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1 Introduction

Investigation of logical systems usually concentrates on the derivability of theo-
rems. However, it is also interesting to “move up a level” and consider which rules
are admissible for the system; that is, to investigate under which rules the set of
theorems is closed. Algebraically, this corresponds to the study of quasi-varieties
generated by free algebras, while from a computational perspective the investiga-
tion is significant since adding further (admissible) rules to a system may improve
proof search. In Classical logic CPC, such questions are trivial: admissible rules
are also derivable; that is, CPC is structurally complete. However, in Intuitionistic
logic IPC, and many other non-classical (e.g. modal and intermediate) logics this
is no longer the case. It is therefore an interesting and significant task to provide
characterizations of admissibility for these logics.

In recent years, one successful approach to characterizing admissible rules has been
via bases, which may be viewed (roughly speaking) as axiomatizations for sets of
rules. More precisely, a basis for admissible rules in a logic is a set of admissible
rules such that adding these to the logic allows all the admissible rules to be de-
rived. That the set of admissible rules of IPC has no finite basis but is nevertheless
decidable was proved by Rybakov [14], answering a problem originally posed by
Friedman [3]. It has also been shown independently by Iemhoff [7] and Rozière
[13] (confirming a conjecture of de Jongh and Visser) that such a basis is provided
by the following so-called “Visser rules”:

(Vn) (C → (An+1 ∨ An+2)) ∨D / (
n+2∨
j=1

C → Aj) ∨D

for n = 1, 2, . . ., where C =
∧n

i=1(Ai → Bi). Related characterizations have since
been obtained for intermediate logics by Iemhoff [10] and for modal logics by
Jerábek [11]; proofs being based on Ghilardi’s work on unification and projective
approximations [4, 5]. We mention also that the basis of Visser rules given above
has been used to define a first basic provability logic for IPC [17, 8].

Although decision procedures for admissibility are described (or implicit) in the
works of Rybakov and Ghilardi, a systematic presentation of analytic proof sys-
tems for deriving admissible rules has been lacking. Such a presentation is im-
portant not only for developing systems that reason directly about rules, but also
for investigating relationships between admissibility in different logics, and meta-
logical properties such as complexity and interpolation. A first step in this direction
was taken by Iemhoff in [9] where an analytic proof system is defined for deriving
admissible rules of IPC based partly on an algorithm by Ghilardi for projectivity
[6]. However, this system makes use of a number of inelegant syntactic divisions
and semantic checks, and is unsuitable for generalization to other logics.

In this work we develop a general framework for defining Gentzen-style proof
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systems for admissible rules. The key idea is to give a uniform proof-theoretic
characterization of admissibility by generalizing proof calculi at the theorem level.
For derivability, the basic objects are typically sequents, not formulas. Similarly,
for admissibility, we take the basic objects of our systems to be not rules, but se-
quent rules. Rules (now one level up) of these systems thus have sequent rules as
premises, and a sequent rule as the conclusion. Each logical connective is charac-
terized by four rules: the connective can occur either on the left or the right of a
sequent, and the sequent itself can occur either as a premise or a conclusion of a
sequent rule. Our systems also include weakening and contraction rules, and rules
that allow sequents to interact: an anti-cut rule corresponding to the admissibility of
cut for the logic, a projection rule reflecting the fact that derivability implies admis-
sibility, and one or two so-called “Visser Rules” capturing key facts of admissibility
in the logic.

We begin, following the work of Jerábek [11] and Ghilardi [5], by considering a
wide class of (so-called extensible) modal logics extending K4, treating as par-
ticular case studies K4, S4, and Gödel-Löb logic GL. More precisely, we obtain
analytic systems for admissibility in these logics as uniform extensions of systems
for derivability. The extra “Visser rules” depend on whether the logic can be char-
acterized as transitive or intransitive. We then provide a system for the fundamental
(and historically most studied) case of IPC, making essential use of theorems by
Ghilardi [4]. We extend this approach to a class of intermediate logics, including
De Morgan (or Jankov) logic KC and logics with bounded cardinality Kripke mod-
els BCn (n = 1, 2, . . .), by treating rules dealing with hypersequents, a natural
extension of sequents introduced by Avron [1]. With minor modifications, all these
systems terminate, and hence provide the basis for decision procedures for deriving
admissible rules in these logics.

2 Preliminaries

We treat logics as consequence relations based upon propositional languages with
binary connectives ∧, ∨, →, a constant ⊥, and sometimes also a modal connective
2. Other connectives are then defined as:

¬A =def A→ ⊥ A↔ B =def (A→ B) ∧ (B → A)

> =def ¬⊥ �A =def 2A ∧ A

We denote propositional variables by p, q, . . ., formulas byA,B, . . ., and sets of for-
mulas by Γ,Π,Σ,∆,Θ,Ψ. Propositional variables and constants are called atoms
and denoted by a, b, . . ., and formulas a → b and 2a are called atomic implica-
tions and boxed atoms respectively. We adopt the convention of writing

∨
Γ and∧

Γ where
∨ ∅ = ⊥ and

∧ ∅ = > for iterated disjunctions and conjunctions of
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formulas in a finite set Γ. We also write 2Γ and �Γ for {2A : A ∈ Γ} and Γ∪2Γ,
respectively. Finally, for brevity we write {x}x∈Γ for the set {x : x ∈ Γ}, reserving
ordinary brackets ( and ) for clarification.

2.1 Generalized Rules and Admissibility

Rules are usually asymmetric, having many premises but just one conclusion. How-
ever, it is convenient when considering admissibility to treat “generalized” rules
having also many conclusions.

Definition 1 A generalized rule is an ordered pair of finite sets of formulas:

A1, . . . , An / B1, . . . , Bm

Intuitively, a generalized rule is admissible for a logic L if whenever a substitu-
tion makes all the premises theorems of L, then it makes one of the conclusions a
theorem. More precisely:

Definition 2 Let L be a logic. An L-unifier for a formula A is a substitution σ such
that `L σA.

Definition 3 Let L be a logic. A generalized rule Γ / ∆ is L-admissible, written
Γ |∼L ∆, if each L-unifier for all A ∈ Γ, is an L-unifier for some B ∈ ∆.

In developing proof systems for derivability in a logic it is helpful to consider se-
quents, which in this context, we define and interpret as follows:

Definition 4 A sequent S is an ordered pair of finite sets of formulas:

Γ ⇒ ∆

S is L-derivable for a logic L, written `L S, iff `L I(S) where:

I(Γ ⇒ ∆) =def

∧
Γ →

∨
∆

Similarly, for admissibility, rather than deal with rules involving only formulas, we
consider sequent rules. These are represented as “implications” between multisets
of sequents using the symbol . as follows:

Definition 5 A generalized sequent rule (gs-rule for short) R is an ordered pair of
multisets of sequents:

{Γi ⇒ ∆i}n
i=1 . {Πj ⇒ Σj}m

j=1
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R is L-admissible for a logic L, written |∼LR, iff:

{I(Γi ⇒ ∆i)}n
i=1

|∼L {I(Πj ⇒ Σj)}m
j=1

R is L-derivable for a logic L, written `LR, iff:

n∧
i=1

I(Γi ⇒ ∆i) `L

m∨
j=1

I(Πj ⇒ Σj)

Note that unlike generalized rules, gs-rules consist of multisets, not sets, of premises
and conclusions, denoted by the variables G, H. However, crucially:

|∼LA1, . . . , An / B1, . . . , Bm iff |∼L (⇒A1), . . . , (⇒An) . (⇒B1), . . . , (⇒Bm)

Hence a proof system for the admissibility of gs-rules is also a proof system for the
admissibility of generalized rules.

Rules (now at the next level up) for gs-rules consist of a set of premisesR1, . . . ,Rn,
which we often write as [Ri]

n
i=1, and a conclusion R; rules with no premises being

called initial gs-rules. Such rules are sound with respect to a logic L if whenever
|∼LRi for i = 1 . . . n, then |∼LR, and invertible, if whenever |∼LR, then |∼LRi

for i = 1 . . . n.

Example 6 As an illustration of these ideas, consider the disjunction property,
which can be written as the generalized rule p ∨ q / p, q. Clearly, this rule is L-
admissible iff the gs-rule:

(⇒ p ∨ q) . (⇒ p), (⇒ q)

is L-admissible. Observe now that if σ is an IPC-unifier for p ∨ q, i.e. `IPC (σp) ∨
(σq), then σ must be an IPC-unifier for p or q, i.e. either `IPC (σp) or `IPC (σq).
However, this does not hold for CPC. For example, let σ(p) = p and σ(q) = ¬p;
plainly `CPC p ∨ ¬p, but 6`CPC p and 6`CPC ¬p.

2.2 Projectivity and the Extension Property

Admissibility and derivability do not coincide in general for non-classical logics.
However, Ghilardi [4, 5] has identified classes of so-called “projective” formulas
where if A is projective, then the relationship “A |∼LB iff A `L B” holds for all B.

Definition 7 Let L be a logic and A a formula. A is L-projective if there exists a
substitution σ, called an L-projective unifier for A, such that:

`L σA, and for all atoms a (A `L σ(a) ↔ a).
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Lemma 8 Let L be an intermediate logic or a normal modal logic: 3

(a) If a formula A is L-projective, then for all sets of formulas ∆, A |∼L ∆ iff A `L B
for some B ∈ ∆.

(b) If L has the disjunction property, then for any L-projective formula A and sets of
formulas ∆, A |∼L

∨
∆ iff A `L B for some B ∈ ∆.

(c) If A1, . . . , An are L-projective formulas, then for all formulas B,
∨n

i=1Ai |∼LB
iff

∨n
i=1Ai `L B.

(d) If L is an intermediate logic and A1, . . . , An are IPC-projective formulas, then
for all formulas B,

∨n
i=1Ai |∼LB iff

∨n
i=1Ai `L B.

Proof.

(a) The right-to-left direction is immediate. For the other direction, letA |∼L ∆. Since
A is L-projective, there exists an L-projective unifier σ of A, such that `L σB for
some B ∈ ∆. But using the Leibniz property for L and the fact that σ is an
L-projective unifier, A `L σB → B. Hence, by modus ponens, A `L B.

(b) Since L has the disjunction property, A |∼L
∨

∆ iff A |∼L ∆ and the result follows
directly from (a).

(c) Again, the right-to-left direction is immediate. For the other direction, suppose
that

∨n
i=1Ai |∼LB. Clearly Ai |∼LB for i = 1 . . . n. Hence by (a), Ai `L B for

i = 1 . . . n. So easily
∨n

i=1Ai `L B as required.
(d) All IPC-projective formulas are L-projective (since each L extends IPC), so the

result follows from (c). 2

What makes projective formulas particularly interesting (and useful) is the fact that
for certain logics they can also be characterized in terms of Kripke models. 4

Definition 9 For Kripke models K1, . . . , Kn, let (
∑

iKi)
′ denote the Kripke model

obtained by attaching one new node below all nodes in K1, . . . , Kn where no
propositional variables are forced.

Definition 10 Two Kripke models K,K ′ are (modal) variants of each other when
they have the same set of nodes and order (or accessibility in the case of modal
variants) relation, and their forcing relations agree on all nodes except possibly
the root.

