack of emphasis on Turing oracle
machines, relative computability, and Turing’s Second Thesis on relative
computability. The computability investigations in the 1930’s were strongly
influenced by Hilbert’s Entscheidungsproblem stated in 1928. The main
object for Church and Turing in the early 1930’s was to give a precise defi-
nition of computable so that one could diagonalize against the computable
functions and produce an undecidable problem in mathematics.



1.4 Turing Introduces Relative Computability

Turing’s description 1939 of an oracle machine was a tiny and obscure part of
his paper. He might have gone further in later papers, but the Second World
War began that same year and he immediately entered Bletchley Park, the
British cryptographic facility for the duration of the war. During this time
he helped build actual computers partly based on his earlier theoretical
ideas. When he emerged in 1946 he moved to the University of Manchester
to build computers and never returned to questions of oracle machines and
relative computability, but spent his time instead on the topics covered in
the papers, Turing 1948 through 1954.

1.5 Post Develops Relative Computability

From 1939, when Turing left the subject, until his death in 1954, Emil Post
continued where Turing had stopped and brought the notion of relative com-
putability to the forefront. He also played a key role in our understanding
of Turing reducibility as an effectively continuous function on Cantor space
or Baire space, and the use of this property to classify the degree of unsolv-
ability of sets. His introduction of finite forcing in Kleene-Post 1954 gave
us the most important tool for solving Post’s Problem. Post did more than
anyone else to reveal the intuition and significance behind Gdédel’s results,
to classify the information content of computably enumerable sets, and to
understand not only Turing reducibility but several stronger reducibilities
as well.

1.6 Relative Computability in Real World Computing

We also explore why relative computability and oracle programs play a much
larger role in real world computing than the original Turing machine models
or programs without input/output (i/o) devices.

2 Origins of Computability and Incomputability

Mathematicians have studied algorithms and computation since the time
of the Babylonians. Kleene 1988, page 19 wrote, “The recognition of al-
gorithms goes back at least to Euclid (c. 330 B.C.)” with Euclid’s famous
greatest common divisor algorithm. The name “algorithm” comes from the
name of the ninth century Arabian mathematician Al-Khowarizmi who gave
us algebra as well as algorithms.



Along with the development of theoretical mathematical algorithms there
developed an interest in actual calculating machines. In 1642 the French
mathematician and scientist, Blaise Pascal, invented an adding machine
which may be the first digital calculator. In 1671 the German mathemati-
cian and philosopher, Gottfried Wilhelm Leibniz, co-inventor with Newton
of the calculus, invented a machine that performed multiplication. Leib-
niz’s machine, the stepped reckoner could not add and multiply, and also
divide, and extract square roots. His stepped gear wheel still appears in a
few twentieth century devices. Leibniz’ main contribution was the demon-
stration of the superiority of the binary over the decimal representation for
mechanical computers. Around 1834 Babbage invented the idea of an “An-
alytic Engine,” which could be programmed to perform long and tedious
calculations.

In each of these instances algorithms or mechanical devices were used
to extend our knowledge of computability in mathematics. This changed
in the twientieth century. By the 1930’s the emphasis was on understand-
ing incomputability. As the twentieth century opened, Georg Cantor had
introduced set theory in order to solve a problem in trigonometric series.
Paradoxes with his naive set theory soon demonstrated that unrestricted
set formation (comprehension) led to contradictions. Mathematicians scru-
tinized definite axioms for their mathematics and searched for a proof of
consistency of the axioms. The geometer and topologist Oswald Veblen,
later the thesis adviser of Alonzo Church at Princeton, and the first pro-
fessor in the Institute for Advanced Study, completed his Ph.D. in 1903 at
the University of Chicago under E.H. Moore with a dissertation called, “A
System of Axioms for Geometry.” In 1927 Church completed under Veblen
at Princeton his thesis, “Alternatives to Zermelo’s Assumption.”

David Hilbert, one of the two leading mathematicians in 1900 along
with Poincaré, was deeply interested in the foundations of mathematics.
Hilbert 1899 gave an axiomatization of geometry and showed 1900 that the
question of the consistency of geometry reduced to that for the real-number
system, and that in turn to arithmetic by results of Dedekind (at least in
a second order system). Hilbert 1904 proposed proving the consistency
of arithmetic by what became known by 1928 as his finitist program. He
proposed using the finiteness of mathematical proofs in order to establish
that contradictions could not be derived. This tended to reduce proofs to
manipulation of finite strings of symbols devoid of intuitive meaning which
stimulated the development of mechanical processes to accomplish this.

Hilbert’s second major program of the early twientieth century was
Entscheidungsproblem (decision problem). Kleene 1987b, p. 46, wrote, “The



Entscheidungsproblem for various formal systems had been posed by Schroder
1895, Lowenheim 1915, and Hilbert 1918.” The decision problem for first
order logic emerged in the early 1920’s in lectures by Hilbert and was for-
mally defined in Hilbert and Ackermann 1928. It was to give a decision
procedure (Entscheidungsverfahren) “that allows one to decide the validity
of the sentence.” (Here “valid” means “true in the standard structure,”
not the modern sense of valid as true in all structures.) Hilbert character-
ized this as the fundamental problem of mathematical logic. Davis 1965,
page 108, wrote, “This was because it seemed clear to Hilbert that with the
solution of this problem, the Entscheidungsproblem, it should be possible, at
least in principle, to settle all mathematical questions in a purely mechanical
manner.” Von Neumann (1927) doubted that such an procedure existed but
had no idea how to prove it.

2.1 Godel’s Incompleteness Theorem

Hilbert retired in 1930 and was asked to give a special address in the fall of
1930 in Konigsberg, the city of his birth. Hilbert spoke on natural science
and logic, the importance of mathematics in science, and the importance
of logic in mathematics. He asserted that there are no unsolvable problems
and stressed,

Wir missen wissen.  (We must know.)
Wir werden wissen. — (We will know.)

At a mathematical conference preceding Hilbert’s address a quiet, ob-
scure young man, Kurt Godel, only a year a beyond his Ph.D. announced
a result which would forever change the foundations of mathematics. He
formalized the liar paradox, “This statement is false” to prove roughly that
for any effectively axiomatized extension 7' of number theory (Peano arith-
metic) there is a sentence o which asserts its own unprovability. If T' proves
o then T is inconsistent; if not then T is incomplete. Few in the audi-
ence understood the importance of Godel’s Incompleteness Theorem. One
who understood at once was John von Neumann who was at the conference
representing Hilbert’s proof theory program, and recognized that Hilbert’s
program was over. In the next couple weeks von Neuman realized that by
arithmetizing the proof of Godel’s first theorem one could prove an even
better one, that no such formal system 7' could prove its own consistency.
He brought his proof to Gédel who thanked him and informed him politely
that Godel had aleady submitted the Second Incompleteness Theorem for
publication.



