The lambda calculus

CS351: The λ-calculus

NUI MAYNOOTH

James Power
16 October 2006

3rd CSSE - 16 October 2006

This lecture: overview

1. Syntax
2. Semantics (reduction and conversion)
3. Church Booleans
4. Church Numbers
5. A fixpoint operator

- Alonzo Church, 1936
- An alternative view of the 'meaning of computation
- Is the core foundation for:
- Theoretical computer science
- Functional programming languages
- Constructive logics
- Think of it this way: if you didn't have any programming language and had to build one, where would you start?

3rd CSSE - 16 October 2006
The λ-calculus - page 1

James Power, NUI Maynooth

1. Syntax of the λ calculus

variable Any variable " v " is an expression
application Given any two expressions e_{1} and e_{2}, then " $\left(e_{1} e_{2}\right)$ " is a valid expression, and denotes the application of e_{1} to e_{2}.
abstraction Given any variable v, and any expression e, then " $(\lambda v \cdot e)$ " is an expression representing a function with v as the formal parameter, and e as the body of the function

Note that the application of f to x is written "functional style" as $(f x)$ and not the more common $f(x)$

2. Semantics of the λ calculus

To apply an expression of the form $\lambda x \cdot e_{1}$ to some other expression, say e_{2}, then we replace all occurrences of x in e_{1} with e_{2}.

This process is known as β-reduction, and is symbolised by the " \sim " relation.
Formally, we write:

$$
\left(\lambda x \cdot e_{1}\right) e_{2} \quad \sim \quad e_{1}\left[x:=e_{2}\right]
$$

Here, the notation " $e_{1}\left[x:=e_{2}\right]$ " is used to denote the result of replacing all occurrences of x in e_{1} with e_{2}

Reduction strategies

Suppose we were given the following expression to evaluate:

$$
(\lambda x \cdot y)((\lambda z \cdot z) u)
$$

We have two choices of reductions here:

- Strict (or eager): First reduce the argument, and then apply the function
- Lazy: (or non-strict): First apply the function, and then reduce the function body

Normal forms and Termination

- Not all λ expressions have a normal form; try reducing:

$$
(\lambda x \cdot x x)(\lambda x \cdot x x)
$$

- The evaluation strategy can matter; try reducing the following using strict and lazy evaluation:

$$
\lambda y \cdot z((\lambda x \cdot x x)(\lambda x \cdot x x))
$$

- The Halting Problem tells us that there is no general procedure for deciding if a λ expression has a normal form.

Encoding "Data Types"

- So far the lambda calculus doesn't look vary powerful (or much like a real programming language
- However, it does have the power to express any computable function
- As an example of its power, we will show how the Booleans and natural numbers exist within the calculus. As a spin-off, this will also give us an if-then-else construct, and primitive recursion.
- Finally, we will derive a general scheme of recursion using fixpoints, which captures the full power of computational recursion (also called μ-recursion).

The Church-Rosser Theorem

The Church-Rosser Theorem states that for any lambda expressions e, f and g,

- if $e \sim^{*} f$ and $e \sim^{*} g$
- then there exists some h such that $f \neg^{*} h$ and $g \sim^{*} h$

This is also known as the diamond property or, in a more general context, confluence.

Corollary: If an expression in the λ-calculus has a normal form, then it has at most one normal form.

$$
\text { 3rd CSSE - } 16 \text { October } 2006
$$

The λ-calculus - page 9

3. Church Booleans

Wanted: two expressions that are different, but have the same "pattern".

$$
\begin{array}{ll}
\text { TRUE } & \doteq \lambda x \cdot \lambda y \cdot x \\
\text { FALSE } & \doteq \lambda x \cdot \lambda y \cdot y
\end{array}
$$

- Both expressions are closed
- These are in fact the smallest closed expressions, exhibiting some common structure, that are also definitely different.

Aside: the smallest closed expression in the λ-calculus is the identity function ($\lambda x \cdot x$) which is basically a kind of "no-op".

