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1 Godel’s incompleteness theorem (weak version)

1.1 Abstract Framework for the Incompleteness Theorems

1. E - set of expressions.

2. S C FE - set of sentences.

3. N C F - set of numerals.

4. P C F - set of predicates.

5. A Godel function: g : E — N, denoted by g(1) = 9],
6. A function @ : P x N — S, i.e ®(h,n) = h(n).

7. T C S - representing intuitively the set of “true” sentences.

Definition

1. We say a predicate h € P T-defines the set B C N of numerals, if
forallne N,ne B <= h(n) €T.

2. We say a predicate h € P T-defines the set B C S of sentences, if
forallp € S, e B < h(lyl) eT.

3. We say a predicate H € P T-defines the set B C P of predicates, if
forallhe P, he B < H(Ihl)eT.
Definition(Diagonalization)
1. Let B C S; The diagonalization function is defined as follows:
B e | nln)eny.

2. We say that T C B satisfies the diagonalization condition if when B is T-definable then
D(B) is T-definable.
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Proposition:

1. if T satisfies the diagonalization condition then for every T-definable set of sentences B
there is a (Gddel) sentence ¢ such that ¢ € T < ¢ € B.

2. if T satisfies the diagonalization condition then S\ T is not T-definable.

3. (Tarski Theorem - abstract version) if T' satisfies the diagonalization condition and for every
T-definable set B C S, S\ B is also T-definable then T is not T-definable.

Theorem: application I (Concrete Tarski)
Let L be a FOL with infintely many closed terms. Let M be a Model for L and Ty; the set of
true sentences of M. if Ty satisfies the diagonalization condition then Tyr is not Tyr-definable.

Theorem: application II (Gédel’s incompleteness theorem (weak version))

Let L be a FOL with infintely many closed terms. Let M be a Model for L and Ty the set
of true sentences of M.

Let T be a theory such that M =T .

Let Prg denote the set of sentences that are provable in T .

If for some coding we have that:

(i) Ty satisfies the diagonalization condition;

(ii) Prg is Typr-definable

then Thy # Pry. That is, there are true sentences that are not provable in 7.

Theorem: Application I: Concrete Tarski’s theorem for AE (arithmetic with exponentiation)
Let T be the set of AE sentences that are true in N, then Ty is not Tx-definable.

Theorem: Application II for AE: Godel’s incompleteness theorem (weak version) for AF
The language - AE; the model - N; T - the set of AE sentences that are true in N. Let T
be PA + the following two more axiom for exponent:
(1) 20 =1 (i) 2*™ = 2" . 2
PRy is the provable sentences of T .
If for some coding we have that:
(i) Tas satisfies the diagonalization condition;
(ii) Prg is Tar-definable
then Thy # Pry. That is, there are true sentences that are not provable in 7.

Application II: Gédel’s incompleteness theorem (weak version) for PA.
The same as above, only for PA.
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2 Godel’s incompleteness theorem (strong version)
Our goal now is to prove the following:

Theorem: (Godel’s incompleteness theorem (strong version) - application I1I)
Let L be a FOL with infintely many closed terms.
Let T be a consistent theory of L.
Let Prr denote the set of sentences that are provable in T ; Thus, “truth” here is actually
“provability”.
If for some coding we have that:
(i) Prr satisfies the diagonalization condition ;
(ii) Prg is Prr-definable
then T is incomplete.
2.1 Safety Relations

Goal: To make ¢(x1,...,Tn, Y1, ..., Yyx) Safe for x1,...,x,, when for all k£ numerals ny, ..., ng, the
question ¢(z1, ..., Tn, N1, ...,n) can be computed effectively: there is a finite number of n-tuples,
and there is an effective way to find them. Therefore we have,

Definition: A > saftey relation between a set of formulas and sets of wvariables is a
relation that satisfy the following conditions:

1. A X, ZCX = As7Z.

2.2 ¢ Fu(t) = t=x>{z} and z=1t> {z} .

3.A>0 = —-A-0.

4. A-X, B-X = AVB>X1

5. A= X, B=Z, ZNFv(A)=0) = AAB>=XUZ and BAA=XUZ
6. A-X, ye X = JyA=X\{y}.

7.A=B, A X = B> X.

Definition: Ift is a term and X C Fu(t) then we say thatt = X ift = z = X when z € Fu(t) .
Remark: ¢ > ) for all ¢.