Godel’s Incompleteness Theorem 1931 not only refuted Hilbert’s pro-
gram on proving consistency, but it also had a profound effect on refuting
Hilbert’s second theme of the Entscheidungsproblem. Godel had successfully
challenged the previously sacrosanct Hilbert. This made it easier to chal-
lenge Hilbert on the second topic of the decision problem. Both refutations
used diagonal arguments. Of course, diagonal arguments had been known
since Cantor’s work, but Godel showed how to arithmetize the syntactic
elements of a formal system and diagonalize within that system. Crucial
elements in computability theory, such as the Turing universal machine, the
Kleene p-recursive functions, or the self reference in the Kleene’s Recur-
sion Theorem, all depend upon giving code numbers to computations and
elements within a computation, and in calling algorithms by their code num-
bers (Godel numbers). These ideas spring from Godel’s 1931 incompleteness
proof.

2.2 Incomputability and Undecidability

By 1931 computability was a young man’s game. Hilbert had retired and no
longer had much influence on the field. As the importance of Godel’s Incom-
pleteness Theorem began to sink in, and researchers began concentrating on
the Entscheidungsproblem, the major figures were all young. Alonzo Church
(born 1903), Kurt Godel (b. 1906), and Stephen C. Kleene (b. 1909) were
all under thirty. Turing (b. 1912), perhaps the most influential of all on
computability theory, was not even twenty. Only Emil Post (b. 1897) was
over thirty, and he was not yet thirty-five. These young men were about
to leave behind Hilbert’s ideas and open the path of computability for the
next two thirds of the twentieth century, which would solve the theoretical
problems and would show the way toward practical computing devices.

2.3 Alonzo Church

After completing his Ph.D. at Princeton in 1927, Church spent one year at
Harvard, and one year at Goéttingen and Amsterdam. He returned to Prince-
ton as an Assistant Professor of Mathematics in 1929. In 1931 Church’s first
student, Stephen C. Kleene arrived at Princeton. Church had begun to de-
velop a formal system now called the A-calculus. In 1931 Church knew only
that the successor function was A-definable but by the time Kleene received
his Ph.D. in 1934 he had shown that all the usual number theoretic func-
tions were A-definable. On the basis of this evidence and his own intuition,
Church proposed to Godel in 1934 the first version of his thesis on functions



which are effectively calculable, the term in the 1930’s for a function which is
computable in the informal sense. On the strength of this evidence, Church
proposed to Godel around March, 1934 (see Davis 1965, p. 8-9) that the
notion of “effectively calculable” be identified with “A-definable.”

Definition 2.1. Church’s Thesis (First Version) [1934] A function if
effectively calculable if and only if it is A-definable.

When Kleene first heard the thesis he tried to refute it by a diagonal
argument but since the A-definable functions were only partial the diago-
nal was one of the rows. Instead of a contradiction, Kleene had proved a
beautiful new theorem, the Kleene Recursion Theorem, described in Soare
1987, p. 36, whose proof is a diagonal argument which fails. However, Godel
rejected as Church’s first thesis as “thoroughly unsatisfactory.”

Godel had come to Princeton from Europe by 1934. He knew that the
primitive recursive functions which he has used in his 1931 paper did not
constitute all computable functions. He expanded on a concept of Herbrand,
modifying it to be more effective, and at Princeton in 1934 Godel lectured
on the Herbrand-Godel recursive functions which came to be known as the
general recursive functions to distinguish them from the primitive recursive
functions which at that time were called “recursive functions.” Soon the pre-
fix “primitive” was added to the latter and the prefix “general” was generally
dropped from the former. Godel’s definition gave a remarkably succinct sys-
tem whose simple rules reflected the way a mathematician would informally
calculate a function using recursion. (Strictly speaking, since 1934 “recur-
sive function” has meant “Herbrand-Godel recursive,” not the p-recursive
functions of Kleene, although the two are extensionally equivalent.)

2.4 Herbrand-Godel Recursive Functions

Church and Kleene attended Godel’s lectures on recursive functions Rosser
and Kleene took notes which appeared as Godel 1934. After seeing Godel’s
lectures, Church and Kleene changed their formalism (especially for Church’s
Thesis) from “A-definable” to “Herbrand-Gdédel general recursive.” Kleene
1981 wrote,

“I myself, perhaps unduly influenced by rather chilly receptions
from audiences around 1933-35 to disquisitions on A-definability,
chose, after general recursiveness had appeared, to put my work
in that format. ...”

Nevertheless, A-definability is a precise calculating system and has close
connections to modern computing, such as functional programming.

10



2.5 Stalemate at Princeton Over Church’s Thesis

Church reformulated his thesis with Herbrand-Godel recursive functions in
place of A-definable ones. This time without consulting Gédel, Church pre-
sented to the American Mathematical Society on April 19, 1935, his famous
proposition described in his paper 1936.

“In this paper a definition of recursive function of positive in-
tegers which is essentially Godel’s is adopted. It is maintained
that the notion of an effectively calculable function of positive
integers should be should be identified with that of a recursive
function, ...”

It has been known since Kleene 1952 as Church’s Thesis in this form.

Definition 2.2. Church’s Thesis [1936]. A function on the positive
integers is effectively calculable if and only if it is recursive.

As further evidence Church and Kleene had shown the formal equiva-
lence of the Herbrand-Goédel recursive functions and the A-definable func-
tions. Kleene introduced a new equivalent class, the p-recursive functions,
functions defined by the five schemata for primitive recursive functions, plus
the least number operator p. The p-recursive functions had the advantage
of a short standard mathematical definition, but the disadvantage that any
function not primitive recursive could be calculated only by a tedious arith-
metization as in Godel’s Incompleteness Theorem.

2.6 Godel’s Thoughts on Church’s Thesis

In spite of this evidence, Godel still did not accept Church’s Thesis by the
beginning of 1936. Godel had become the most prominent researcher in
mathematical logic. It was his approval that Church wanted most. Church
had solved the Entscheidungsproblem only if his characterization of effec-
tively calculable functions was accurate. Godel had considered the question
of characterizing the calculable functions in 1934 when he wrote.

“[Primitive] recursive functions have the important property that,
for each given set of values for the arguments, the value of the
function can be computed by a finite procedure3.”

Footnote 3.

“The converse seems to be true, if, besides recursion according to

11



scheme (V) [primitive recursion], recursions of other forms (e.g.,
with respect to two variables simultaneously) are admitted. This
cannot be proved, since the notion of finite computation is not
defined, but it serves as a heuristic principle.”