Definition 11 A class of Kripke models K has the extension property if for every
finite family of models K1, . . . , Kn ∈ K, there is a variant of (

∑
iKi)

′ in K. An
intermediate logic is extensible if its class of models has the extension property.

3 In fact all we require here is a list of basic conditions on the logic such as the Leibniz
property and closure under modus ponens.
4 For basic definitions regarding Kripke models refer to [? ].
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Theorem 12 (Ghilardi [4]) A formula is IPC-projective iff its class of Kripke mod-
els has the extension property.

Example 13 Using this definition it is not difficult to see that the formulas p, ¬p,
¬p→ (q ∧ r) or p→ A are IPC-projective (e.g. for p and ¬p the constant substi-
tutions > and ⊥ are IPC-projective unifiers), while ¬p → (q ∨ r) and ¬p ∨ ¬¬p
are not. In particular, the antecedents of the atomic version of the Visser rules:

((p→ q) → (rn+1 ∨ rn+2)) ∨ s / (
n+2∨
j=1

(p→ q) → rj) ∨ s,

are not IPC-projective, while every one of the disjuncts of the conclusion is.

Note moreover that De Jongh and Bezhanishvili have showed that for any finite
set of propositional variables there are only finitely many IPC-projective formulas
containing only atoms in the given set, and have given a characterization of the
IPC-projective formulas in one (De Jongh in [? ]) and two variables.

Ghilardi [5] has also extended this characterization to a wide range of modal logics
(we follow here the terminology of [11]).

Definition 14 Let Kk denote the Kripke model K restricted to the domain {l :
kRl or k = l}. The root of K is the cluster {k : ∀l 6= k(kRl)}. An L-frame is a
frame such that every model on that frame is a model of L. An L-model is a model
based on an L-frame.

Definition 15 For frames F1, . . . , Fn, denote by (ΣFj)
i and (ΣFj)

r, the frames
obtained by adding, respectively, one irreflexive and one reflexive node below all
nodes in the frame.

Definition 16 A normal modal logic L has the finite model property if every refutable
formula is refutable on a finite L-frame. L is extensible if it is a normal extension of
K4 with the finite model property such that for all finite sets of L-frames F1, . . . , Fn

the frame (ΣFj)
i is an L-frame unless L is reflexive, and (ΣFj)

r is an L-frame
unless L is irreflexive.

Definition 17 A class of finite modal modelsK has the modal extension property if
for every model K, if Kk ∈ K for all k not in the root of K, then there is a variant
of K in K.

Theorem 18 (Ghilardi [5]) For every normal extension L of K4 with the finite
model property a formula is L-projective iff its class of L-models has the modal
extension property.

Example 19 Using this theorem it is not difficult to see that for each extensible
modal logic L, the formulas �p, ¬p, p → A are L-projective, while e.g. �p →
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(q ∨ r) is not. In particular, the antecedents of the atomic versions of the Visser
rules for the modal case:

(A•) 2p→ ∨n
i=1 2qi / {�p→ qi}n

i=1

(A◦)
∧m

j=1(pj ↔ 2pj) →
∨n

i=1 2qi / {
∧m

j=1 �pj → qi}n
i=1,

are not L-projective, while every element of the conclusion is.

3 Modal Logics

In this section we define uniform Gentzen-style calculi for deriving admissible gs-
rules of extensible modal logics. We begin by introducing systems for the paradig-
matic cases K4, S4, and GL. We then use these systems to show that any calculus
for derivability in an extensible modal logic can be extended to a proof system for
admissibility in that logic.

3.1 Proof Systems

We construct calculi for admissibility in much the same way as for derivability: we
give rules for connectives on the left and right of sequents. The difference here is
that the sequents themselves occur either on the left or the right; that is, as premises
or conclusions of a gs-rule, doubling the number of rules required. For sequents
occurring on the right, we adapt rules from calculi for derivability by adding vari-
ables G and H standing for arbitrary multisets of sequents. For sequents occurring
on the left, we make use of invertibility properties of the rules on the right. Calculi
are then completed by adding structural rules and various rules that allow sequents
to interact.

We define the following core set of rules for extensible modal logics:

Definition 20 (Core Modal Rules)

Initial GS-Rules

G . (Γ, A ⇒ A,∆),H
(ID)

G . (Γ,⊥ ⇒ ∆),H
(⊥)
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Right Logical Rules

G . (Γ ⇒ A,∆),H G . (Γ ⇒ B,∆),H
G . (Γ ⇒ A ∧B,∆),H

.(⇒∧)
G . (Γ, A, B ⇒ ∆),H
G . (Γ, A ∧B ⇒ ∆),H

.(∧⇒)

G . (Γ, A ⇒ ∆),H G . (Γ, B ⇒ ∆),H
G . (Γ, A ∨B ⇒ ∆),H

.(∨⇒)
G . (Γ ⇒ A,B,∆),H
G . (Γ ⇒ A ∨B,∆),H

.(⇒∨)

G . (Γ ⇒ A,∆),H G . (Γ, B ⇒ ∆),H
G . (Γ, A → B ⇒ ∆),H

.(→⇒)
G . (Γ, A ⇒ B,∆),H
G . (Γ ⇒ A → B,∆),H

.(⇒→)

Left Logical Rules

G, (Γ, A, B ⇒ ∆) . H
G, (Γ, A ∧B ⇒ ∆) . H

(∧⇒).
G, (Γ ⇒ A,∆), (Γ ⇒ B,∆) . H

G, (Γ ⇒ A ∧B,∆) . H
(⇒∧).

G, (Γ ⇒ A,B,∆) . H
G, (Γ ⇒ A ∨B,∆) . H

(⇒∨).
G, (Γ, A ⇒ ∆), (Γ, B ⇒ ∆) . H

G, (Γ, A ∨B ⇒ ∆) . H
(∨⇒).

G, (Γ, B ⇒ ∆), (Γ ⇒ A,∆) . H
G, (Γ, A → B ⇒ ∆) . H

(→⇒).
G, (Γ, A ⇒ B,∆) . H
G, (Γ ⇒ A → B,∆) . H

(⇒→).

G, (Γ,2p ⇒ ∆), (A ⇒ p) . H
G, (Γ,2A ⇒ ∆) . H

(2⇒).
G, (Γ ⇒ 2p, ∆), (p ⇒ A) . H

G, (Γ ⇒ 2A,∆) . H
(⇒2).

where in (2⇒). and (⇒2)., A is non-atomic and p does not occur in G, H, Γ, ∆, A.

Structural Rules

G . H
G, S . H (W ). G . H

G . S,H .(W )
G, S, S, . H
G, S . H (C).

G . S, S,H
G . S,H .(C)

Anti-Cut and Projection Rules

G, (Γ,Π ⇒ Σ,∆) . H
G, (Γ, A ⇒ ∆), (Π ⇒ A,Σ) . H

(AC)
G . (Γ,�I(S) ⇒ ∆),H

G, S . H (PJ)

where (Γ ⇒ ∆) ∈ H ∪ {⇒}

We now extend this core set to obtain proof systems for admissibility in the paradig-
matic cases of K4, S4, and GL.

Definition 21 GAK4 consists of the core modal rules plus:

G . (�Γ ⇒ A),H
G . (2Γ,Π ⇒ 2A,∆),H

.(2)K4

and the Visser Rules:

[G, (�Γ ⇒ A) . H]A∈∆

G, (2Γ ⇒ 2∆) . H (V i)
[G,�(Γ ∪Π) ⇒ A) . H]A∈∆

G, (Γ ≡ 2Π ⇒ 2∆) . H
(V r)

where (Γ ≡ 2Π ⇒ ∆) denotes any set of sequents X such that:

∀� Z ⊆ (Γ ∪2Π)∃Σ ⊆ �Z∃Θ ⊆ ((Γ ∪2Π)−�Z)∃Ψ ⊆ ∆(Σ ⇒ Θ,Ψ) ∈ X)
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Note that in particular, taking Σ = �Z and Ψ = ∆ in (V r), we obtain the rule:

[G, (�(Γ ∪ Π) ⇒ A) . H]A∈∆

G, {�Z ⇒ ((Γ ∪2Π)−�Z),2∆ | �Z ⊆ Γ ∪2Π} . H

Definition 22 GAS4 consists of the core modal rules plus (V r), .(2)K4, and:

G . (�Γ,Π ⇒ ∆),H
G . (2Γ,Π ⇒ ∆),H

.(2)S4

Definition 23 GAGL consists of the core modal rules plus (V i) and:

G . (�Γ,2A ⇒ A),H
G . (2Γ,Π ⇒ 2A,∆),H

.(2)GL

Some explanation is required. First note that weakening and contraction are “built
in” to the right logical rules (taken from [15]). This is not strictly necessary. In fact,
any calculus for derivability in the logic can be used as a template for the right
logical rules. However, for ∧, ∨, and →, the rules given here are easily “inverted”
to obtain corresponding rules on the left; that is, by replacing the conclusion of the
original sequent rule with the premises of that rule. This approach fails in the case of
the (non-invertible) modal rules. Instead the rules (2⇒). and (⇒2). decompose
modal formulas on the left by replacing the formulaA in 2A by a new propositional
variable p. The soundness of these rules follows from the fact that any substitution
for the conclusion can be extended (since p does not occur there) by subsituting A
for p.

The structural rules permit weakening and contraction of sequents occurring as
premises and conclusions of sequent rules. The “Projection Rule” (PJ) allows se-
quents on the left to be used as modal implications on the right, corresponding to
the fact that derivability implies admissibility. 5

Example 24 It is easy to see that any gs-rule containing the same sequent on both
sides (i.e. as a premise and as a conclusion) is derivable using (PJ). Indeed, gen-
eralizing a little, the following gs-rule may be taken as a useful derived initial
gs-rule:

G, (Γ ⇒ ∆) . (Γ,Π ⇒ Σ,∆),H
(SID)

Just observe that the following gs-rule:

G . (Γ,Π, (
∧

Γ →
∨

∆) ⇒ Σ,∆),H

is derivable using the initial gs-rules and right logical rules, and hence that (SID)
is derivable using (PJ).

5 In the particular cases of GAK4, GAS4, and GAL, �I(S) in (PJ) can be replaced
with I(S), allowing sequents on the left to be used directly as implications on the right.
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The “Anti-Cut Rule” (AC) corresponds directly to the fact that the usual cut rule
is admissible in the logic. Observe however that, unlike cut, (AC), and indeed all
the rules except (⇒2). and (2⇒)., have the subformula property. That is, every
formula occurring in a premise of such a rule occurs as a subformula of a formula
in the conclusion. Note, moreover, that a suitable cut rule for admissibility would
be of the form:

G, S . H G′ . S,H′

G,G′ . H′,H
(CUT )

However, rather than eliminate (CUT ) syntactically, here we obtain the admissi-
bility of the rule indirectly via a (semantic) completeness proof.

Example 25 Consider the following cut rule:

Γ, A ⇒ ∆ Π ⇒ A,Σ
Γ,Π ⇒ Σ,∆

The gs-rule version is derivable as follows:

(Γ,Π ⇒ Σ,∆) . (Γ,Π ⇒ Σ,∆)
(SID)

(Γ, A ⇒ ∆), (Π, A ⇒ Σ) . (Γ,Π ⇒ Σ,∆)
(AC)

The “Visser Rules” (V i) and (V r) are a little harder to understand, corresponding
to the rules (A•) and (A◦), respectively, given by Jerabek in [11] (see Example 19).

