
CS351: The λ-calculus

James Power

16 October 2006

3rd CSSE - 16 October 2006

James Power, NUI Maynooth CS351: Programming Paradigms

The lambda calculus

• Alonzo Church, 1936

• An alternative view of the ’meaning of computation’

• Is the core foundation for:

– Theoretical computer science
– Functional programming languages
– Constructive logics

• Think of it this way: if you didn’t have any programming language and had to
build one, where would you start?

3rd CSSE - 16 October 2006 The λ-calculus - page 1

James Power, NUI Maynooth CS351: Programming Paradigms

This lecture: overview

1. Syntax

2. Semantics (reduction and conversion)

3. Church Booleans

4. Church Numbers

5. A fixpoint operator

3rd CSSE - 16 October 2006 The λ-calculus - page 2

James Power, NUI Maynooth CS351: Programming Paradigms

1. Syntax of the λ calculus

variable Any variable “v” is an expression

application Given any two expressions e1 and e2, then “(e1 e2)” is a valid
expression, and denotes the application of e1 to e2.

abstraction Given any variable v, and any expression e, then “(λv · e)” is an
expression representing a function with v as the formal parameter, and e as
the body of the function

Note that the application of f to x is written “functional style” as (f x) and not

the more common f(x)

3rd CSSE - 16 October 2006 The λ-calculus - page 3

James Power, NUI Maynooth CS351: Programming Paradigms

2. Semantics of the λ calculus

To apply an expression of the form λx · e1 to some other expression, say e2,
then we replace all occurrences of x in e1 with e2.

This process is known as β-reduction, and is symbolised by the “;” relation.

Formally, we write:

(λx · e1) e2 ; e1[x := e2]

Here, the notation “e1[x := e2]” is used to denote the result of replacing all
occurrences of x in e1 with e2

3rd CSSE - 16 October 2006 The λ-calculus - page 4

James Power, NUI Maynooth CS351: Programming Paradigms

Other rules

While β-reduction is the main rule, other auxiliary concepts include some fairly
obvious conversions

• α-conversion:
(λx · e1) ; (λy · e1[x := y])

provided y does not appear free in e1

• η-conversion:
(λx · e1) ; e1

if x does not occur free in e1

3rd CSSE - 16 October 2006 The λ-calculus - page 5

James Power, NUI Maynooth CS351: Programming Paradigms

Reduction strategies

Suppose we were given the following expression to evaluate:

(λx · y) ((λz · z) u)

We have two choices of reductions here:

• Strict (or eager): First reduce the argument, and then apply the function

• Lazy: (or non-strict): First apply the function, and then reduce the function
body

3rd CSSE - 16 October 2006 The λ-calculus - page 6

James Power, NUI Maynooth CS351: Programming Paradigms

Redex and normal form

If we have an expression containing some sub-expression of the form (λx · e1) e2

then clearly this is a candidate for reduction. Such an expression is called a
reducible expression or simply a redex. The difference between strict and lazy
evaluation then is one of choice between different possible redexes.

An evaluation can be said to have completed when there are no more reductions
possible; that is, when we have reduced to an expression which contains no more
redexes.

Such expressions are important, and have a special name:

• An expression is said to be in normal form if it contains no redexes

3rd CSSE - 16 October 2006 The λ-calculus - page 7

James Power, NUI Maynooth CS351: Programming Paradigms

Normal forms and Termination

• Not all λ expressions have a normal form; try reducing:

(λx · x x) (λx · x x)

• The evaluation strategy can matter; try reducing the following using strict and
lazy evaluation:

λy · z ((λx · x x) (λx · x x))

• The Halting Problem tells us that there is no general procedure for deciding if
a λ expression has a normal form.

3rd CSSE - 16 October 2006 The λ-calculus - page 8

James Power, NUI Maynooth CS351: Programming Paradigms

The Church-Rosser Theorem

The Church-Rosser Theorem states that for any lambda expressions e, f and
g,

• if e ;
∗ f and e ;

∗ g

• then there exists some h such that f ;
∗ h and g ;

∗ h

This is also known as the diamond property or, in a more general context,
confluence.

Corollary: If an expression in the λ-calculus has a normal form, then it has at
most one normal form.

3rd CSSE - 16 October 2006 The λ-calculus - page 9

James Power, NUI Maynooth CS351: Programming Paradigms

Encoding “Data Types”

• So far the lambda calculus doesn’t look vary powerful (or much like a real
programming language

• However, it does have the power to express any computable function

• As an example of its power, we will show how the Booleans and natural
numbers exist within the calculus. As a spin-off, this will also give us an
if-then-else construct, and primitive recursion.

• Finally, we will derive a general scheme of recursion using fixpoints, which
captures the full power of computational recursion (also called µ-recursion).

3rd CSSE - 16 October 2006 The λ-calculus - page 10

James Power, NUI Maynooth CS351: Programming Paradigms

3. Church Booleans

Wanted: two expressions that are different, but have the same “pattern”.

true
.
= λx · λy · x

false
.
= λx · λy · y

• Both expressions are closed

• These are in fact the smallest closed expressions, exhibiting some common
structure, that are also definitely different.

Aside: the smallest closed expression in the λ-calculus is the identity function
(λx · x) which is basically a kind of “no-op”.