The second paragraph (his footnote 3), gives crucial insight into Godel’s
thinking about the computability thesis and his later pronouncements about
the achievements of Turing versus others. Godel says later that he was not
sure that his system of Herbrand Goédel recursive functions comprised all
possible recursions. Second, his final sentence suggests that he may have
believed such a characterization “cannot be proved,” but is a “heuristic
principle.”

3 Turing Breaks the Stalemate

At the start of 1936 those gathered at Princeton, Godel, Church, Kleene,
Rosser, and Post nearby, constituted the most distinguished and powerful
group in the world investigating the notion of a computable function and
Hilbert’s Entscheidungsproblem. At that moment stepped forward a twenty-
two year old youth, far removed from Princeton. Well, not just any youth.
Alan Turing had already proved the Central Limit Theorem in probability
theory, not knowing it had been previously proved, as described in Zabell
1995. As a result Turing had been elected a Fellow of King’s College, Cam-
bridge.

3.1 Turing’s Machines and Turing’s Thesis

The work of Hilbert and Godel had become well-known around the world.
At Cambridge University topologist Professor M.H.A. (Max) Newman gave
lectures on Hilbert’s Entscheidungsproblem in 1935. Alan Turing attended.
Turing’s mother had had a typewriter which fascinated him as a boy. He
designed his automatic machine (a-machine) as a kind of typewriter with
an infinite carriage over which the reading head passes with the ability to
read, write, and erase one square at a time before moving to an immediately
adjacent square, just like a typewriter.

Definition 3.1. Turing’s Thesis [1936]. A function is intuitively com-
putable (effectively calculable) if and only if it is computable by a Turing
machine, i.e., an automatic machine (a-machine), defined in Turing 1936.

12



Turing showed his solution to the astonished Professor Newman in April,
1936. The Proceedings of the London Mathematical Society was reluctant
to publish Turing’s paper because Church’s had already been submitted on
similar material. Newman persuaded them that Turing’s work was suffi-
ciently different, and they published his paper in volume 42 of the journal®
on November 30, 1936 and December 23, 1936.

Turing’s machine has compelling simplicity and logic which makes it
even today the most convincing model of computability. qually important
with this Turing machine was Turing’s analysis of the intuitive conception
of a “function produced by a mechanical procedure.” In a masterful demon-
stration, which Robin Gandy considered as precise as most mathematical
proofs, Turing analyzed the informal nature of functions computable by a fi-
nite procedure, and demonstrated that they coincide with those computable
by an a-machine. Also Turing 1936, p. 243 introduced the universal Tur-
ing machine which has great theoretical and practical importance. Turing
asserted the following thesis.

3.2 Godel’s Opinion of Turing’s Work

Godel’s reaction was swift and emphatic. He never accepted Church’s The-
sis, but he accepted Turing’s Thesis immediately. Godel was interested in
the intensional analysis of finite procedure. He never believed the arguments
and confluence evidence which Church presented to justify his Thesis. On
the other hand Godel accepted immediately not only Turing machines, but
more importantly, the analysis Turing gave of a finite procedure. The fact
that Turing machines were later proved extensionally equivalent to general
recursive functions did not convince Godel of the intrinsic merit of the other
definitions.

“That this really is the correct definition of mechanical com-

!Many papers, Kleene [1948, p. 73], 1987, 1987b, Davis [1965, p. 72], Post [1943,
p. 200], and others, mistakenly refer to this paper as “[Turing, 19587],” perhaps because
the volume 42 is 1936-37 covering 1936 and part of 1937, or perhaps because of the two
page minor correction 1937. Others, such as Kleene 1952, 1981, 1981b, Kleene and Post
[1954, p. 407], Gandy 1980, Cutland 1980, and others, correctly refer to it as “[1936],”
or sometimes “[1936-37].” The journal states that Turing’s manuscript was “Received 28
May, 1936-Read 12 November, 1936.” It appeared in two sections, the first section of
pages 230240 in Volume 42, Part 3, issued on November 30, 1936, and the second section
of pages 241-265 in Volume 42, Part 4, issued December 23, 1936. No part of Turing’s
paper appeared in 1937, but the two page minor correction 1937 did. Determining the
correct date of publication of Turing’s work is important to place it chronologically in
comparison with Church 1936, Post 1936, and Kleene 1936.
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3.3

putability was established beyond any doubt by Turing.”
-Godel 1937 Notes in Nachlass [1935]

“ But I was completely convinced only by Turing’s paper.”
-Gadel: letter to Kreisel of May 1, 1968 [Sieg, 1994, p. 88].

13

...one [Turing] has for the first time succeeded in giving an
absolute definition of an interesting epistemological notion, i.e.,
one not depending on the formalism chosen.”

-Gaodel, Princeton Bicentennial, [1946, p. 84].

“ ...For the concept of computability, however, although it is
merely a special kind of demonstrability or decidability, the sit-
uation is different. By a kind of miracle it is not necessary to
distinguish orders, and the diagonal procedure does not lead out-
side the defined notion.”

—Gadel: [1946, p. 84], Princeton Bicentennial

“The greatest improvement was made possible through the pre-
cise definition of the concept of finite procedure, . .. This concept,
...1s equivalent to the concept of a ‘computable function of in-
tegers’ ... The most satisfactory way, in my opinion, is that of
reducing the concept of finite procedure to that of a machine
with a finite number of parts, as has been done by the British
mathematician Turing.”

—Gddel [1951, pp. 304-305], Gibbs lecture

“...due to A.M. Turing’s work a precise and unquestionably ad-
equate definition of the general concept of formal system can now
be given, the existence of undecidable arithmetical propositions
and the non-demonstrability of the consistency of a system in the
same system can now be proved rigorously for every consistent
formal system containing a certain amount of finitary number
theory.”
-Godel’s Postscriptum to Gédel [1934], see Davis, [1965].

Kleene Said About Turing

“Turing’s computability is intrinsically persuasive” but “A-definability

is not intrinsically persuasive” and “general recursiveness scarcely

14



so (its author Godel being at the time not at all persuaded).”
-Stephen Cole Kleene [1981b, p. 49]

“ For this reason, Turing computability suggests the thesis more
immediately than the other equivalent notions and so we choose
it for our exposition.”

-Stephen Cole Kleene, second book [1967, p. 233]

3.4 Church Said About Turing

Computability by a Turing machine, “ has the advantage of mak-
ing the identification with effectiveness in the ordinary (not ex-
plicitly defined) sense evident immediately—i.e., without the ne-
cessity of proving preliminary theorems.”

