Gödel's Incompleteness Theorems

Reference Pages

Notes taken by Iddo Tzameret for a course given by Prof. Arnon Avron Tel-Aviv university, Israel

1 Gödel's incompleteness theorem (weak version)

1.1 Abstract Framework for the Incompleteness Theorems

- 1. E set of expressions.
- 2. $S\subseteq E$ set of sentences.
- 3. $N \subseteq E$ set of numerals.
- 4. $P \subseteq E$ set of predicates.
- 5. A Gödel function: $g: E \to N$, denoted by $g(\psi) = \lceil \psi \rceil$.
- 6. A function $\Phi: P \times N \to S$, i.e $\Phi(h, n) = h(n)$.
- 7. $T \subseteq S$ representing intuitively the set of "true" sentences.

Definition

- 1. We say a predicate $h \in P$ T-defines the set $B \subseteq N$ of numerals, if for all $n \in N$, $n \in B \iff h(n) \in T$.
- 2. We say a predicate $h \in P$ T-defines the set $B \subseteq S$ of sentences, if for all $\psi \in S$, $\psi \in B \iff h(\lceil \psi \rceil) \in T$.
- 3. We say a predicate $H \in P$ T-defines the set $B \subseteq P$ of predicates, if for all $h \in P$, $h \in B \iff H(\lceil h \rceil) \in T$.

Definition(Diagonalization)

- 1. Let $B \subseteq S$; The diagonalization function is defined as follows: $D(B) \stackrel{\text{def}}{=} \{h \in P \mid h(\lceil h \rceil) \in B\}$.
- 2. We say that $T \subseteq B$ satisfies the diagonalization condition if when B is T-definable then D(B) is T-definable.

Proposition:

- 1. if T satisfies the diagonalization condition then for every T-definable set of sentences B there is a (Gödel) sentence φ such that $\varphi \in T \iff \varphi \in B$.
- 2. if T satisfies the diagonalization condition then $S \setminus T$ is not T-definable.
- 3. (Tarski Theorem abstract version) if T satisfies the diagonalization condition and for every T-definable set $B \subseteq S$, $S \setminus B$ is also T-definable then T is not T-definable.

Theorem: application I (Concrete Tarski)

Let L be a FOL with infinitely many closed terms. Let M be a Model for L and T_M the set of true sentences of M. if T_M satisfies the diagonalization condition then T_M is not T_M -definable.

Theorem: application II (Gödel's incompleteness theorem (weak version)) Let L be a FOL with infinitely many closed terms. Let M be a Model for L and T_M the set of true sentences of M. Let T be a theory such that $M \models T$. Let Pr_T denote the set of sentences that are provable in T. If for some coding we have that: (i) T_M satisfies the diagonalization condition; (ii) Pr_T is T_M -definable then $T_M \neq Pr_T$. That is, there are true sentences that are not provable in T.

- **Theorem:** Application I: Concrete Tarski's theorem for AE (arithmetic with exponentiation) Let T_N be the set of AE sentences that are true in N, then T_N is not T_N -definable.
- **Theorem:** Application II for AE: Gödel's incompleteness theorem (weak version) for AEThe language - AE; the model - N; T_N - the set of AE sentences that are true in N. Let Tbe PA + the following two more axiom for exponent:

(i) $x^0 = 1$ (ii) $x^{s(n)} = x^n \cdot x$

 $PR_{\mathcal{T}}$ is the provable sentences of \mathcal{T} .

If for some coding we have that:

- (i) T_M satisfies the diagonalization condition;
- (ii) $Pr_{\mathcal{T}}$ is T_M -definable

then $T_M \neq Pr_T$. That is, there are true sentences that are not provable in T.

Application II: Gödel's incompleteness theorem (weak version) for PA. The same as above, only for PA.

2 Gödel's incompleteness theorem (strong version)

Our goal now is to prove the following:

Theorem: (Gödel's incompleteness theorem (strong version) - application III)

Let L be a FOL with infinitely many closed terms.

Let \mathcal{T} be a consistent theory of L.

Let $Pr_{\mathcal{T}}$ denote the set of sentences that are provable in \mathcal{T} ; Thus, "truth" here is actually "provability".

If for some coding we have that:

- (i) $Pr_{\mathcal{T}}$ satisfies the diagonalization condition ;
- (ii) $Pr_{\mathcal{T}}$ is $Pr_{\mathcal{T}}$ -definable

then \mathcal{T} is incomplete.