Example 26 For non-reflexive logics the gs-rule versions of (A•) are derived using
(V i) as follows:

[(�A ⇒ B) . {�A ⇒ B}B∈∆]B∈∆
(SID)

(2A ⇒ 2∆) . {�A ⇒ B}B∈∆
(V i)

For non-irreflexive logics, we can use (V r) to show:

[(�Γ ⇒ A) . {�Γ ⇒ A}A∈∆]A∈∆
(SID)

(Γ ≡ 2Γ ⇒ 2∆) . {�Γ ⇒ A}A∈∆
(V r)

Let Γ ↔ 2Γ stand for the set {A ↔ 2A | A ∈ Γ}. To derive (Γ ↔ 2Γ ⇒
2∆) . {�Γ ⇒ A}A∈∆, the gs-rule version of (A◦), it is hence sufficient that for
any H, ∆, and Γ, we can derive (Γ ↔ 2Γ ⇒ ∆) . H from (Γ ≡ 2Γ ⇒ ∆) . H.
For example, if (A,2A⇒ ∆), (⇒ A,2A,∆) . H is derivable, then we have:

(A,2A ⇒ ∆), (⇒ A,2A,∆) . H
(A ⇒ A,∆), (A,2A ⇒ ∆), (⇒ A,2A,∆) . H

(W ).

(A ⇒ A,∆), (A,2A ⇒ ∆), (2A ⇒ 2A,∆), (⇒ A,2A,∆) . H
(W ).

(A → 2A,A ⇒ ∆), (2A ⇒ 2A,∆), (⇒ A,2A,∆) . H
(→⇒).

(A → 2A,A ⇒ ∆), (A → 2A ⇒ 2A,∆) . H
(→⇒).

(A → 2A,2A → A ⇒ ∆) . H
(→⇒).
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Extensible modal logics possessing a natural sequent calculus for derivability pro-
vide the most elegant examples of our systems for admissibility. However, all that
we really require for the rules on the right is that they provide a sound and complete
method for establishing derivability in the logic at hand. We can then expand this
calculus with the core modal rules, plus (V i) if the logic is not reflexive, and (V r)
if the logic is not irreflexive. The result is a calculus which, as we show in the next
section, is sound and complete for admissibility in the logic.

Definition 27 Let L be an extensible modal logic. A calculus GAL is L-fitting if:

(1) GAL extends the core modal rules.
(2) If L is not reflexive, then (V i) is a rule of GAL.
(3) If L is not irreflexive, then (V r) is a rule of GAL.
(4) If `L S, then `GAL . S.
(5) If `GAL R, then |∼LR.

3.2 Soundness and Completeness

We first show that the core modal rules and (where appropriate) the Visser rules are
sound for extensible modal logics.

Proposition 28 Let L be an extensible modal logic.

(a) All the core modal rules are L-sound.
(b) If L is not reflexive, then (V i) is L-sound.
(c) If L is not irreflexive, then (V r) is L-sound.

Proof. (a) The initial gs-rules and right logical rules (taken from a calculus for
CPC in [15]) are clearly L-sound. For the left logical rules for ∧, ∨, and →,
soundness follows directly from the CPC-invertibility of the rules on the right.
For (2⇒)., suppose that the premise is L-admissible and let σ be an L-unifier for
I(S) for all S ∈ G and I(Γ,2A⇒ ∆). Since p does not occur in G,H,Γ,∆, A we
can extend σ by mapping p to A. It follows that σ is an L-unifier for I(Γ,2p⇒ ∆)
and I(A ⇒ p). Hence, by the admissibility of the premise, σ is an L-unifier for
some S ∈ H as required. The argument for (2⇒). is very similar.

It is easy to see that the structural rules are L-sound. For (AC), suppose that the
premise is L-admissible. Let σ be an L-unifier for I(S) for all S ∈ G, I(Γ, A⇒ ∆),
and I(Π ⇒ A,Σ). By the L-admissibility of the cut rule for L, we get that σ is an
L-unifier for I(Γ,Π ⇒ Σ,∆) and the result follows using the L-admissibility of
the premise. For (PJ), suppose that the premise is L-admissible and that σ is an
L-unifier for I(S ′) for all S ′ ∈ G and I(S). It follows that σ is an L-unifier either
for I(Γ,�I(S) ⇒ ∆) or for I(S ′) for some S ′ ∈ H. In the latter case we are done.
In the former case, since σ is an L-unifier for I(S) it is an L-unifier for �I(S), and
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hence also for I(Γ ⇒ ∆). Since there is no L-unifier for the empty sequent ⇒, we
have (Γ ⇒ ∆) ∈ H and we are done.

(b) For (V i), suppose that all the premises are L-admissible. Let σ be an L-unifier
for I(S) for all S ∈ G and I(2Γ ⇒ 2∆). If σ is a L-unifier for I(�Γ ⇒ A) for
some A ∈ ∆, then we are done using the admissibility of the premises. Otherwise
letKA be a L-model refuting σ(I(�Γ ⇒ A)) for eachA ∈ ∆. They exist because L
has the finite model property. The fact that L is extensible and not reflexive implies
that (ΣA∈∆KA)i is also an L-model. But σ(I(2Γ ⇒ 2∆)) is refuted at the root of
this model, a contradiction.

(c) For (V r), assume

∀A ∈ ∆ : |∼G, (�(Γ ∪ Π) ⇒ A) .H.

Let σ be an L-unifier for G and Γ ≡ 2Π ⇒ 2∆, recalling that the latter denotes a
set of sequents X such that:

∀� Z ⊆ Γ ∪2Π∃Σ ⊆ �Z∃Θ ⊆ ((Γ ∪2Π)−�Z)∃Ψ ⊆ ∆((Σ ⇒ Θ,Ψ) ∈ X)

Arguing by contradiction, suppose that σ is not an L-unifier for H. Hence σ is not
a unifier for �(Γ ∪ Π) ⇒ A for all A ∈ ∆. Let KA be the L-models that are
counter models in which σ(�(Γ ∪ Π)) is forced and σ(A) is not, which exist by
the finite model property of L. Since L is extensible, (ΣA∈∆KA)r is an L-model
with a reflexive root r. Consider Σ = {A ∈ Γ ∪ 2Π | r 
 σ(A)}. Because of
the reflexivity of r and since each KA forces σ(�Γ), we have r 


∧
σ(Σ) but

r 6
 σ(
∨

((Γ ∪2Π)− Σ)
∨

2∆), contradicting the fact that ` σ(X). 2

In particular, using the fact that the rules on the right for GAK4, GAS4, and
GAL are sound and complete for K4, S4, and GL, respectively (see e.g. [? ] for
references), we obtain:

Corollary 29 GAL is L-fitting for L ∈ {K4, S4,GL}.

Our completeness proof consists of several stages. First we show completeness for
a restricted class of gs-rules: L-derivable gs-rules with at most one sequent on the
right. The idea being (to look ahead a little) to show eventually that all L-admissible
gs-rules are GAL-derivable from gs-rules in this class.

Lemma 30 Let L be an extensible modal logic and let GAL be L-fitting. If `L

G . H where |H| ≤ 1, then `GAL G . H.

Proof. Suppose that `L G . H where |H| ≤ 1. If H = {Γ ⇒ ∆}, or letting
Γ = ∆ = ∅ if H = ∅, then:

{I(S)}S∈G `L I(Γ ⇒ ∆)

13



But then using the modal deduction theorem (see e.g. [? ] for details):

`L

∧
S∈G

�I(S) → I(Γ ⇒ ∆)

Hence `L Γ, {�I(S)}S∈G ⇒ ∆, and since GAL is L-fitting:

`GAL . (Γ, {�I(S)}S∈G ⇒ ∆)

So by repeated applications of (PJ), `GAL G . H as required. 2

The next step is to show that the left logical rules are invertible. Since, each of
these rules has fewer connectives in its premise than its conclusion, it then follows
that the question of the admissibility of gs-rules can be restricted to a particular
subclass.

Lemma 31 Let L be an extensible modal logic. The left logical rules are L-invertible.

Proof. The cases for ∧, ∨, and → follow from the L-soundness of the left log-
ical rules. As an example, we consider (⇒∧).. Suppose that the conclusion is
L-admissible and let σ be a unifier for I(Γ ⇒ A,∆), I(Γ ⇒ B,∆), and I(S) for
all S ∈ G. In particular, `L σ(I(Γ ⇒ A,∆)) and `L σ(I(Γ ⇒ B,∆)). Hence
`L σ((I(Γ ⇒ A∧B,∆)), i.e. σ is a unifier for I(Γ ⇒ A∧B,∆). It follows there-
fore by the admissibility of the conclusion, that σ is a unifier for I(S) for some
S ∈ H. For (2⇒)., suppose that the conclusion is L-admissible and let σ be an
L-unifier for I(Γ,2p⇒ ∆), I(A⇒ p), and I(S) for all S ∈ G. Since L is a normal
modal logic, σ is an L-unifier for I(2A⇒ 2p). Hence by the L-admissibility of cut,
σ is an L-unifier for I(Γ,2A⇒ ∆) and the result follows using the L-admissibility
of the conclusion. The case of (⇒2). is very similar. 2

Definition 32 A gs-rule G . H is modal-irreducible if the sequents in G contain
only atoms and boxed atoms.

Definition 33 We define the following measures:

• c(q) = 1 for all propositional variables q, and c(#(A1, . . . , An)) = c(A1) +
. . .+ c(An) + 1 for formulas A1, . . . , An, and each connective # with arity n.

• mc(Γ ⇒ ∆) is the multiset {c(A) : A ∈ Γ ∪∆} for a sequent Γ ⇒ ∆.
• mmc(G . H) is the multiset {mc(S) : S ∈ G ∪H} for a gs-rule G . H.

Definition 34 For multisets α, β of integers: <m is the transitive closure of <1,
where α <1 β if α is obtained by replacing an element n of β by finitely many
(possibly 0) copies of m for some m < n. Similarly, for multisets φ, ψ of multisets
of integers, <mm is the transitive closure of <2, where φ <2 ψ if φ is obtained
by replacing an element α of ψ by finitely many (possibly 0) copies of β for some
β <m α.
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Theorem 35 (Dershowitz and Manna [12]) <m and <mm are well-orderings.

Lemma 36 Let L be an extensible modal logic. Every L-admissible gs-rule is deriv-
able from an L-admissible modal irreducible gs-rule using the left logical rules.

Proof. Since <mm is a well-ordering, we can prove the lemma by induction on
mmc(R) where R is an L-admissible gs-rule. If R is modal-irreducible, then we
are done. Otherwise there is an instance of a left logical rule R′ / R such that
mmc(R′) < mmc(R), where by L-invertibility R′ is an L-admissible gs-rule.
Hence, by the induction hypothesis, R′ is GAL-derivable from an L-admissible
modal irreducible gs-rule, and then clearly so also is R. 2

As a consequence of the previous lemma, it is sufficient to establish complete-
ness for modal irreducible L-admissible gs-rules. Intuitively, we do this (working
upwards) by applying the anti-cut rule (AC) and the Visser rules (V i) and (V r)
exhaustively, using structural rules at each step to ensure that sequents occurring
in the conclusion occur also in the premises. Since these rules have the subformula
property, the number of possible sequents obtained in this way is finite and the
process terminates with gs-rules which we call L-modal full.