-Alonzo Church, [1937], Review of Turing [1956]

3.5 Naming the Church-Turing Thesis

Neither Church nor Turing referred to their hypotheses as a “thesis” but
saw them as definitions. The definitions of Church and Turing were not
even called “theses” at all until Kleene [1943, p. 60] referred to Church’s
“definition” as “Thesis I.”

In his highly influential paper 1944 Post did not use the terms “Church’s
Thesis” or “Turing’s Thesis” at all. By then Post had accepted Church’s
definition and terminology of recursive function as the formal equivalent of
effectively calculable. Post simply wrote,

“The importance of the technical concept recursive function de-
rives from the overwhelming evidence that it is coextensive with
the intuitive concept of effectively calculable function.”

It was nearly a decade later when Kleene’s first book 1952 appeared, and
Kleene referred to “Church’s Thesis” and “Turing’s Thesis.” Kleene there
and in later papers used the phrase “Church’s Thesis” to denote the claim
that any intuitively computable function is formally computable by any
one of the formalisms, recursive functions, Turing machines, or A-definable
functions. Although Kleene also initiated the phrase “Turing’s Thesis” at
the same place in his book 1952 as Church’s Thesis, Kleene apparently
did not see the need to append Turing’s name to it. Therefore, after 1952
the phrase “Church’s Thesis” came to denote also “Turing’s Thesis” and
perhaps others as well, thereby blurring all intensional distinctions.
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Thirty years after the fact, Kleene wrote another book Mathematical
Logic, 1967 at a more introductory level than his first book 7952. In §41
page 232 Kleene discusses Church’s Thesis and Turing’s Thesis. He notes
that they are extensionally equivalent because A-definable and Turing com-
putable functions are mathematically equivalent by Turing 1937b and hence
the same as general recursive functions. Kleene wrote on p. 232,

“So Turing’s and Church’s theses are equivalent. We shall usu-
ally refer to them both as Church’s Thesis. or in connection with
that one of its three versions which deals with "Turing machines’
as the Church-Turing thesis.

However, Kleene p. 233 then based his presentation of computable func-
tions on Turing machines. He continued,

“Turing’s machine concept arises from a direct effort to ana-
lyze computation procedures as we know them intuitively into
elementary operations. Turing argued that repetitions of his el-
ementary operations would suffice or any possible computation.
For this reason, Turing computability suggests the thesis more
immediately than the other equivalent notions and so we choose
it for our exposition.”

Kleene went on during pages 233-240 to develop the entire theory of com-
putable functions on Turing machines and he closed on p. 240.

“For further discussion of Church’s Thesis or the Church-Turing
Thesis, we refer to the literature.”

However, by 1967 the name “Church’s Thesis” for the Church-Turing Thesis
or Turing’s Thesis had stuck. It had become so well established that, for
example Rogers 1967, referred to a “proof by Church’s Thesis” meaning that
one can write a precise but informal algorithm for an intuitively computable
function, and then simply appeal to Church’s Thesis for the existence of a
corresponding Turing machine without explicitly describing it. In general
Turing’s name was not mentioned in connection with the thesis. Rogers’
book was highly influential after 1967 because it was intuitive Post 1944 had
been, and because it was based on Turing machines, not the heavy formalism
of Kleene 1952. It is significant that the new book Church’s Thesis after
70 years by Olszewski and Wolenski 2007 does not mention Turing in the
title, although a number of papers there have “Church-Turing Thesis” in
their titles. In modern times it seems the fairest and most accurate way of
stating the thesis is the following.
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Definition 3.2. Church-Turing Thesis (CTT). A function is intuitively
computable if and only if it is computable by a Turing machine, or equiva-
lently by a recursive function.

4 Turing Defines Relative Computability

In most of the previous studies of computability with Leibnitz, Pascal, or
Babbage, advances in computability led to an deeper study of computability
and further advances theoretical and practical, sometimes with the inven-
tion of mechanical computing devices. However, during the period 1936-39
immediately the discoverers of computability studied incomputability. Ap-
plications of Turing machines, the A-calculus, and recursive functions in real
world computing were to come only later after 1940.

Church and Kleene 1936 as well as Church 1938 and Kleene 1938 studied
computable well-orderings and defined recursive ordinals which were later
used to extend the jump operation to the arithmetic hierarchy and beyond
to the hyperarithmetic hierarchy up to the first nonrecursive ordinal wloK .

After Turing’s discovery in April, 1936, Professor Newman suggested
that he go to Princeton to take his Ph.D. Turing studied under Church
from 1936-1938. His thesis was completed in 1938 and published in Turing
1989. Church and other mathematicians had found Goédel’s Incompleteness
Theorem unsettling. By Godel’s proof any effective extension 77 of Peano
arithmetic cannot prove its own consistency cony,. However, we can add
the arithmetical statement cong, to T to get a strictly stronger theory T5.
Continuing, we can get an increasing hierarchy of theories {7, }acs over a
set S of ordinals o. Turing’s thesis 1939 concerned such an increasing array
of theories.

4.1 Turing’s Oracle Machines

In one of the most important and most obscure parts of all of computability
theory, Turing wrote in his ordinal logics paper [1939, §4] a short statement
about oracle machines.

“Let us suppose we are supplied with some unspecified means of
solving number-theoretic problems; a kind of oracle as it were.
...this oracle ...cannot be a machine.

With the help of the oracle we could form a new kind of ma-
chine (call them o-machines), having as one of its fundamental
processes that of solving a given number-theoretic problem.”
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There are several equivalent ways that a Turing machine with oracle may
be defined. We prefer the definition in Soare 1987, p. 46, of a machine with
a head which reads the work tape and oracle tape simultaneously. A Turing
oracle machine (o-machine) is a Turing machine with an extra “read only”
tape, called the oracle tape, upon which is written the characteristic function
of some set A (called the oracle), and whose symbols cannot be printed over.
The old tape is called the work tape and operates just as before. The reading
head moves along both tapes simultaneously. As before, @ is a finite set of
states, S; = {B,0,1} is the oracle tape alphabet, So = {B, 1} is the work
tape alphabet, and {R, L} the set of head moving operations right and left.
A Turing oracle program P, is now simply a partial map,

§:Q xS xS — QxS2x{R,L},

where d(q,a,b) = (p,c, X) indicates that the machine in state ¢ reading
symbol a on the oracle tape and symbol b on the work tape passes to state
p, prints “c” over “b” on the work tape, and moves one space right (left)
on both tapes if X = R (X = L). The other details are just as previously
in Soare 1987. The Turing oracle program P, defines a partial computable
functional ®4(z) = y.