3rd CSSE - 16 October 2006 The λ-calculus - page 11

James Power, NUI Maynooth CS351: Programming Paradigms

Boolean functions

The Boolean values are actually their own canonical if-then-else operation. For
convenience, we can make this explicit:

cond
.
= λb · λx · λy · b x y

We can then define the usual Boolean operations:

and
.
= λa · λb · cond a b false

or
.
= λa · λb · cond a true b

not
.
= λa · cond a false true

3rd CSSE - 16 October 2006 The λ-calculus - page 12

James Power, NUI Maynooth CS351: Programming Paradigms

4. Church Numbers

A little more difficult than Booleans, since we need an infinite set of expressions
that have the same basic pattern.

C0

.
= λf · λx · x

C1

.
= λf · λx · f x

C2

.
= λf · λx · f (f x)

C3

.
= λf · λx · f (f (f x

...
Cn

.
= λf · λx · fn x

Basically, for any Church number Ck, the expression (Ck g y) means “apply the
function g exactly k times to y”.

3rd CSSE - 16 October 2006 The λ-calculus - page 13

James Power, NUI Maynooth CS351: Programming Paradigms

Numeric functions

As with Booleans, the Church numerals are their own (canonical) operator:

iter
.
= λn · λf · λx · n f x

This is essentially a schema for primitive recursion, and allows us to define:

is-even
.
= λn · iter n not true

is-zero
.
= λn · iter n (λx · false) true

succ
.
= λn · (λf · λx · f (n f x))

add
.
= λm · λn · iter n succ m

mult
.
= λm · λn · iter n (add m) C0

power-of
.
= λm · λn · iter n (mult m) C1

3rd CSSE - 16 October 2006 The λ-calculus - page 14

James Power, NUI Maynooth CS351: Programming Paradigms

5. Fixpoints and recursion

The definition of a the fixpoint of a function is a standard concept from maths:

• For any function f and argument x, we say that x is a fixpoint of f if:

(f x) = x

A function may have no fixpoints, one unique fixpoint or many fixpoints.

Suppose we had a fixpoint operator, fix, that somehow worked out the fixpoint
of a function. Then:

f (fix f) = (fix f)

3rd CSSE - 16 October 2006 The λ-calculus - page 15

James Power, NUI Maynooth CS351: Programming Paradigms

Church’s fixpoint operator

In the untyped lambda calculus this kind of equality is best represented by
reduction, so we will seek to define an operator fix with the property that:

(fix f) ;
∗ f (fix f)

There are a number of fixpoint operators that can be defined; we will use the
following (called “Church’s fixpoint operator”):

Y
.
= λt · (λz · t (z z)) (λz · t (z z))

To see that this is indeed a fixpoint operator, assume we have some function f ,
and try reducing (Y f)

3rd CSSE - 16 October 2006 The λ-calculus - page 16

James Power, NUI Maynooth CS351: Programming Paradigms

Using fixpoints: example

The fixpoint operator can be used to define any recursive function. For example,
without it, we might try to define∗ factorial as:

fact = λn · cond (is-zero n) C1 (mult n (fact (pred n)))

This is incorrect, since the definition is itself recursive. We use the fixpoint
operator to remove that recursion:

fact
′

.
= (λf · λn · cond (is-zero n) C1 (mult n (f (pred n))))

fact
.
= Y fact

′

∗Assumes a suitable definition of the predecessor function pred

3rd CSSE - 16 October 2006 The λ-calculus - page 17

James Power, NUI Maynooth CS351: Programming Paradigms

Other fixpoint operators

This is not the only fixpoint operator - there are many more.

One other famous one is Turing’s fixpoint operator:

YT

.
= (λt · λz · z(t t z)) (λt · λz · x(t t z))

Exercise: Prove that this is a fixpoint operator, i.e. that for any f

(YTf) ;
∗ f (YT f)

3rd CSSE - 16 October 2006 The λ-calculus - page 18

James Power, NUI Maynooth CS351: Programming Paradigms

Where next?

• An alternative approach, based on the combinators S, K and I is due to Moses
Schönfinkel and Haskell Curry (both worked at Göttingen under Hilbert)

• Functional programming in: LISP, ML, Haskell, ...

• The Curry-Howard isomorphism notes the similarities between the λ-calculus
and constructive logic

• Higher-order logics and λ-calculi form the basis for type theory. Systems
include System F, Martin-Löf type theory, the Calculus of Constructions, ...

3rd CSSE - 16 October 2006 The λ-calculus - page 19

James Power, NUI Maynooth CS351: Programming Paradigms

References

• Introduction to Lambda Calculus, Henk Barendregt, Erik Barendsen, Technical
report (Nijmegen), 1991.

http://citeseer.ist.psu.edu/barendregt94introduction.html

• Type Theory and Functional Programming. Simon Thompson. Addison-
Wesley, 1991.

http://www.cs.kent.ac.uk/people/staff/sjt/TTFP/

• Proofs and Types, J-Y Girard, Y. Lafont and P. Taylor, Cambridge, 1989.
http://www.cs.man.ac.uk/~pt/stable/Proofs+Types.html

• Wikipedia: http://en.wikipedia.org/wiki/Lambda_calculus

3rd CSSE - 16 October 2006 The λ-calculus - page 20