Definition 37 LetR be a rule with premises Gi .Hi for i = 1 . . . n, and conclusion
G .H. An application of R is non-looping if for each i = 1 . . . n there exists either
S ∈ Gi such that S 6∈ G or S ∈ Hi such that S 6∈ H.

Definition 38 A gs-ruleR is full with respect to a set of rules X if there is no non-
looping application of a rule in X to R. For an extensible modal logic L we will
say that a gs-rule is L-modal full if it is modal-irreducible and full with respect to
(AC) plus (V i) if L is not reflexive, and (AC) plus (V r) if L is not irreflexive.

Observe that L-modal fullness is a property that only depends on the left hand side
G of a gs-rule G . H.

Lemma 39 Let L be an extensible modal logic. Every L-admissible gs-rule is deriv-
able from a set of L-modal full L-admissible gs-rules.

Proof. By Lemma 36 we can restrict our attention to L-admissible modal irre-
ducible gs-rulesR = G . H, assuming without loss of generality that G andH con-
tain no repeated elements. We proceed by induction on n(R) = 2M − (|G|+ |H|)
where M is the number of different sequents possible containing subformulas of
formulas occurring in R. If n(R) = 0, then R must be L-modal full since any
application of a rule will be looping. If R is not L-modal full, then there exists an
instance of (AC), (V i), or (V r) with conclusion G .H, such that for each premise
G ′ .H′, G ′ 6⊆ G, or H′ 6⊆ H. Clearly G .H is GAL-derivable from L-admissible
premises of the form R′ = G,G ′ . H′,H using also (C).. But n(R′) < n(R).
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Hence by the induction hypothesis, each R′ is derivable from a set of L-modal full
L-admissible gs-rules, and the result follows. 2

We use these lemmas to show that if an L-admissible full gs-rule G .H is inconsis-
tent or the formula

∧
S∈G I(S) is L-projective, then is G .H is GAL-derivable. We

then deal with the case where A is consistent and not L-projective and show, using
Ghilardi’s characterization of L-projective formulas, that this case cannot occur by
deriving a contradiction.

Theorem 40 Let L be an extensible modal logic, and let GAL be L-fitting. Then

|∼LR iff `GAL R

Proof. The right-to-left direction follows from the definition of L-fitting. For the
other direction, by Lemma 39 it is sufficient to assume thatR = G . H is a modal-
full L-admissible gs-rule. Let C =

∧
S∈G I(S). If C is inconsistent, then `L G . ,

and if C is L-projective, then using Lemma 8 (a), `L G .S for some S ∈ H. In both
cases, by Lemma 30 and .(W ), `GAL G . H.

Hence assume that C is consistent and not L-projective. We use Theorem 18 of
Ghilardi, which tells us that C does not have the L-extension property, to obtain a
non-empty L-model K such that Kk 
 C for all k not in the root of K, and such
that every variant of K refutes C. We write K ′ 
 A or A ∈ K ′ if Kk 
 A for all
k not in the root of K. Let M1, . . . ,Mk be the variants of K, and let S1, . . . , Sk be
the sequents in G for which Mi 6
 Si, where Si = (Γi ⇒ ∆i) and Ci = I(Si). Thus
Mi 


∧
Γi and Mi 6


∨
∆i. Note that Γi and ∆i contain only atoms and boxed

atoms by the fullness of G . H. We distinguish by cases according to whether K
is reflexive or not, recalling that in some logics this is possible and others not.

Irreflexive case. First, suppose K is irreflexive. Observe that in this case

2A ∈ Γi ⇒ �A ∈ K ′ and 2A ∈ ∆i ⇒ A 6∈ K ′. (1)

Let:
Ai =def

∧
p∈Γi

p ∧
∧

p∈∆i

¬p and A =def

∨
Ai.

We show that A is a tautology: consider a valuation v on atoms occuring in C, and
define a variant M of K by defining:

M 
 p⇔ v(p) = 1.

Suppose that M is the variant Mi. It is not difficult to see that v(p) = 1 for p ∈ Γi

and v(p) = 0 for p ∈ ∆i; i.e. v(Ai) = 1. So A is a tautology, and the formula
corresponding to the negation of A, and swapping literals (i.e. p goes to ¬p and
vice versa): ∧

i

( ∨
p∈Γi

p ∨
∨

p∈∆i

¬p
)
,
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is inconsistent (swapping literals is not necessary but simplifies the reasoning that
follows). Therefore, there exists a resolution refutation starting with the clauses:

{p : p ∈ Γj} ∪ {¬p : p ∈ ∆j} for j = 1 . . .m

that ends in the empty clause ∅. Let Θ ∪ Ψ′ be any clause in the refutation, where
Θ contains only atoms and Ψ′ contains only negated atoms. Define Ψ = {p : ¬p ∈
Ψ′}. Then, since R is full, we can show inductively, using (AC) and (1) for the
base case, that there exists (2Γ,Θ ⇒ Ψ,2∆) ∈ G such that:

K ′ 

∧

�Γ and 2A ∈ 2∆ ⇒ K ′ 6
 A. (2)

Now consider the empty clause ∅, and its corresponding sequent in G of the form
2Γ ⇒ 2∆. The rule (V i) implies that �Γ ⇒ q ∈ G for some q ∈ ∆, and hence
it follows, as K ′ 
 C, that K ′ 


∧
�Γ → q. But by (2) we have K ′ 


∧
�Γ and

K ′ 6
 q. However, K ′ 

∧

�Γ → q implies K ′ 
 q, a contradiction.

Reflexive case. Instead of (V i), the rule (V r) plays a crucial role here. Recall that
we denote the set {A | K ′ 
 A} by K ′ and that

Mi 

∧

Γi and Mi 6

∨

∆i.

Define K ′
c = {A | K ′ 6
 A}. Observe that ∀p ∈ K ′:

p ∈ Γi ⇒ Mi 
 �p 2p ∈ Γi ⇒ Mi 
 p

p ∈ ∆i ⇒ Mi 
 ¬p ∧ ¬2p 2p ∈ ∆i ⇒ Mi 
 ¬p ∧ ¬2p

(3)

In order to apply resolution refutations as in the irreflexive case above, we associate,
for p ∈ K ′, new atoms lp with expressions (p ∧2p). Define Ai to be the formula:∧
p∈Γi\K′

p ∧
∧

p∈Γi∩K′
lp ∧

∧
2p∈Γi,p∈K′

lp ∧
∧

p∈∆i\K′

¬p ∧
∧

p∈∆i∩K′
¬lp ∧

∧
2p∈∆i,p∈K′

¬lp.

We show that A =
∨
Ai is a tautology. Consider a valuation v and define a variant

M of K via:

∀p 6∈ K ′ : M 
 p⇔ v(p) = 1 ∀p ∈ K ′ : M 
 p⇔ v(lp) = 1.

SupposeM is the variantMi. This implies that for p 6∈ K ′, p ∈ Γi implies v(p) = 1,
and p ∈ ∆i implies v(p) = 0. Observe the following relation between atoms lp and
expressions (p ∧2p):

v(lp) = 1 ⇔Mi 
 p ∧2p v(lp) = 0 ⇔Mi 
 ¬p ∧ ¬2p. (4)

By (3) we have that for p ∈ K ′, p ∈ Γi or 2p ∈ Γi implies v(lp) = 1 and p ∈ ∆i

or 2p ∈ ∆i implies v(lp) = 0. Therefore, v(Ai) = 1, and thus A is a tautology.
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Hence the formula:
m∧

i=1

( ∨
p∈Γi\K′

p∨
∨

p∈Γi∩K′
lp∨

∨
2p∈Γi,p∈K′

lp∨
∨

p∈∆i\K′

¬p∨
∨

p∈∆i∩K′
¬lp∨

∨
2p∈∆i,p∈K′

¬lp
)

equivalent to ¬A, swapping literals, is inconsistent. So there exists a resolution
refutation of:

{p | p ∈ Γi\K ′} ∪ {lp | p ∈ K ′, and p ∈ Γi or 2p ∈ Γi }∪
{¬p | p ∈ ∆i\K ′} ∪ {¬lp | p ∈ K ′, and p ∈ ∆i or 2p ∈ ∆i } for i ≤ m

that ends in the empty clause ∅. Let ΘΠ∪ΨΣ be any clause in the refutation, where
Θ contains only atoms not in K ′, Π contains only atoms of the form lq, Ψ contains
only negated atoms not in K ′, and Σ contains only negated atoms of the form ¬lq.
Observe that no clause contains both p and lp. Also, the existence of an atom lp
implies p ∈ K ′, and p 6∈ K ′ implies that there is no lp. Observe that for the input
clauses no variable appears both in the succedent and the antecedent of a sequent.
As usual, we assume that no clause in the refutation contains both an atom and its
negation. First, some definitions:

Ψ0 =def {p : ¬p ∈ Ψ} Π0 =def {p,2p | lp ∈ Π} Σ0 =def {p,2p | ¬lp ∈ Σ}.

For a clause R, let:

L+
R =def {lp | lp ∈ R} P+

R =def {2p, p | lp ∈ R} ∪ {p | p ∈ R}

L−R =def {lp | ¬lp ∈ R} P−
R =def {2p, p | ¬lp ∈ R} ∪ {p | ¬p ∈ R}

Lc
R =def {lp | lp 6∈ R,¬lp 6∈ R} P c

R =def {2p, p | lp ∈ Lc
R}

First we sketch the idea of the proof by an example. The reasoning is similar to the
irreflexive case, but more complicated. The idea is to associate with every clause a
set of sequents in such a way that for the empty clause the associated set includes
Γ ≡ 2Γ ⇒ 2∆ to which we can apply (V r) and thereby obtain a contradiction.
The exact argument in this last step will be given at the end of the proof. Note
the similarity with the irreflexive case. What makes this part of the proof more
complicated is that we cannot, as in that case, associate sequents with clauses, but
rather sets of sequents with clauses.

Suppose that the input clauses are:

{p, lq,¬lr}, {¬p, lq,¬lr}, {¬lq,¬lr}, {lr}.

Moreover, suppose that in this example, if q ∈ Γi ∩ K ′, then 2q ∈ Γi, and vice
versa, and similarly for ∆i. This is not a necessary assumption, but just facilitates
the reasoning below. Thus the initial sequents are

p,�q ⇒ r,2r � q ⇒ p, r,2r ⇒ q,2q, r,2r � r ⇒ .
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Observe that this implies that p ∈ K ′
c. Following the resolution refutation, we see

that the cut on p can be mimicked at the sequent level using the rule (AC), since it
implies that �q ⇒ r,2r ∈ G. However, the cuts on lq and lr cannot be mimicked
at the sequent level. Instead, we keep track of the set P c

R of all atoms of the form
lx or ¬lx that do not occur in R (because they have been cut away already, or were
never there), and note that for each �Z ⊆ P c

R there are Γ ⊆ �Z, Θ ⊆ P c
R − �Z,

Π ⊆ P+
R , Σ ⊆ P−

R , and ∆ ⊆ K ′
c such that Γ,Π ⇒ Θ,Σ,2∆ ∈ G. This property

will be denoted by V (R,�Z,G).