If {pe}ecw is a list of partial computable functions produced by the
ordinary Turing machines, Turing a-machine programs P., then we define

the graph as follows.

graph(pe) = {{z,9) : pe(x) =y}

For an oracle machine program P, we likewise define the oracle graph of O,

(1) Ge =dm graph(q)e) =dfn {(U’ .’E,y> : (I)g(.l') - y}

where ®7(x) = y denotes that the oracle program P. with oracle o on its
oracle tape, and x on its input tape eventually halts and outputs y, and
does not read more of the oracle tape than ¢ during the computation. The
crucial property of the oracle graph G, is the following.

4.2 The Oracle Graph Theorem

Theorem 4.1. Oracle Graph Theorem.

(i) If P, is the oracle program defining Turing functional ®. then the graph
Ge is a computably enumerable (c.e.) set.

(ii) For any c.e. set W, regarded as a set of triples, we can find a subset
G; C W, which is the oracle graph of a Turing functional ®;.
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4.3 Equivalent Definitions of Relative Computability

There are several different formal definitions of relative computability. This
includes an oracle machine with a single reading head reading the work
tape and oracle tape, or two independent reading heads, or other variations.
In addition, several authors define relative computability from oracle A by
adding the characteristic function of A either to the Herbrand-Gédel general
recursive function definition of to the Kleene u-recursive function definition.
Each of these formal definitions produces a c.e. graph G.. Hence, by the
Oracle Graph Theorem 4.1 they are all equivalent. Any Turing a-machine
can clearly be simulated by a Turing o-machine.

Theorem 4.2. If P, is a Turing program for an a-machine, then there is a
Turing oracle program P; which on input x and any oracle A produces the
same output y.

Proof. Let P, be a Turing program to compute .. Now P, has consists of
a finite partial map

52QXSQ—> QXSQX{R,L},

where Sy = {B, 1} is the work tape alphabet, and {R, L} the set of head
moving operations right and left. Define an oracle program P; as follows
with transition function

§:Qx S8 x8 — QxS x{R,L},

for S1 = {B,0,1} the oracle tape alphabet as follows. For each line in P,
of the form d(g,s) = (p, X) we add to oracle program P; a line 0(q,a,s) =
(p, X) for both a = 0 and a = 1. Hence, P; has exactly the same effect on
input x as P. regardless of the oracle A. O

5 Emil Post Expands Turing’s Ideas

The spirit of Turing’s work was taken up by the American mathematician
Emil Post, who had been appointed to a faculty position at City College of
New York in 1932.

5.1 Post’s Work in the 1930’s

Post 1936 independently of Turing (but not independently of the work by
Church and Kleene in Princeton) had defined a “finite combinatory process”

19



which closely resembles a Turing machine. From this it is often and erro-
neously written (Kleene 1987b, p. 56 and 1981, p. 61) that Post’s contribu-
tion here was “essentially the same” as Turing’s, but in fact it was much less.
Post did not attempt to prove that his formalism coincided with any other
such as general recursiveness but merely expressed the expectation that this
would turn out to be true, while Turing proved the Turing computable func-
tions equivalent to the A-definable ones. Post gave no hint of a universal
Turing machine. Most important, Post gave no analysis as did Turing of why
the intuitively computable functions are computable in his formal system.
Post offers only as a “working hypothesis” that his contemplated “wider
and wider formulations” are “logically reducible to formulation 1.” Lastly,
Post, of course, did not prove the unsolvability of the Entscheidungsproblem
because at the time Post was not aware of Turing’s 1936, and Post believed
that Church 1936 had settled the Entscheidungsproblem. Post’s contribu-
tions during the 1930’s were original and insightful, corresponding in spirit
to Turing’s more than to Church’s, but they were not as influential as those
of Church and Turing. It was only during the next phase from 1939 to 1954
that Post’s remarkable influence was fully felt.

5.2 Post Steps Into Turing’s Place During 1939-1954

As Turing left the subject of pure computability theory in 1939 his mantle
fell on the shoulders of Post, the mantle of clarity and intuitive exposition,
the mantle of exploring the most basic objects such as computably enumer-
able sets, and most of all, the mantle of relative computability and Turing
reducibility. During the next fifteen years from 1939 to his death in 1954,
Post played a key role in the development of the subject. Post 1941 and
19438 introduced a second and unrelated formalism called a production sys-
tem and (in a restricted form) a normal system, which he explained again
in 1944. Post’s (normal) canonical system is a generational system, rather
than a computational system as in general recursive functions or Turing
computable functions, and led Post to concentrate on effectively enumerable
sets rather than computable functions. Post, like Church and Turing, gave
a thesis 1943, p. 201, but stated in terms of generated sets and production
systems, which asserted that “any generated set is a normal set.”

Definition 5.1. Post’s Thesis [1943, 1944]. A nonempty set is effec-
tively enumerable (listable in the intuitive sense) iff it is recursively enumer-
able (the range of a recursive function) or equivalently iff it is generated by
a (normal) production system.
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He showed that every recursively enumerable set (one formally generated
by a recursive function) is a normal set (one derived in his normal canonical
system) and conversely. Therefore normal sets are formally equivalent to
recursively enumerable sets. Since recursively enumerable sets are equide-
finable with partial computable functions, this definition of normal set gives
a new formal definition of computability which is formally equivalent to the
definitions of Church or Turing.

Post’s Thesis is equivalent to Turing’s Thesis because every nonempty
recursively enumerable set is the range of a Turing computable function and
conversely given any recursively enumerable set of ordered pairs, one can
effectively find a single valued subset and this is the graph of some partial
computable function.

Post used the terms “effectively enumerable set” and “generated set”
almost interchangeably, particularly for sets of positive integers. Post 194/,
p. 285, (like Church 1936) defined a set of positive integers to be recur-
sively enumerable if it is the range of a recursive function and then stated,
“The corresponding intuitive concept is that of an effectively enumerable
set of positive integers.” (This is Church’s 1936 terminology also). Post
1944, p. 286, explained his informal concept of a “generated set” of positive
integers this way,

“Suffice it to say that each element of the set is at some time
written down, and earmarked as belonging to the set, as a result
of predetermined effective processes. It is understood that once
an element is placed in the set, it stays there.”

Post then 1944, p. 286, restated Post’s Thesis 77 in the succinct form,

“every generated set of positive integers is recursively enumer-
able.”