2.2 Implementation of Safety Relations
Definition: A(z,2) x>~ Z if for all i € N¥ the set {Z | A(z,n)} is finite.

proposition: y> is a safety relation.

!Notice that both A and B are safe in respect to X, since if for example, z < y > y and z < w > w then its not
the case that <y V z < w > {y,w}, because all z’s are valid whenwe fix the w, for instance.
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2.2.1 Safety relations in Arithmetic
Definition:
1. Bounded Safety: We define the > safety relation as follows:
(i)z<y p=z
(i) By induction, all the other conditions (1-7) of the safety relations hold.

Remark: Actually, it is sufficient to say that ;> is a safety relation such that x < y ;> x.
Since, if > is a safety relation then all other conditions of the definition of safety relation
hold.

2. Polynomial safety, ,>:
(1) 5(x) p= @
(i) x+y p={z,y}
(iir) s(x) - s(y) = z p>= {z,y}
3. Exponential safety, p>:
(i) z¥ =z g> =
(ii) s(s(x))Y = 2z > {z,y}

All of the above are effective safety relations in respect to N. That is, if p(z,y) = {x}, then
given y € N, we can effectively find a finite set of x’s that satisfy ¢.
Definition:

1. ¢ is safe if o = Fo(yp) .

2. ¢ is effective if ¢ = 0 .

2.3 r.e. and >

Definition: Let >~ be a safety relation. A formula ¢ is said to be in Y, if it is of the form:
Az, .20, where © = .

Remarks:

(1) 3°; formulas are also called semi-effective formulas.

(2) We shall usualy treat >; formulas as formulas of the form 3z, ...x;.1), where 9 is ,> (that
is, ¢ is in a language of N.)

Definition: r.e. or . formulae are defined as follows:
(i) Every > effective or ,> effective formula is r.e. formula .
(ii) If A and B are r.e. formulae then so is AV B and AN B .
(iii) If A is a r.e. formula then so is 3x.A .
(iv) IF A y>=% or A p>T and B is r.e., then V(A — B) is r.e. .

Proposition: FEvery r.e. formula is equivalent to a ), formula over N.

Definition(Varinat of Church’s Thesis):
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1. A relation is semi-effective iff it is definable by a P-semi-effective formula.
2. A relation R is effective if both R and —R is P-semi-effective (semi-effective).

Definition:

1. We say a relation R € N* is defined in N by a formula ¢(x1,...,x}) when =€ R <=
N (5

2. A relation R over N is r.e. iff R is definable in N by a r.e. formula v iff there is a >,
formula ¢ such that N =1 — ¢ .

3. A theory T is axiomatic if the set of its axioms is r.e.

4. We say a relation R over N is decidable or recursive if both R and R is r.e.

Proposition: P-semi-effective is equivalent to E-semi-effective.
proof. To be completed.

Proposition:

1. If a theory T is axiomatic then the set of all its theorems is r.e.

2. If a theory T is exponentially safe, i.e. for all its axioms A, A g Fv(A), and thus E-
effective 2 , then the syntax predicates 1-11 are all r.e. and exponentially safe. 12 is not
anymore effective.

3. If T is not g> safe but rather semi-effective, that is, in Y 1, then 12 is also semi-effective
(since, Y, is closed under 3.)

2.4 Numeral Accurate Theories

Definition(7>):
Let T be a consistent theory that satisfies these conditions:
(i) Ifk#n then THk#n .
(i) If t(y) is a term then for every n there is a k such that T+ t(n) = k.

Then > is defined as follows:
o(Z,y) 7> if for all k there exists a finite set A such that:

Tt o, k)—z€A

Definition(BA):
(i) A numeral accurate consistent theory that satisfies both (i) and (ii) conditions for > is a
theory in which the following conditions hold for every n, k and m (BA):

1. Ifn#kthenTHn#k

2. Ifn+k=mthen THA+k=m

2Notice that if a formula A is safe for some > then it is also effective. But the opposite is not allways true.
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3. Ifn-k=mthenTFn -k=m

(i) T is accurate with respect to a formula ¢ if for every closed instance ¢’ of p we have:
NEY < TF¢
NG — TrF-y

Note: from now on 7' is a numeral accurate theory.