In our example the fact that this property holds can be shown as follows. For the
input clauses R with associated sequents Γ ⇒ ∆ this is immediate since Γ ⊆ P+

R

and ∆ ⊆ P−
R . For the other clauses we choose the sequents as follows.

P c
R �Z �Z

{lq,¬lr} ∅ ∅ (�q ⇒ r,2r)

{¬lq,¬lr} ∅ ∅ (⇒ q,2q, r,2r)

{lq} {r,2r} ∅ (�q ⇒ r,2r) {r,2r} (�r ⇒)

{lr} {q,2q} ∅ (�r ⇒) {q,2q} (�r ⇒)

{¬lr} {q,2q} ∅ (⇒ q,2q, r,2r) {q,2q} (�q ⇒ r,2r)

We leave it to the reader to verify that the associated sequents have the desired
form and are elements of G. For example, for R = {lq} and �Z = ∅, the sequent
�q ⇒ r,2r has the desired form since q,2q ∈ R+ and r,2r ∈ P c

R − �Z. That
it is an element of G follows from the fact that G is full and contains the sequents
p,�q ⇒ r,2r and �q ⇒ p, r,2r. Thus by (AC) it also contains �q ⇒ r,2r.

As the example shows, there is not one particular sequent corresponding to a clause.
Instead, for each of the subsets �Z of P c

R, we have a sequent in G which is a witness
of V (R,�Z,G). The argument showing that the fact that V (∅,�Z,G) holds for all
�Z ⊆ P c

∅ leads to a contradiction, will be given at the end of the proof.

Define:

V (R,X,G) =def ∃Γ ⊆ X∃Θ ⊆ (P c
R −X)∃Π ⊆ P+

R ∃Σ ⊆ P−
R ∃∆ ⊆ K ′

c

(Γ,Π ⇒ Θ,Σ,2∆) ∈ G

U(R,G) =def ∀� Z ⊆ P c
R V (R,�Z,G).

Claim 1 For every clause R in the resolution refutation U(R,G) holds.

Proof of the Claim. For the initial clauses R = ΘΠ ∪ ΨΣ this is straightforward
as they can be divided as Γi ⇒ Σi,2Θi, where Γi ⊆ P+

Ri
, Σi ⊆ P−

Ri
and Θi ⊆ K ′

c.
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Cuts on p. For the induction step, first consider a cut on an atom p, with input
clauses R∪{p} and R′ ∪{¬p}, and conclusion R∪R′. Therefore, consider �Z ⊆
P c

R∪R′ = P c
R ∩ P c

R′ . Denote �Z by X . We show that V (R ∪ R′,�Z,G), i.e. that
there exists S = Γ′′,Π′′ ⇒ Θ′′,Σ′′,2∆′′ in G such that

Γ′′ ⊆ X Θ′′ ⊆ P c
R∪R′ −X Π′′ ⊆ P+

R∪R′ Σ′′ ⊆ P−
R∪R′ ∆′′ ⊆ K ′

c. (5)

We will leave out all the ∆’s in the argument as they play no role in it. Consider

Y = X ∪ {q,2q | lq ∈ Lc
R ∩R′} ⊆ P c

R,

Y ′ = X ∪ {q,2q | lq ∈ Lc
R′ ∩R} ⊆ P c

R′ .

observe that Y and Y ′ are of the form �W . Therefore, by the induction hypothesis
there are sequents Γ,Π, p ⇒ Θ,Σ and Γ′,Π′ ⇒ p,Θ′,Σ′ such that Γ ⊆ Y , Π ⊆
P+

R , Σ ⊆ P−
R , Θ ⊆ P c

R − Y , and similarly for the second sequent. The case that p
does not occur in one or both of the sequents can be treated in the same way. By
(AC) the sequent Γ,Γ′,Π,Π′ ⇒ Θ,Θ′,Σ,Σ′ ∈ G. We will take for S this sequent,
and show how we have to partition it in order to obtain (5). Define

Γ′′ = (Γ ∩X) ∪ (Γ′ ∩X) Π′′ = Π ∪ Π′ ∪ (Γ−X) ∪ (Γ′ −X),

Θ′′ = (Θ ∩ P c
R′) ∪ (Θ′ ∩ P c

R) Σ′′ = Σ ∪ (P−
R′ ∩Θ) ∪ Σ′ ∪ (P−

R ∩Θ′).

We have to show that they satisfy (5), and that ΓΓ′ΠΠ′ = Γ′′Π′′ and ΘΘ′ΣΣ′ =
Σ′′Σ′′. For the first part, note that no clause in the refutation contains both an atom
and its negation, which implies that Γ′′Π′′ and Θ′′Σ′′ do not contain p. Therefore,
(Γ−X) ⊆ (Y −X) ⊆ P+

R′ ⊆ P+
R∪R′ , and (Γ′ −X) ⊆ (Y ′ −X) ⊆ P+

R ⊆ P+
R∪R′ .

This proves the first part. For the last part, that ΓΓ′ΠΠ′ = Γ′′Π′′ is easy to see.
For ΘΘ′ΣΣ′ = Θ′′Σ′′, observe that Θ = Θ ∩ P+

R′ ∪ Θ ∩ P−
R′ ∪ Θ ∩ P c

R′ , and that
Θ ∩ P+

R′ = ∅ by the definition of Y . And similarly for Θ′.

Cuts on lp. For a cut on lp the input clauses are

R ∪ {lp} R′ ∪ {¬lp}

and the conclusion is R ∪ R′. We have to show that U(R ∪ R′,G). Therefore,
consider �Z ⊆ P c

R∪R′ = P c
R ∩ P c

R′ ∪ {p,2p}. Denote �Z by X . We have to show
that there is a sequent Γ,Π ⇒ Θ,Σ,2∆ ∈ G such that

Γ ⊆ X Θ ⊆ P c
R∪R′ −X, Π ⊆ P+

R∪R′ Σ ⊆ P−
R∪R′ ∆ ⊆ K ′

c. (6)

We distinguish the two cases p,2p ∈ X , and p,2p 6∈ X . Observe that since X is
of the form �Z these are the only two cases that can occur. We treat the first case,
the second case is similar. Consider

Y = (X − {p,2p}) ∪ {q,2q | lq ∈ Lc
R ∩R′} ⊆ P c

R ∩ ((X − {p,2p}) ∪ P+
R′).
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Note that Y is of the form �W . Therefore, by the induction hypothesis there is a
sequent S = Γ′,Π′ ⇒ Θ′,Σ′,2∆′ ∈ G such that

Γ′ ⊆ Y Θ′ ⊆ P c
R − Y, Π′ ⊆ P+

R Σ′ ⊆ P−
R ⊆ P−

R∪R′ ∆′ ⊆ K ′
c.

Consider the following partition of S: Γ = (Γ′ ∩X) ∪ (Π′ ∩ {p,2p}), Π = (Π′ −
{2p, p}) ∪ (Γ′ ∩ (Y −X)), Θ = Θ′ ∩ P c

R′ , Σ = Σ′ ∪ (P−
R′ ∩Θ′), and ∆′ = ∆. We

have to show that
ΓΠΘΣ satisfy (6). (7)

and that it is indeed a partition of S, i.e.

ΓΠ = Γ′Π′ ΘΣ = Θ′Σ′. (8)

For (7), that Γ ⊆ X is clear. For Π ⊆ P+
R∪R′ observe that (Π′−{2p, p}) is contained

in (P+
R − {p,2p}) ⊆ P+

R∪R′ , and that (Y − X) ⊆ P+
R′ ⊆ P+

R∪R′ . That Θ ⊆
(P c

R∪R′−X) is clear. That Σ ⊆ P−
R∪R′ follows from the fact that Σ′ ⊆ P−

R ⊆ P−
R∪R′

and that P c
R′∩Θ′ ⊆ P−

R∪R′ because 2p, p 6∈ Θ′ ⊆ P c
R. This finishes the proof of (7).

For (8), that ΓΠ = Γ′Π′ is easy to see. For ΘΣ = Θ′Σ′, observe that Θ ∩ P+
R′ = ∅

by the definition of Y . This proves (8), and thereby the claim. End of Claim proof.

To finish the proof of the theorem, consider the empty clause ∅, and observe that
P c
∅ = {p,2p | p ∈ K ′} ⊆ K ′. Let Γ = {p | p ∈ K ′}. The fact that U(∅,G)

implies that V (∅,�Z,G) for all �Z ⊆ P c
∅ . Since P+

∅ = P−
∅ = ∅, it follows that

Γ ≡ 2Γ ⇒ 2∆ ∈ G. Thus by the rule (V r), �Γ ⇒ q ∈ G for some q ∈ ∆. Since
K ′ 
 C, it follows that K ′ 


∧
�Γ → q. Since also K ′ 


∧
�Γ, K ′ 
 q follows,

contradicting K ′ 6
 q, which follows from ∆ ⊆ K ′
c. This finishes the proof of the

theorem. 2

In combination with Corollary, we obtain in particular soundness and completeness
results for GAK4, GAS4, and GAL.

Corollary 41 |∼LR iff `GAL R for L ∈ {K4, S4,GL}.

4 Intuitionistic Logic

In this section we turn our attention to the historically most significant case of
Intuitionistic Logic IPC, proceeding in much the same way as for modal logics.
Namely, we start with a calculus for derivability (taken from [15]) for the right
logical rules, and use invertibility properties to obtain left logical rules.

Definition 42 (GAI)
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Initial Generalized Sequent Rules

G . (Γ, A ⇒ A, ∆),H
(ID)

G . (Γ,⊥ ⇒ ∆),H
(⊥)

Right Logical Rules

G . (Γ ⇒ A, ∆),H G . (Γ ⇒ B, ∆),H
G . (Γ ⇒ A ∧B, ∆),H

.(⇒∧)
G . (Γ, A, B ⇒ ∆),H
G . (Γ, A ∧B ⇒ ∆),H

.(∧⇒)

G . (Γ, A ⇒ ∆),H G . (Γ, B ⇒ ∆),H
G . (Γ, A ∨B ⇒ ∆),H

.(∨⇒)
G . (Γ ⇒ A, B, ∆),H
G . (Γ ⇒ A ∨B, ∆),H

.(⇒∨)

G . (Γ, A → B ⇒ A, ∆),H G . (Γ, B ⇒ ∆),H
G . (Γ, A → B ⇒ ∆),H .(→⇒)i

G . (Γ, A ⇒ B),H
G . (Γ ⇒ A → B, ∆),H .(⇒→)i

Left Logical Rules

G, (Γ, A, B ⇒ ∆) . H
G, (Γ, A ∧B ⇒ ∆) . H

(∧⇒).
G, (Γ ⇒ A, ∆), (Γ ⇒ B, ∆) . H

G, (Γ ⇒ A ∧B, ∆) . H
(⇒∧).