He remarked that “this may be resolved into the two statements: every
generated set is effectively enumerable, every effectively enumerable set of
positive integers is recursively enumerable.” Post continued, “their con-
verses are immediately seen to be true.” Post’s concentration on c.e. sets
rather than partial computable functions may be even more fundamental
than the thesis of Church and Turing characterizing computable functions
because Sacks 1990 has remarked that often in higher computability the-
ory it is more convenient to take the notion of generalized c.e. set as basic
and to derive generalized computable functions as those whose graphs are
generalized computably enumerable.
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5.3 Post Problem on Incomplete C.E. Sets

Post most influential achievement during this period was the extraordinarily
clear and intuitive paper, Recursively enumerable sets of positive integers
and their decision problems, 194/4. Here Post introduced the terms degree of
unsolvability and the concept that one set has lower degree of unsolvability
than another. Post later expanded on these definitions in 1948.

Post’s paper 194 revealed with intuition and great appeal the signifi-
cance of the of computably enumerable sets and the significance of Godel’s
Incompleteness Theorem. Post called Godel’s diagonal set,

K={e:ecW.}

the complete set because every c.e. set W, is computable in K (W, <t K).
Moreover, Post felt that the creative property of K revealed the inherent
creativeness of the mathematical process.

5.4 Post Began With Strong Reducibilities

Poste posed his famous “Post’s problem” of whether there exists a com-
putably enumerable (c.e.) set W which is not computable but which cannot
compute Godel’s diagonal set K, i.e., whether ) <7 W <1 K. In 1944
people did not fully understand full Turing reducibility, and Post did not
explicitly discuss it until the very end of his paper. He began by defining
a number of strong reducibilities instead, such as m-reducibility(B <, A,
truth-table reducibility (B <y A), and a succession of c.e. sets with thin
complements, simple, hyper-simple, hyper-hypersimple, in an attempt to
find an incomplete set for these reducibilities. These concepts have per-
vaded the literature and proved useful and interesting, but they did lead
to an understanding of Turing reducibility or a solution of Post’s problem.
Post was able to exhibit incomplete c.e. sets for several of these stronger
reducibilities but not for Turing reducibility. Post’s Problem stimulated a
great deal of research in the field and had considerable influence.

6 Post Highlights Turing Computability

When Post wrote his famous paper 1944, Turing’s notion of relative com-
putability from an oracle discussed in §4.1 had been mostly ignored for five
years. It was only at the end of Post’s paper 1944 in the last section, §11
General (Turing) Reducibility, that Post defined and named for the first time
“Turing Reducibility,” denoted B <t A, and began to discuss it in intuitive
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terms. Post’s four and a half page discussion there is the most revealing
introduction to effective reducibility of one set from another. In the same
crisp, intuitive style as in the rest of the paper, Post described the manner
in which the decision problem for one set S; could be reduced to that of a
second set S3. Post wrote it for a c.e. set S in studying Post’s problem, but
the analysis holds for any set Ss.

6.1 Post Articulates Turing Reducibility
Post wrote in 1944 §11,

“Now suppose instead, says Turing 1939 in effect, this situation
obtains with the following modification. That at certain times
the otherwise machine determined process raises the question is
a certain positive integer in a given recursively enumerable set
So of positive integers, and that the machine is so constructed
that were the correct answer to this question supplied on every
occasion that arises, the process would automatically continue to
its eventual correct conclusion. We could then say that the ma-
chine effectively reduces the decision problem of S; to that of .Ss.
Intuitively, this would correspond to the most general concept
of reducibility of S; to S2. For the very concept of the decision
problem of So merely involves the answering for an arbitrarily
given single positive integer m of the question is m in Sy; and in a
finite time but a finite number of such questions can be asked. A
corresponding formulation of “Turing reducibility” should then
be the same degree of generality for effective reducibility as say
general recursive function is for effective calculability.”

6.2 The Post-Turing Second Thesis

Post’s statement may be restated in succinct modern terms and incorpo-
rates the statement implicit in Turing 1939 §4 in the following extension of
Turing’s Thesis.

Definition 6.1. Post-Turing Second Thesis [Turing 1939 §4, Post
1944 §11]. A set B is effectively reducible to another set A iff B is Turing
reducible to A by a Turing oracle machine (B <t A).

Turing’s brief introduction of oracles did not state this as a formal the-
sis, but it is largely implied by his presentation. Post makes it explicit and
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claims that this is the formal equivalent of the intuitive notion of effec-
tively reducible, a step as significant as the Church-Turing characterization
of “calculable.” If we identify a Turing reduction ®, with its graph G, both
informally and formally then the Post-Turing Second Thesis is equivalent to
Post’s First Thesis 7?7 (because G, is c.e.), which is equivalent to Turing’s
First Thesis 77.

However, there has been little analysis (along the lines of the extensive
analysis of the Church-Turing Thesis 3.2 for unrelativized computations) of
what constitutes a relative computation of B from A. This is surprising
because the Post-Turing Second Thesis was stated clearly in Post 1944. It
is even more surprising because relative computability is used much more
often than ordinary computability in: the theory of computability; applica-
tions of computability to other areas such as algebra, analysis, model theory,
algorithmic complexity and many more; computing in the real world where
actual computers use oracle programs much more than ones contained en-
tirely inside the machine.

7 Effectively Continuous Functions

7.1 Representations of Open Sets

It is useful to view a Turing reduction ®. as a continuous functional on
Cantor space 2%.

Definition 7.1. (i) Using ordinal notation identify the ordinal 2 with the
set of smaller ordinals {0, 1}. Identify the sets A C w with their character-
istic functions f:w — {0,1} and represent this as 2*.

(ii) Let 2<¢ denote the set of finite strings of 0's and 1’s, i.e., finite initial
segments of functions f € 2.

(iii) Cantor space is 2 with the following topology (class of open sets). For
every o € 2<¥ the basic open (clopen) set

No={f:fe2® & oCf}

where o C f denotes that the function f extends o. The sets N, are called
clopen because they are both closed and open. The open sets of Cantor space
are the countable unions of basic open sets, so the open sets are closed under
finite intersection and countable union.

(iv) Set A C 2<“is an open representation of the open set Ny = J,cq No-
We may assume A is closed upwards, i.e., 0 € A and ¢ C 7 implies 7 € A.
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(v) Aset Cis closed if its complement N is open, i.e.,C = N 4 = (2¥ —Ny).
In this case T =gsn 2<% — A is a closed representation for C. Now T is closed
downwards (because A is closed upwards). Hence, T forms a tree. For a tree
[T] we have the closed set [T] = Nz, the complement of the open set Ny
for A=T.

7.2 Continuous and Effectively Continuous Functions

In elementary calculus courses a continuous function is usually defined with
0 and e concepts or with limits. However, in more advanced analysis or
topology courses the more general definition is given that a function F' is
continous iff the image of every basic open set is open, i.e., a countable
union of basic open sets. We state continuity now for functions on the
Cantor space 2¥ (or Baire space w* which differs from Cantor space mainly
because Cantor space is compact while Baire space is not). We use the
notation of Definition 7.1.