Definition(B.N.): PA without induction scheme is a numeral accurate and finite theory (i.e.

includes BA).
Definition: T respects a safety relation = C N> when
1.7~ 2>
2. T is accurate with respect to every formula ¢ that is —-effective (i.e. ¢ = ).

Proposition: T' respects a safety relation = C n> that is defined by a standard induction on
the basic rules (2) if for every basic rule of the form ¢ = X:

(i) o= X.
(ii) T is accurate with respect to .

Proposition: (RR™)
Let RR™ be an infinite theory containing BA and all formulae of the form

TEYz <k «— (z=0)V(z=1)V..V(x=k).

Then a consistent theory T respects b-safety iff it includes RR™ (i.e. it prooves all axioms of
RR™.)

Definition(Q): The theory Q is obtained from B.N. by adding the axiom:
Va(z =0V Iy.z = s(y))
(The < is not in the language of Q and is defined by the + and = signs.)

2.5 >, — consistency

Proposition: If T is a consistent extension of RR™ and ¢ is a true ) _; sentence then 7' .

Definition(}"; — consistency):
A theory T is >, — consistent if for every >, formula ¢ = Iz.4)(Z), i.e. such that ¥(Z) is
p-effective:

Tty = 3neN. Thyn).

Proposition: If T'is a >;-consistent extension of RR™ and ¢ is a > _; sentence then T F ¢ iff ¢
is a true sentence.

Note: from now on 7T is an axiomatic, > ;-consistent extension of RR™.
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2.6 Definability of Relations and Functions

Definition:
1. We say a relation P C N* is enumerable in T by a formula o(Z) if for alln € N:

Tk e{n/z} <= neP

2. We say a relation P C N* is binumerable in T by a formula o(z) if for alln € N:
©(Z) enumerates P in T

() enumerates P in 7.

propositions of proof of simple diagonalization theorem. (lexture 9)

Proposition: If an r.e. relation P is (‘semantically’) defined by ¢ in N, then for every T, a
>-1-consistent extension of RR™, ¢ enumerates P in T'.

Corollary: If a ) ,-consistent extension of RR™, T, is axiomatic then Prr is enumerable in T

Definition: We say a function f is representable in a theory T by a formula o if:
1. ¢ enumerates f in T.

2. for all n we have:
(i) TF3yen,y)
(ii) T'F o(n, y1) A (R, y2) — y1 # 2 -

Proposition: Let T be a consistent and azxiomatic extension of RR™, then the diagonalization
function d(n) = TE,('E,1)! is representable in T.

3 Results: Godel’s incompleteness theorem (strong version)

Theorem: ((Simple) Diagonalization Theorem)
If (x) is a formula, with x as its single free variable, then there exists a Gédel sentence E,, for
@ such that RR™ F E, «— @((En]), where E,, is a sentence with n as its Godel number.

Reminder : The two conditions for Godel’s incompleteness theorem, strong variant:
(i) Prp is enumerable in 7.
(ii) Diagonalization condition holds in T', according to the diagonalization theorem.

Theorem: (Tarski on truth defintions)
Let i be a truth defintion for T in T such that for every sentence A:

THA— (A,
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If T is a consistent extension of RR™ then T has no truth defintion in T.

Theorem: (Gdodel’s incompleteness theorem) Let T' be an axiomatic and consistent
extension of RR™, then:

1. There exists a true I sentence, @, such that T I ¢ .
2. If T is ) -consistent then also Tt/ —~¢ and thus T is incomplete.
3. Moreover, T in (2) is w-incomplete; that is, there exists a sentence Yx.A(x) such

that T I/ Vz.A(z)and for alln € N T+ A{n/z} .

4 Church’s and Godel-Rosser’s theorems

Proposition: The following propositions are equivalent with respect to a relation R C N*:
(i) R is r.e.
(ii) R is enumerable in some aziomatic theory T
(iii) R is enumerable in every aziomatic y_,-consistent extension of RR™.

Definition(RR): RR is the formal system obtained from RR™ by adding for every n € N the
ariom:
z<n V n<lx

Proposition: A relation R is decidable iff it is binumerable in some (any) axiomatic consistent
extension of RR.

Theorem: (Church) Every consistent extension of RR is incomplete.

Theorem: (Godel - Rosser) Let T be an axiomatic and consistent extension of RR, then T is
imcomplete.