G, (Γ ⇒ A, B, ∆) . H
G, (Γ ⇒ A ∨B, ∆) . H

(⇒∨).
G, (Γ, A ⇒ ∆), (Γ, B ⇒ ∆) . H

G, (Γ, A ∨B ⇒ ∆) . H
(∨⇒).

G, (Γ ⇒ p, ∆), (p, A ⇒ B) . H
G, (Γ ⇒ A → B, ∆) . H (⇒→).i

G, (Γ, p → q ⇒ ∆), (p ⇒ A), (B ⇒ q) . H
G, (Γ, A → B ⇒ ∆) . H (→⇒).i

where in (→⇒).i, (⇒→).i, p, q do not occur in G, H, Γ, ∆, A, B, and in (→⇒).i, A, B are non-atomic

Structural Rules

G . H
G, S . H (W ).

G . H
G . S,H .(W )

G, S, S, . H
G, S . H (C).

G . S, S,H
G . S,H .(C)

Anti-Cut and Projection Rules

G, (Γ, Π ⇒ Σ, ∆) . H
G, (Γ, A ⇒ ∆), (Π ⇒ A, Σ) . H

(AC)
G . (Γ, I(S) ⇒ ∆),H

G, S . H (PJ)

where (Γ ⇒ ∆) ∈ H ∪ {⇒}

Implication Rule

G, (Γ, B ⇒ ∆), (Γ, A → B ⇒ A, ∆) . H
G, (Γ, A → B ⇒ ∆) . H

(→).

Visser Rule

[G, (Γ ⇒ A) . H]A∈∆ [G . (ΓΠ, Π ⇒ ∆),H]Π⊆Γ∆

G, (Γ ⇒ ∆) . H
(V )

where Γ contains only implications, and:

(1) ΓΠ = {A → B ∈ Γ : A 6∈ Π}.
(2) Γ∆ = {A 6∈ ∆ : ∃B (A → B) ∈ Γ}.
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GAI is evidently very similar to the calculi for extensible modal logics, the main
differences being changes in the rules for implication, a different Visser Rule, and
the addition of the implication rule.

Example 43 Consider the Kreisel-Putnam rule ¬A → (B ∨ C) / (¬A → B) ∨
(¬A→ C) which is IPC-admissible but not IPC-derivable. This can be written in
gs-rule format as:

(¬A⇒ B,C) . (⇒ ¬A→ B,¬A→ C)

We will construct a proof of this in GAI. First, proceeding backwards, we apply
(→)., (W )., and (C). to get:

(¬A⇒ A,B,C), (¬A⇒ A,B,C) . (⇒ ¬A→ B,¬A→ C)

We now apply the Visser rule (V ) to the first sequent on the left. Observe that Γ
here contains just one implication ¬A, and Γ∆ is in this case just ∅ with Γ∅ = ¬A.
Hence we get the following premises to be proved:

(1) (¬A⇒ A), (¬A⇒ A,B,C) . (⇒ ¬A→ B,¬A→ C)
(2) (¬A⇒ B), (¬A⇒ A,B,C) . (⇒ ¬A→ B,¬A→ C)
(3) (¬A⇒ C), (¬A⇒ A,B,C) . (⇒ ¬A→ B,¬A→ C)
(4) (¬A⇒ A,B,C) . (¬A⇒ A,B,C), (⇒ ¬A→ B,¬A→ C)

(1) is derivable as follows:

. (¬A,¬A → A ⇒ ¬A,B)
(SID)

. (⊥, A ⇒ B)
(⊥)

. (¬A,A ⇒ A,B)
(SID)

. (¬A,A ⇒ B)
.(→⇒)

. (¬A,¬A → A ⇒ B)
.(→⇒)

(¬A ⇒ A) . (¬A ⇒ B)
(PJ)

(¬A ⇒ A) . (⇒ ¬A → B,¬A → C)
.(⇒→)

(¬A ⇒ A), (¬A ⇒ A,B, C) . (⇒ ¬A → B,¬A → C)
(W ).

(2) and (3) are derivable simply by applying .(⇒→) to the appropriate disjunct
and (SID), while (4) is just an instance of (SID).

The proof of soundness for GAI with respect to IPC-admissibility proceeds simi-
larly to Lemma 28.

Theorem 44 If `GAI R, then |∼IPCR.

Proof. It is sufficient to show that each rule of GAI is IPC-sound, concentrating
just on those cases different to Lemma 28. For (→⇒).i, let σ be a unifier for
I(S) for all S ∈ G and I(Γ, A → B ⇒ ∆). Since p and q do not occur in the
conclusion of the rule, we can extend σ with σ(p) = σ(A) and σ(q) = σ(B). It
follows immediately that σ is a unifier for I(Γ, p → q ⇒ ∆), I(p ⇒ A), and
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I(B ⇒ q). Hence, if the premise is IPC-admissible, then σ is a unifier for I(S) for
some S ∈ H as required. The case of the rule (⇒→). follows a similar pattern.

For (V ), suppose that σ is a unifier for I(S) for all S ∈ G and I(Γ ⇒ ∆), and
let ∆ = {A1, . . . , An}. Using the right set of premises, σ is either a unifier for
some S ∈ H or for I(ΓΠ,Π ⇒ ∆) for all Π ⊆ Γ∆. In the first case we are done,
so assume the latter. It suffices now by the left set of premises to show that σ is a
unifier for I(Γ ⇒ Ai) for some i, 1 ≤ i ≤ n. Suppose, arguing contrapositively,
that this is not the case. Then there exist countermodels K1, . . . , Kn such that Ki 

σ(

∧
Γ) and Ki 6
 σ(Ai) for i = 1 . . . n. Consider the model K = (Σn

i=1Ki)
′. Let

Π = {D ∈ Γ∆ : K 
 σ(D)}. Observe that for all B → C ∈ Γ such that B 6∈ Π,
either B ∈ ∆ or K 6
 σ(B). Note also that B ∈ ∆ implies K 6
 σ(B). Hence
for all B 6∈ Π it follows that K 6
 σ(B), and so K 
 σ(B → C). It follows that
K 
 σ(

∧
(ΓΠ ∪ Π)). Thus K 
 σ(

∨
∆), a contradiction. 2

We now need a series of lemmas corresponding to those used in the modal case.
First we have, exactly as in Lemma 30 (except replacing the application of the
modal deduction theorem with the usual deduction theorem), that IPC-derivable
gs-rules with at most one sequent on the right are GAI-derivable.

Lemma 45 If `IPC G . H where |H| ≤ 1, then `GAI G . H.

We then establish that IPC-admissible rules are GAI-derivable from IPC-admissible
rules that are full (recalling Definition 38 for the definition of fullness) with respect
to (V ), (→)., and (AC). Below, we prove just the invertibility step, proofs for the
second and third lemmas proceeding in exactly the same way as Lemmas 36 and
39.

Lemma 46 The left logical rules of GAI are invertible.

Proof. The cases for ∧ and ∨ are straightforward. For (→⇒).i, assume that σ is
a unifier for I(S) for all S ∈ G, I(Γ, p → q ⇒ ∆), I(p ⇒ A), and I(B ⇒ q).
Since `IPC I(A,A→ B ⇒ B) it follows that σ is a unifier for I(p,A→ B ⇒ q),
and hence for I(A→ B ⇒ p→ q). So by cut-admissibility for IPC, σ is a unifier
for I(Γ, A→ B ⇒ ∆), and hence, by the IPC-admissibility of the conclusion, for
I(S) for some S ∈ H. The case of (⇒→).i is similar. 2

Definition 47 A gs-rule G .H is implication-irreducible if every sequent in G con-
tains only atoms on the right and atoms and atomic implications on the left.

Lemma 48 Every IPC-admissible gs-rule is GAI-derivable from an IPC-admissible
implication-irreducible gs-rule.

Lemma 49 Admissible gs-rules are GAI-derivable from IPC-admissible gs-rules
that are full with respect to (V ), (→)., and (AC).
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We now use Ghilardi’s characterization of IPC-projective formulas to establish
completeness for GAI. First, however, we give a technical lemma showing that
a crucial property of gs-rules is preserved from premise to conclusion by the rule
(AC). For convenience, we define the following conditions for multisets of gs-rules
G and sets of formulas I:

Definition 50 Recall that

ΓΠ = {A→ B ∈ Γ : A 6∈ Π}.
Γ∆ = {A 6∈ ∆ : ∃B (A→ B) ∈ Γ}.

Let G be a multiset of sequents, Γ ⇒ ∆ a sequent, and I a set of formulas:

(1) U((Γ ⇒ ∆), I,G) iff ∃Γ′ ⊆ ΓI ∪ I ∃∆′ ⊆ ∆ (Γ′ ⇒ ∆′ ∈ G)
(2) V ((Γ ⇒ ∆),G) iff ∀I ⊆ Γ∆ : U((Γ ⇒ ∆), I,G)

Lemma 51 Let G, (Γ, p ⇒ ∆), (Π ⇒ p,Σ) . H be a gs-rule full with respect to
(AC). If V ((Γ, p⇒ ∆),G) and V ((Π ⇒ p,Σ),G), then V ((Γ,Π ⇒ Σ,∆),G).

Proof. Consider I ⊆ (Γ ∪ Π)∆∪Σ. We show that U((Γ,Π ⇒ Σ,∆), I,G), i.e. that
there are Γ′ ⊆ ΠI ∪ ΓI ∪ I and ∆′ ⊆ ∆ ∪ Σ such that Γ′ ⇒ ∆′ ∈ G. Observe that

I ∩ Γ∆ ⊆ Γ∆, I ∩ ΠΣ ⊆ ΠΣ, ΓI∩Γ∆ = ΓI , and ΠI∩ΠΣ = ΠI (9)

First, assume p 6∈ I . By the hypothesis and (9), there are Γ′ ⊆ ΓI ∪ I , Π′ ⊆ ΠI ∪ I ,
∆′ ⊆ ∆, and Σ′ ⊆ Σ such that (Γ′, p ⇒ ∆′) ∈ G and (Π′ ⇒ p,Σ′) ∈ G. Whence
also (Γ′,Π′ ⇒ Σ′,∆′) ∈ G by fullness, and we are done.

Second, assume p ∈ I . By the hypothesis and (9), we have Γ′ ⊆ ΓI∪I and ∆′ ⊆ ∆
such that (Γ′ ⇒ ∆′) ∈ G, and we are done. 2

Theorem 52 |∼IPCR iff `GAI R.

Proof. The right to left direction has been proved above. For the other direction, it
is sufficient using Lemma 49 to assume thatR = G.H is an IPC-admissible gs-rule
full with respect to (AC), (→)., and (V ). Let C =

∧
S∈G I(S). If C is inconsistent,

then `IPC G., and if C is IPC-projective, then using Lemma 8 (a), `IPC G . S for
some S ∈ H. Hence in both cases, by Lemma 45 and .(W ), `GAI G . H.