Definition 7.2. (i) A function F' on Cantor space 2* is continuous iff for
every T € 2<% there is a countable set D such that

2) F'W,) = U{N,:0€D}.

By identifying strings ¢ with their code numbers we can think of D as a
subset of w.

(ii) The function F' is effectively continuous if the set D may be chosen to
be computably enumerable. (If so, then by a slight trick D may be chosen
to be computable.)

7.3 Continuity of Turing Functionals

In the last section of his 1944 paper and in 1948 Post defined the notion of
degrees of computability (unsolvability). Two sets A and B have the same
degree, A =1 B, if they are equicomputable, i.e., A <t Band B <t A. This
did not solve Post’s problem at once, but it led Post to think more deeply
about the nature of Turing reducibility. Nearing the end of his life and
very sick, he still produced a stack of notes on Turing reducibility and gave
them to Kleene before he died. Kleene rewrote them and published them
as Kleene-Post 195/. This remarkable paper revealed for the first time the
fundamental continuity of a Turing functional &, : 2 — 2“ although Post
had described the ideas intuitively in the last section of 1944.

25



The key properties used over and over are: (i) that any oracle Turing
computation ®4(x) = y from oracle A depends on only a finite initial seg-
ment o C A of the oracle A denoted by ®7(z) = y (because any computation
converges in finitely many steps); and (iii) that if (i) holds for A via o, then
any other set C' D ¢ must also produce the same value ®¢(2) = y because
o is the only part of the oracle C which the computation will examine. Post
discussed some of these ideas in 1944 as mentioned in §6.1. The properties
may be summarized in the following theorem.

Theorem 7.3. [Continuity of Turing Functionals].
(i) ®lx)=y = (Is)(FocA)[P(x)=y];
(i) ®es(x) =y = (Vt=s)(VT20)[ 0L, (2) =y]
(iii) ®Z(x)=y = (VADo)[2}(x)=y].

Using this understanding of Turing reductions, Kleene and Post 1954
invented an oracle construction computable in K with finite forcing to de-
fine sets A <t K and B <t K which are Turing incomparable (A |7 B).
Although this did not immediately solve Post’s problem, it provided the key
ingredients for the solution soon thereafter by Friedberg 1957 and Much-
nik 71956. They took the forcing and continuity argument of Kleene and
Post and replaced the oracle K by a computable approximation in which
the strategy for a given requirement is restarted whenever previous action
is injured by action for a higher priority requirement. This paper and all
later papers in the subject made heavy use of the continuity of Turing func-
tionals. Their paper may be looked at as an effectivization of the Baire
Category Theorem and Banach-Mazur games where one finds a point in the
intersection of a countable sequence of dense open sets by performing a finite
extension for each dense open set.

7.4 Continuous Functions are Relatively Computable

We showed that any Turing functional on 2“ is continuous. Now we prove a
partial converse, that any continuous functional on 2 is a Turing functional
at least relative to some real parameter X C w and hence is effectively
continuous relative to X.

Theorem 7.4. Suppose F' is a continuous functional on 2. Then F is a
Turing functional relative to some real parameter X C w.

Proof. Since F is continuous the inverse image of every basic open set N,
T € 2<%, is open and therefore is a countable union of basic open sets.
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Hence, (identifying strings o with their code numbers as integers) there is a
set X, C w such that,

F7YN,) = U{N, : 0€X, }.

Therefore, the set X = @®{X, : 7 € 2<“} provides a complete oracle for
calculating F' : 2¢ — 2. Equivalently, F' has a graph G. as defined in (1)
which is X-c.e. and hence there is a Turing functional ®, computable in X
such that F'(A) = B iff ®.(A) = B. O

Let ¢ be the cardinality of 2%, i.e., the cardinality of the continuum. Now
by cardinal exponentiation there are c¢€ functions from 2¥ to 2. However,
there are only ¢ many continuous such functions because by Theorem 7.4
each must be specified by a real parameter X C w of which there are only ¢
many. Although we can define pathological functions which are discontinu-
ous, the ones we actually study in calculus or more advanced analysis courses
are usually continous, or at least piecewise continuous. Moreover, most of
them are computable. It is rare to encounter a noncomputable function if
an elementary calculus course.

8 Computing in the Real World

8.1 Turing o-machines in the Real World

Turing described his original a-machines as having an infinite tape, and we
usually present them this way today. Of course, all real world implementa-
tions of the Turing machine have a finite tape, but that has not prevented
them from incorporating many of the features of a Turing machine. The
tape need not be infinite, just large enough for the given computation.

Likewise, Turing’s oracle machine was defined by him, and is generally
presented now with an infinite, and indeed noncomputable, oracle. Turing
1939 wrote “a kind of oracle as it were. ...this oracle ...cannot be a
machine.” Presumably Turing put on this restriction because otherwise the
oracle could be incorporated into the program for some new a-machine which
would have no need of any oracle.

For this paper we shall identify a Turing a-machine with any computing
device in the real world which has a finite program but no i/o-device: no
floppy drive, CD drive, DVD drive, no airport wireless card, modem, no
ethernet connection. All input must be entered through the keyboard. The
program and data are internal, usually keyed into the computer from the
keyboard, like a hand calculator.
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However, in real world computing we often attach to our laptop or desk-
top computers an input/output (i/o) device regarded here as an “oracle”
which the laptop program may consult during a computation. For example,
our laptops often have a CD/DVD drive, and a wireless or ethernet con-
nection to the world wide web, or other i/o devices. For the purposes of
this paper we regard such computers with i/o devices as oracle machines
where the oracle (such as the web) is too large or too inconvenient to be
completely incorporated into the laptop program and is consulted by the
program through an i/o device such as a CD/DVD drive or wireless or eth-
ernet connection the web. Hence, the laptop has its internal program but
derives information from the oracle during the computation.

In the 1960’s computing was done at the computer center of a university
where one turned in a stack of punched IBM cards and a few hours later
collected the folded paper output. By 1980 IBM was selling personal com-
puters (PC computers). Even these had primitive i/o devices such as five
and a quarter inch floppy drives and modems. These were later replaced by
CD drives, DVD drives, and were eventually supplemented by by wireless
card to connect to the internet and world wide web, which we may think of
as a vast oracle.