Boolean functions

The Boolean values are actually their own canonical if-then-else operation. For convenience, we can make this explicit:

$$
\mathrm{COND} \quad \doteq \quad \lambda b \cdot \lambda x \cdot \lambda y \cdot b x y
$$

We can then define the usual Boolean operations:

$$
\begin{array}{ll}
\mathrm{AND} & \doteq \lambda a \cdot \lambda b \cdot \text { COND } a b \text { FALSE } \\
\mathrm{OR} & \doteq \lambda a \cdot \lambda b \cdot \text { COND } a \text { TRUE } b \\
\mathrm{NOT} & \doteq \lambda a \cdot \text { COND } a \text { FALSE TRUE }
\end{array}
$$

5. Fixpoints and recursion

The definition of a the fixpoint of a function is a standard concept from maths:

- For any function f and argument x, we say that x is a fixpoint of f if:

$$
(f x)=x
$$

A function may have no fixpoints, one unique fixpoint or many fixpoints.
Suppose we had a fixpoint operator, fix, that somehow worked out the fixpoint of a function. Then:

$$
f(f i x f)=(\text { fix } f)
$$

Church's fixpoint operator

In the untyped lambda calculus this kind of equality is best represented by reduction, so we will seek to define an operator FIX with the property that:

$$
(\operatorname{FIX} f) \quad \leadsto^{*} \quad f(\operatorname{FIX} f)
$$

There are a number of fixpoint operators that can be defined; we will use the following (called "Church's fixpoint operator"):

$$
\mathrm{Y} \doteq \lambda t \cdot(\lambda z \cdot t(z z))(\lambda z \cdot t(z z))
$$

To see that this is indeed a fixpoint operator, assume we have some function f, and try reducing ($\mathrm{Y} f$)

3rd CSSE - 16 October 2006
The λ-calculus - page 16

James Power, NUI Maynooth

Other fixpoint operators

This is not the only fixpoint operator - there are many more.
One other famous one is Turing's fixpoint operator:

$$
\mathrm{Y}_{T} \doteq(\lambda t \cdot \lambda z \cdot z(t t z)) \quad(\lambda t \cdot \lambda z \cdot x(t t z))
$$

Exercise: Prove that this is a fixpoint operator, i.e. that for any f

$$
\left(\mathrm{Y}_{T} f\right) \quad \sim^{*} \quad f\left(\mathrm{Y}_{T} f\right)
$$

Using fixpoints: example

The fixpoint operator can be used to define any recursive function. For example, without it, we might try to define* factorial as:

$$
\mathrm{FACT}=\lambda n \cdot \operatorname{COND}(\operatorname{IS}-\mathrm{ZERO} n) \quad C_{1} \quad(\operatorname{MULT} n(\operatorname{FACT}(\operatorname{PRED} n)))
$$

This is incorrect, since the definition is itself recursive. We use the fixpoint operator to remove that recursion:

$$
\begin{aligned}
\mathrm{FACT}^{\prime} & \doteq\left(\lambda \mathrm{F} \cdot \lambda n \cdot \operatorname{COND}(\text { IS-ZERO } n) \quad C_{1} \quad(\operatorname{MULT} n(\mathrm{~F}(\operatorname{PRED} n)))\right) \\
\mathrm{FACT} & \doteq \mathrm{Y} \mathrm{FACT}^{\prime}
\end{aligned}
$$

*Assumes a suitable definition of the predecessor function PRED

Where next?

- An alternative approach, based on the combinators S, K and I is due to Moses Schönfinkel and Haskell Curry (both worked at Göttingen under Hilbert)
- Functional programming in: LISP, ML, Haskell, ...
- The Curry-Howard isomorphism notes the similarities between the λ-calculus and constructive logic
- Higher-order logics and λ-calculi form the basis for type theory. Systems include System F, Martin-Löf type theory, the Calculus of Constructions, ...

References

- Introduction to Lambda Calculus, Henk Barendregt, Erik Barendsen, Technical report (Nijmegen), 1991.
http://citeseer.ist.psu.edu/barendregt94introduction.html
- Type Theory and Functional Programming. Simon Thompson. AddisonWesley, 1991.
http://www.cs.kent.ac.uk/people/staff/sjt/TTFP/
- Proofs and Types, J-Y Girard, Y. Lafont and P. Taylor, Cambridge, 1989. http://www.cs.man.ac.uk/~pt/stable/Proofs+Types.html
- Wikipedia: http://en.wikipedia.org/wiki/Lambda_calculus