Hence assume that C is consistent and not IPC-projective. We use Ghilardi’s key
result, Theorem 12, which tells us that C does not have the extension property, to
show thatR is GAI-derivable. Unpacking the definition of the extension property,
we consider the set of Kripke models K for C, and have a model K ∈ K such that
K 
 C and every variant of K ′ refutes C. We can assume that K has at least one
node as otherwise K ′ would have one node, and, since C is consistent, we know
that for such a classical model there is a variant that forces C. Let M1, . . . ,Mk be
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all the possible variants of K ′ and let C1, . . . , Ck be the sequents of G such that
Mi 6
 Ci. Observe that we can assume for each i that:

(p→ q) ∈ Γi implies p ∈ ∆i (10)

For suppose that this is not possible. Then p → q ∈ Γi and p 6∈ ∆i. But since
Mi 


∧
Γi and Mi 6


∨
∆i, it follows that Mi 
 p → q, and hence either Mi 6
 p

or Mi 
 q. This means that either Mi 6
 I(Γi ⇒ ∆i, p) or Mi 6
 I(Γi − {p →
q}, q ⇒ ∆i). But since R is full with respect to (→)., both of these sequents are
in G, and can replace Γi ⇒ ∆i, a contradiction.

Now we define the set of atoms: P = {p : p occurs in C and K 
 p}. Let at(Γ)
denote the set of atoms that are elements of Γ. Note that at(Γi) ⊆ P for all i =
1 . . . k. Define for i = 1 . . . k:

Ai =def

∧
p∈Γi∩P

p ∧
∧

p∈∆i∩P

¬p.

We show that A =def
∨k

i=1Ai is a classical tautology. Since K 
 p for all p ∈ P ,
given a classical valuation v on P , we can consider the variant of K ′ defined at the
root by:

M 
 p ⇔ v(p) = 1.

where M is Mj for some j, 1 ≤ j ≤ k. Observe that M 
 p and hence v(p) = 1
for all p ∈ at(Γj), and M 6
 p and hence v(p) = 0 for all p ∈ ∆j . Thus v(Aj) = 1.
Hence A is a tautology and the following formula, equivalent to the negation of A,
is inconsistent:

m∧
j=1

(
∨

p∈Γj∩P

p ∨
∨

p∈∆j∩P

¬p)

Hence there exists a resolution refutation starting with the clauses:

{p : p ∈ Γj ∩ P} ∪ {¬p : p ∈ ∆j ∩ P} for j = 1 . . .m

that ends in the empty clause ∅.

Let Θ ∪ Ψ′ be a clause in the refutation, where Θ contains only atoms and Ψ′

contains only negated atoms. Define Ψ = {p : ¬p ∈ Ψ′}. Then, sinceR is full with
respect to (AC), there exists (Γ,Θ ⇒ Ψ,∆) ∈ G such that ∆∩P = ∅, Γ∩P = ∅,
and K 


∧
Γ. Moreover, since it holds by (10) for Γi ⇒ ∆i for i = 1 . . . k,

inductively by multiple applications of Lemma 51:

∀I ⊆ (Γ ∪ Π)∆∪Σ : U((Γ,Π ⇒ Σ,∆), I,G). (11)

Hence in particular for the empty clause ∅: (Γ ⇒ ∆) ∈ G where ∆ contains only
atoms not in P , Γ contains only implicational formulas, and K 


∧
Γ. Since R is

full with respect to (V ), either (Γ ⇒ q) ∈ G for some q ∈ ∆, or (ΓΠ,Π ⇒ ∆) ∈ H
for some Π ⊆ Γ∆. In the first case, we get that K 


∧
Γ → q, since K 
 C. But
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K 

∧

Γ so it follows that K 
 q, which implies q ∈ P , a contradiction. In the
second case, using (11), there exists (Γ′ ⇒ ∆′) ∈ G for some Γ′ ⊆ ΓΠ ∪ Π and
some ∆′ ⊆ ∆. Since `IPC (Γ′ ⇒ ∆′) . (ΓΠ,Π ⇒ ∆), it follows by Lemma 45
that `GAI (Γ′ ⇒ ∆′) . (ΓΠ,Π ⇒ ∆) and hence by (W ). and .(W ) that `GAI R
as required. 2

5 Intermediate Logics

In this section we consider intermediate logics, recalling the result of [10] that if
the Visser rules are admissible for an intermediate logic, then they form a basis for
the admissible rules of that logic. In some cases, such as Gödel-Dummett logic, the
Visser rules (and hence all admissible rules) are derivable. Here we consider some
logics where this does not happen: de Morgan (or Jankov) logic KC, axiomatized
by adding the axiom ¬A ∨ ¬¬A to IPC, and the family of logics with Kripke
models of bounded cardinality BCn for n = 1, 2, . . . (noting that for the cases
n = 1, 2, the Visser rules are in fact derivable). Our treatment of these logics gives
a nice illustration of the flexibility of the approach, since to define a calculus for
admissibility (and indeed even derivability) in such cases, we require rules dealing
with more complicated structures. In particular, we use hypersequents, a natural
generalization of sequents introduced by Avron in [1].

Definition 53 A hypersequent G is a finite multiset of sequents, written S1 | . . . |
Sn, and `L G iff `L I(G) where I(G) =

∨n
i=1 I(Si).

Generalized hypersequent rules are defined in exactly the same way as sequent
rules. However, here we will deal only with single-conclusion generalized hyper-
sequent rules:

Definition 54 A generalized hypersequent rule (gh-rule for short) R is an ordered
pair of multisets of hypersequents:

(G1), . . . , (Gn) . (H1), . . . , (Hm)

If m ≤ 1, then R is called a single-conclusion gh-rule (sgh-rule for short).

R is L-admissible, written |∼LR, iff:

{I(Gi)}n
i=1

|∼L {I(Hj)}m
j=1

R is L-derivable, written `L R, iff:

n∧
i=1

I(Gi) `L

m∨
j=1

I(Hj)
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We obtain a core set of rules for extensible intermediate logics by taking the single-
conclusion versions of rules of GAI for IPC and adding context variables G,H
standing for arbitrary context hypersequents, the only significant change being in
the Visser rule:

Definition 55 (Core Intermediate Rules)

Initial GH-Rules

G . (G | Γ, A ⇒ A, ∆)
(ID)

G . (G | Γ,⊥ ⇒ ∆)
(⊥)

Right Logical Rules

G . (G | Γ ⇒ A, ∆) G . (G | Γ ⇒ B, ∆)

G . (G | Γ ⇒ A ∧B, ∆)
.(⇒∧)

G . (G | Γ, A, B ⇒ ∆)

G . (G | Γ, A ∧B ⇒ ∆)
.(∧⇒)

G . (G | Γ, A ⇒ ∆) G . (G | Γ, B ⇒ ∆)

G . (G | Γ, A ∨B ⇒ ∆)
.(∨⇒)

G . (G | Γ ⇒ A, B, ∆)

G . (G | Γ ⇒ A ∨B, ∆)
.(⇒∨)

G . (G | Γ, A → B ⇒ A, ∆) G . (G | Γ, B ⇒ ∆)

G . (G | Γ, A → B ⇒ ∆)
.(→⇒)i

G . (G | Γ, A ⇒ B)

G . (G | Γ ⇒ A → B, ∆)
.(⇒→)i

Left Logical Rules

G, (G | Γ, A, B ⇒ ∆) . H
G, (G | Γ, A ∧B ⇒ ∆) . H

(∧⇒).
G, (G | Γ ⇒ A, ∆), (G | Γ ⇒ B, ∆) . H

G, (G | Γ ⇒ A ∧B, ∆) . H

G, (G | Γ ⇒ A, B, ∆) . H
G, (G | Γ ⇒ A ∨B, ∆) . H

(⇒∨).
G, (G | Γ, A ⇒ ∆), (G | Γ, B ⇒ ∆) . H

G, (G | Γ, A ∨B ⇒ ∆) . H
(∨⇒).

G, (G | Γ ⇒ p, ∆), (p, A ⇒ B) . H
G, (G | Γ ⇒ A → B, ∆) . H (⇒→).i

G, (G | Γ, p → q ⇒ ∆), (p ⇒ A), (B ⇒ q) . H
G, (G | Γ, A → B ⇒ ∆) . H (→⇒).i

where in (→⇒).i, (⇒→).i, p, q do not occur in G, H, Γ, ∆, A, B, and in (→⇒).i, A, B are non-atomic

Structural Rules

G . H
G, G . H (W ).

G .

G . G
.(W )

G, G, G, . H
G, G . H (C).

Anti-Cut and Projection Rules

G, (G | H | Γ, Π ⇒ Σ, ∆) . H
G, (G | Γ, A ⇒ ∆), (H | Π ⇒ A, Σ) . H

(IAC)
G . (H | Γ, I(G) ⇒ ∆)

G, (G) . H
(IPJ)

where (H | Γ ⇒ ∆) ∈ H ∪ {⇒}

Implication Rule

G, (G | Γ, B ⇒ ∆), (G | Γ, A → B ⇒ A, ∆) . H
G, (G | Γ, A → B ⇒ ∆) . H

(→).

Intermediate Visser Rule

G, (G | {Γ ⇒ A}A∈∆) .H [G . (ΓΠ, Π ⇒ ∆)]Π⊆Γ∆

G, (G | Γ ⇒ ∆) .H
(IV )
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where Γ contains only implications, and:

(1) ΓΠ = {A → B ∈ Γ : A 6∈ Π}.
(2) Γ∆ = {A 6∈ ∆ : ∃B (A → B) ∈ Γ}.

The difference in the Visser rules for IPC and for intermediate logics is due to the
fact that IPC has the disjunction property, while intermediate logics in general do
not. This is reflected in the fact that by Lemma 8 (c), for IPC the following stronger
versions of the Visser rules are admissible:

(C → (An+1 ∨ An+2)) ∨D / {C → Aj}n+2
j=1 ∪ {D}.

for n = 1, 2, . . . where C =
∧n

i=1Ai → Bi.

We can extend the core set of rules given above to obtain proof systems for ad-
missibility in extensible intermediate logics. In particular, we can make use of hy-
persequent calculi provided for KC and BCn (n = 1, 2, . . .) in [2], to obtain the
following systems:

Definition 56 GAKC consists of the core intermediate rules plus:

G . (G | S | S)

G . (G | S)
(SC)

G . (G | Γ1, Γ2 ⇒)

G . (G | Γ1 ⇒ ∆1 | Γ2 ⇒ ∆2)
(J)

Definition 57 GABCn for n = 1, 2, . . . consists of the core intermediate rules
plus (SC) and:

[G . (G | Γi, Γj ⇒ ∆i)]1≤i<j≤n+1

G . (G | Γ1 ⇒ ∆1 | . . . | Γn+1 ⇒ ∆n+1)
(BCn)

More generally, we can define (as in the modal case) the notion of a calculus being
L-fitting for an intermediate logic L.

Definition 58 Let L be an intermediate logic. A calculus GAL is L-fitting if:

(1) GAL extends the core intermediate rules.
(2) If `L S, then `GAL . S for any sequent S.
(3) If `GAL R, then |∼LR.

Soundness of the core intermediate rules for extensible intermediate logics is es-
tablished in exactly the same way as for IPC.

Lemma 59 The core intermediate rules are L-sound for every extensible interme-
diate logic L.