An a-machine alone is simply a giant calculator, good for calculating
the nt" place in the characteristic function of 7 but not useful for much
else in isolation since it is too tedious to enter all the information by key-
board. Most of the programs for our laptop and desktop computers are
oracle type programs, which consult or download some information from
an external source and then process it with the local machine. It other
words, most of our computing in the real world is done on o-machines with
access to some oracle, not on a-machines with no i/o device. Yet we still
spend the majority of our time in introductory computability courses on a-
machines not o-machines. The great emphasis on ordinary computability,
Turing a-machines and the Church-Turing Thesis 3.2 and the underempha-
sis on relative computability, Turing o-machines and the Post-Turing Second
Thesis 6.1 is hard to understand in view of computing practice in the real
world.

8.2 The Limit Lemma and Real World Computing

We normally place great emphasis in introductory computability courses on
functions which are computable, or at least partial computable. However,
many problems attacked by computers in the real world do not admit of an
exact algorithmic solution but rather a sequence of computable approxima-
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tions which may converge to the answer or at least partially converge to an
approximation.

For example, in machine learning or artificial intelligence a robot may
navigate a maze, learning from its mistakes and continually update its in-
formation about the maze. A meteorologist may be asked to predict the
weather on a certain date in the future, and his updated predictions for that
date may become more accurate as the date draws closer and he had more
information. A trader of financial futures may make a contract for the price
of a currency at the opening today, and update his bid by computer every
minute during the day.

Definition 8.1. A computable sequence of computable functions {fs}secw
is a Ag-approzimating sequence for a f on w if f = limg f;. If there is such
a sequence we say that f is limit computable and we call f a AY function
because it can be shown that f can be represented in both V3 and 3V forms
over a computable predicate.

The most useful result about limit computable functions if the following.

Lemma 8.2. [Limit Lemma] f is limit computable iff f <7 A for some
c.e. set A.

Now suppose a person is using a laptop computer to trade financial in-
struments around the world, and his computer is updating the prices around
the world every minute. He will not have time to write a new program every
minute. Rather it is likely he will use a fixed program inside the laptop, and
use the web or another external device to bring the data needed to update
the program at least every minute. Then the type of program he is using is
an oracle program, a program inside the laptop which received a sequence
{A}iew of snapshots of external conditions at time ¢ and such that the
program acts on this apparent information @é;(:c) to execute the trades.
Similar examples illustrate that in the real world one is much more likely
to use an implementation of a Turing o-machine rather than an a-machine
in a limit approximation process, even if the limit is not exactly the correct
answer but a good approximation.

9 Conclusions

We now summarize some points of this paper which may not have been
stressed in other papers or books on computability.
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9.1 Computability and Incomputability Interaction

In the 1930’s for the first time the primary goal was to introduce incom-
putable (unsolvable) problems, not directly to explore computability. How-
ever, the devices which arose to better understand computability had a great
effect on the understanding of computable functions and their later imple-
mentation on actual computers and computer programs, such as Turing
machines, recursive functions, A-definable functions, Post production sys-
tems and more. Exhilarated by the discovery of incomputable problems,
researchers turned to the discovery and classification of more incomputabil-
ity phenomena, such as recursive ordinals, the arithmetic hierarchy, ordinal
logics and other similar items. This is roughly analogous to the period af-
ter Cantor’s set theory was introduced, when researchers explored the the
phonemenon of uncountable sets (also produced by a diagonal argument)
and attempted to classify and compare them. The incomputability results
led researchers to compare unsolvable problems and introduce relative re-
ducibility to do so.

9.2 Turing Reducibility

The study of unsolvable problems and incomputable phenomena, for the first
time led to Turing’s oracle machines and relative computability to determine
when a set A were “more unsolvable” than another set B, i.e., A contains
strictly more information (B <t A). This relation was introduced by Turing
1939 §4 but in a very brief version of about one page. Half of that page was
devoted to the problem of showing that whether an oracle machine prints
an infinite number of 0’s or 1’s is not “number theoretic.” Turing might
have developed these ideas further, but immediately after this paper entered
Britain’s Bletchley Park, the crypographic laboratory, where he spent the
war.

9.3 Post Elucidates Turing Reducibility

Considering the attention to computability in mid 1930’s it is surpising that
this key concept of relative computability lay dormant for five years until
Post’s paper 1944. Post’s final section, §11 General (Turing) reducibility
pages 332-336, contains a beautiful, intuitive explanation of what he called
Turing reducibility. Post went on in 1948 and Kleene-Post 195/ to develop
and apply its properties as we understand them today.
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9.4 The Post-Turing Second Thesis

Each of Turing and Post had already proposed a “thesis” characterizing
computable function, i.e., Turing’s Thesis 3.1 and Post’s Thesis 5.1. Their
contributions on Turing 1939, §4 and Post 1944, §11 may be summarized
in what we call the Post-Turing Second Thesis that a set B is effectively
reducible to A iff B is Turing reducible to A (B <t A). This implies
the Church-Turing Thesis 3.2 by taking A =, but may be equivalent to it
depending of the meaning of “effectively reducible.” It is suprising that so
much attention has been paid to the Church-Turing Thesis over the last
seventy years and so little to this thesis on relative reducibility.

9.5 The Central Importance of Turing Recucibility

Although originally introduced for unsolvability this relation B <t A is %9
as a relation of A and B and is the fundamental computability notion of the
subject. The graph G, of any Turing reduction ®. is a computably enumer-
able set, which demonstrates that relative computations are as effective as
Turing a-machines computations, given the oracle A.

Both in theoretical computability theory, its applications to algebra,
analysis, complexity theory, algorithmic randomness, and many other areas,
and finally in real world computing, the notions of oracle programs and
relative computability are used much more simple computable functions.
It is to find a key theorem on theoretical computability or its applications
which deals only with computable functions on computable objects. The
richness of the subject and it applications depends comparing incomputable
objects to one another. This is ordinarily done by Turing reducibility or one
of the stronger under it.

9.6 Computing in the Real World

Most implementations in the real world resemble a kind of oracle machine
with input/output devices rather than the simple a-machine modes with
no input/output device. For example, many applications of limit com-
putable functions in the real world are best viewed as fixed internal programs
which have access to a series of oracles which are very rapidly updated over
time. Turing functionals are effectively continuous and indeed any contin-
uous function on Cantor space may be viewed as an effectively continuous
function relative to some real parameter. This links the fundamental notions
of computability and analysis.
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Furthermore, the Turing relation {(B, A) : B <t A} encompasses many
applications in the real world besides just “computing” such as information
retrieval, data base, data mining, and more. We may have a laptop with a
DVD drive or wireless connection to the web and we may want to view a
movie, or extract information from a large data base without computing on
it. Such an algorithm requires that we know where to search on oracle A for
the data and how to extract it. This relationship of information retrieval
will play an increasingly important role in the future real world compared
to mere computing.
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