Proof. Let L be an extensible intermediate logic. We just consider the revised Visser
rule. Suppose that σ is an L-unifier for I(H) for all H ∈ G and I(G | Γ ⇒ ∆),
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where ∆ = {A1, . . . , An}. Using the right set of premises, σ is an L-unifier for
I(ΓΠ,Π ⇒ ∆) for all Π ⊆ Γ∆. It suffices now to show that σ is an L-unifier for
I(G | {Γ ⇒ A}A∈∆). Suppose, arguing contrapositively, that this is not the case.
Then there exists a countermodel of L for I(σ(G)) ∨ ∨

A∈∆ I(σ(Γ) ⇒ σ(A)). This
implies that for every A ∈ ∆ there are countermodels KA such that KA is a model
of L, KA 
 σ(

∧
Γ), and KA 6
 σ(A). Because L is extensible there is a variant K

of (ΣA∈∆KA)′ that is a model of L. Let Π = {D ∈ Γ∆ : K 
 σ(D)}. Observe
that for all B → C ∈ Γ such that B 6∈ Π, either B ∈ ∆ or K 6
 σ(B). Note also
that B ∈ ∆ implies K 6
 σ(B). Hence for all B 6∈ Π it follows that K 6
 σ(B),
and so K 
 σ(B → C). It follows that K 
 σ(

∧
(ΓΠ ∪ Π)). Thus K 
 σ(

∨
∆), a

contradiction. 2

In particular, using results from [2], we obtain:

Corollary 60 GAKC is KC-fitting and GABCn is BCn-fitting for n = 1, 2, . . ..

To prove completeness for L-fitting systems GAL for extensible intermediate log-
ics L, we proceed as for IPC and extensible modal logics. First we can show, exactly
as in Lemma 30 (except replacing the application of the modal deduction theorem
with the usual deduction theorem), that L-derivable sgh-rules of a certain form are
also GAL-derivable.

Lemma 61 Let L be an extensible intermediate logic and let GAL be L-fitting. If
`L G . H where H = ∅ or H is a sequent, then `GAL G . H.

The completeness theorem is then established similarly to the proof for IPC, the
main complication being that we now have to take care of all the different disjuncts
occurring in hypersequents on the left.

Theorem 62 Let L be an extensible intermediate logic and let GAL be L-fitting.
Then if H = ∅ or H is a sequent:

|∼L G .H iff `GAL G .H

Proof. The right-to-left direction follows directly from Lemma 59. For the left-to-
right direction, it is sufficient to assume (proceeding exactly as in the IPC-case)
that R = G .H is an L-admissible implication-irreducible gs-rule that is full with
respect to (AC), (→)., and (IV ). Let G = G1, . . . , Gn and Gi = Si

1 | . . . | Si
mi

where Si
j = Γi

j ⇒ ∆i
j . Define Ci =def

∨mi
j=1 I(S

i
j) and C =def

∧n
i=1Ci. If C is

inconsistent, then `GAL G .H follows immediately by Lemma 61. Define:

Cji,...,jn =def I(S
1
j1

) ∧ . . . ∧ I(Sn
jn

).
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and observe that by distributivity:

`IPC

( ∨
j1≤m1,...,jn≤mn

Cji,...,jn

)
↔ C.

By Lemma 8 (d), if each Cji,...,jn is IPC-projective, then `L G . H. Hence, by
Lemma 61, `GAL G .H. Note that the fact that H consists of at most one sequent
plays a crucial role here.

It therefore remains to show that each consistent Cji,...,jn is IPC-projective. Let:

eq(C1 ∧ . . . ∧ Cn) =def {Ci | i ≤ n, ∃j ≤ n(Cj = Ci ∧ j 6= i)},

set(C1 ∧ . . . ∧ Cn) =def {C1, . . . , Cn}.
It suffices in fact to establish the IPC-projectivity only of the disjunctsD = Cji,...,jn

for which there is no disjunct D′ of C such that set(D′) ⊆ set(D) and eq(D′) <
eq(D). For suppose there is such a D′ that is IPC-projective. Then (reasoning as
above) `GAL D

′ .H, and, since set(D′) ⊆ set(D), `GAL D .H.

Thus, it suffices to show that every disjunct D = Cji,...,jn with the desired property
is IPC-projective. In proving this we proceed in the same way as in the intuitionistic
case, the only difference being that where we used S ∈ G there, e.g. in the defintion
of the U property, we replace this here by “I(S) is a conjunct of D”, which we will
denote by I(S) ∈ D. Thus in this setting we define

(1) U((Γ ⇒ ∆), I,D) iff ∃Γ′ ⊆ ΓI ∪ I ∃∆′ ⊆ ∆ (Γ′ ⇒ ∆′ ∈ D)
(2) V ((Γ ⇒ ∆),G) iff ∀I ⊆ Γ∆ : U((Γ ⇒ ∆), I,D)

Now we want to prove a lemma equivalent to Lemma 51:

Claim 2 For every disjunct D of C, if Γ, p⇒ ∆ and Π ⇒ p,Σ are conjuncts of D,
then so is Γ,Π ⇒ ∆,Σ, or there is a disjunct D′ of C such that eq(D′) < eq(D)
and set(D′) ⊆ set(D).

Proof. Suppose that a disjunct D of C has conjuncts Γ, p ⇒ ∆ and Π ⇒ p,Σ.
W.l.o.g. we can assume that D is of the form D1 ∧ . . .∧Dk ∧E1 ∧ . . .∧El ∧C1 ∧
. . . ∧ Cm, where the Di are all the conjuncts in D of the form Γ, p ⇒ ∆, and the
Ei are all the conjuncts in D of the form Π ⇒ p,Σ. Thus there are Gi and Hj such
that Gi | Γ, p⇒ ∆ ∈ G for all i ≤ k, and Hj | Π ⇒ p,Σ ∈ G for all j ≤ l: namely,
hypersequents in G corresponding to the conjuncts Di and Ej of D. Note that since
the sequents have to come from different hypersequents in G, we have i 6= j for all
i ≤ k and j ≤ l. By the (IAC) rule, Gi | Hj | Γ,Π ⇒ ∆,Σ ∈ G. If Γ,Π ⇒ ∆,Σ
is a conjunct ofD we are done. Therefore, suppose this is not the case. This implies
that for all i, j there are conjuncts Aij of C1 ∧ . . . ∧ Cm that appear in Gi | Hj , i.e.
Gi | Hj = Aij | I for some I . If Aij appears in Hj we replace Ej by Aij . If Aij
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appears in Gi we replace Di by Aij . In this way we obtain a disjunct D′ of C such
that eq(D′) < eq(D) and set(D′) ⊆ set(D). This proves the claim. 2

Now consider a disjunct D = Cji,...,jn of C for which there is no disjunct D′ of
C such that set(D′) ⊆ set(D) and eq(D′) < eq(D). We have to show that it is
IPC-projective. Arguing contrapositively, assume it is not. Then in the same way
as in the intuitionistic case, using the claim where we there used Lemma 51, we
end up with a sequent Γ ⇒ ∆ of Cji,...,jn such that U(Γ ⇒ ∆, D), where K 


∧
Γ

and ∆ ∩ P = ∅ for K = {p | K 
 p}. Now in the intuitionistic case we conclude
that Γ ⇒ A ∈ G for some A ∈ ∆, or ΓΠ,Π ⇒ ∆ ∈ H for some Π ⊆ Γ∆.
Here we want to conclude that either Γ ⇒ A is a conjunct of D for some A ∈ ∆,
or H = (ΓΠ,Π ⇒ ∆) for some Π ⊆ Γ∆. The rest of the argument will then be
similar to the intuitionistic case. Therefore, we have proved the theorem once we
have proved the following claim.

Claim 3 For every disjunct D of C, if Γ ⇒ ∆ is a conjunct of D, where Γ consists
of implications only, then Γ ⇒ A is a conjunct of D, or H = (ΓΠ,Π ⇒ ∆)
for some Π ⊆ Γ∆, or there is a disjunct D′ of C such that eq(D′) < eq(D) and
set(D′) ⊆ set(D).

We prove the claim as follows. Suppose that D is of the form D1 ∧ . . .∧Dk ∧C1 ∧
. . . ∧ Cm, where the Di are all the conjuncts in D of the form Γ ⇒ ∆. Thus there
are Gi such that (Gi | Γ ⇒ ∆) ∈ G for all i ≤ k. Namely, the hypersequents in G
that correspond to the conjuncts Di of D. Hence by the Visser rule, for all i either
(Gi | Γ ⇒ A |A∈∆) ∈ G or H = (ΓΠ,Π ⇒ ∆) for some Π ⊆ Γ∆. Now if Γ ⇒ A
is a conjunct of D or H = (ΓΠ,Π ⇒ ∆), we are done. If not, there are conjuncts
Ai of C1 ∧ . . . ∧ Cm that appear in Gi. Therefore, replacing the Di by Ai results in
a disjunct D′ of C such that set(D′) ⊆ set(D) and eq(D′) < eq(D). This proves
the claim. 2

Corollary 63 For L ∈ {KC,BC1,BC2, . . .} andH = ∅ orH is a sequent: |∼L G.H
iff `GAL G .H.

6 Termination

Our final task will be to show that by adding some control to the application of
rules, we obtain calculi for admissibility in our logics that are terminating in the
sense that applying the rules backwards to any gs-rule or gh-rule terminates. Known
decidability results for admissibility in modal and intermediate logics are obtained
as corollaries. The basic idea is to apply the invertible left logical rules as much
as possible to obtain atomic or implication-irreducible gs-rules or gh-rules, then to
apply the remaining non-structural rules with loop-checking.
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Definition 64 For R = G1.H1 ... Gn.Hn

G.H , let R+ = G1,G.H,H1 ... Gn,G.H,Hn

G.H .

Definition 65 Let GALt be GAL where every non-left-logical-rule R is replaced
by R+ restricted to non-looping applications with an irreducible conclusion.

Intuitively, we are simply ensuring that the left logical rules of the calculus are ap-
plied first, and that the other rules add sequents or hypersequents without removing
them (this can be achieved by first applying contraction rules). Indeed it is easy to
check that these extra restrictions do not interfere with our completeness proofs.

Lemma 66 Let L be an extensible modal logic or an extensible intermediate logic,
and let GAL be an L-fitting calculus or GAI if L is IPC. Then:

|∼L G .H iff `GALt G .H

where if L is an extensible intermediate logic but not IPC,H = ∅ orH is a sequent.

Theorem 67 If GAL is L-fitting or GAI and every non-left-logical-rule has the
subformula property, then GALt is terminating.

Proof. IfR is not irreducible, then by invertibility, left logical rules can be applied,
terminating with irreducible gs-rules or hs-rules. From this point onwards only non-
looping applications of rules with the subformula property are applied. Observe that
there is only a finite number of sequents and non-repetitive hypersequents that can
be constructed from subformulas of a given gs-rule or gh-rule R. However, since
every rule is non-looping and expansive, each application of a rule adds at least
one new sequent or non-repetitive hypersequent. By the preceding observation, this
process must terminate. 2

In particular, we have terminating systems for our paradigmatic cases of modal and
intermediate logics.

Corollary 68 GALt is terminating for L ∈ {K4, S4,GL, IPC,KC.BC1,BC2, . . .}.

Moreover, we know that decidability for derivability implies decidability for ad-
missibility in these cases.

Corollary 69 Admissibility is decidable for any decidable extensible modal logic
or extensible intermediate logic.
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