2.1 Safety Relations

Goal: To make $\varphi(x_1, ..., x_n, y_1, ..., y_k)$ safe for $x_1, ..., x_n$, when for all k numerals $n_1, ..., n_k$, the question $\varphi(x_1, ..., x_n, n_1, ..., n_k)$ can be computed *effectively*: there is a finite number of n-tuples, and there is an effective way to find them. Therefore we have,

Definition: $A \succ$ saftey relation between a set of formulas and sets of variables is a relation that satisfy the following conditions:

1. $A \succ X, \ Z \subseteq X \implies A \succ Z$. 2. $x \notin Fv(t) \implies t = x \succ \{x\}$ and $x = t \succ \{x\}$. 3. $A \succ \emptyset \implies \neg A \succ \emptyset$. 4. $A \succ X, \ B \succ X \implies A \lor B \succ X^{-1}$ 5. $A \succ X, \ B \succ Z, \ Z \cap Fv(A) = \emptyset \implies A \land B \succ X \cup Z$ and $B \land A \succ X \cup Z$ 6. $A \succ X, \ y \in X \implies \exists y.A \succ X \setminus \{y\}$. 7. $A \equiv B, \ A \succ X \implies B \succ X$.

Definition: If t is a term and $X \subseteq Fv(t)$ then we say that $t \succ X$ if $t = z \succ X$ when $z \notin Fv(t)$. Remark: $t \succ \emptyset$ for all t.

2.2 Implementation of Safety Relations

Definition: $A(\bar{x}, \bar{z}) \xrightarrow{N} \bar{x}$ if for all $\bar{n} \in N^k$ the set $\{\bar{x} \mid A(\bar{x}, \bar{n})\}$ is finite.

proposition: $_{N}$ > is a safety relation.

¹Notice that both A and B are safe in respect to X, since if for example, $x \leq y \succ y$ and $z \leq w \succ w$ then its not the case that $x \leq y \lor z \leq w \succ \{y, w\}$, because all x's are valid whenwe fix the w, for instance.

2.2.1 Safety relations in Arithmetic

Definition:

- 1. Bounded Safety: We define the $_{b}$ > safety relation as follows:
 - (i) $x \leq y \quad b \succ x$
 - (ii) By induction, all the other conditions (1-7) of the safety relations hold.

Remark: Actually, it is sufficient to say that $_{b}\succ$ is a safety relation such that $x \leq y_{b}\succ x$. Since, if $_{b}\succ$ is a safety relation then all other conditions of the definition of safety relation hold.

2. Polynomial safety, $_{p} \succ$:

(i)
$$s(x) \ _{p}\succ x$$

(ii) $x + y \ _{p}\succ \{x, y\}$
(iii) $s(x) \cdot s(y) = z \ _{p}\succ \{x, y\}$

- 3. Exponential safety, $_{E}\succ$:
 - (i) $x^y = z \ _E \succ z$ (ii) $s(s(x))^y = z \ _E \succ \{x, y\}$

All of the above are effective safety relations in respect to N. That is, if $\varphi(x, y) \succ \{x\}$, then given $y \in N$, we can effectively find a finite set of x's that satisfy φ .

Definition:

- 1. φ is safe if $\varphi \succ Fv(\varphi)$.
- 2. φ is effective if $\varphi \succ \emptyset$.

2.3 r.e. and \sum_1

Definition: Let \succ be a safety relation. A formula φ is said to be in \sum_1 if it is of the form: $\exists x_1, ..., x_k. \varphi$, where $\varphi \succ \emptyset$.

Remarks:

(1) \sum_{1} formulas are also called *semi-effective* formulas.

(2) We shall usually treat \sum_{1} formulas as formulas of the form $\exists x_1, ..., x_k.\psi$, where ψ is $p \succ$ (that is, ψ is in a language of N.)

Definition: r.e. or \sum formulae are defined as follows: (i) Every $_{b}\succ$ effective or $_{p}\succ$ effective formula is r.e. formula . (ii) If A and B are r.e. formulae then so is $A \lor B$ and $A \land B$. (iii) If A is a r.e. formula then so is $\exists x.A$. (iv) IF $A_{b}\succ\bar{x}$ or $A_{p}\succ\bar{x}$ and B is r.e., then $\forall\bar{x}(A \to B)$ is r.e. .

Proposition: Every r.e. formula is equivalent to a \sum_{1} formula over N.

Definition(Variant of Church's Thesis):

- 1. A relation is semi-effective iff it is definable by a P-semi-effective formula.
- 2. A relation R is effective if both R and $\neg R$ is P-semi-effective (semi-effective).

Definition:

- 1. We say a relation $R \in N^k$ is defined in N by a formula $\psi(x_1, ..., x_k)$ when $\bar{x} \in R \iff N \models \psi(\bar{x})$.
- 2. A relation R over N is r.e. iff R is definable in N by a r.e. formula ψ iff there is a \sum_{1} formula ϕ such that $N \models \psi \leftrightarrow \phi$.
- 3. A theory T is axiomatic if the set of its axioms is r.e.
- 4. We say a relation R over N is decidable or recursive if both R and \overline{R} is r.e.

Proposition: *P-semi-effective is equivalent to E-semi-effective.* proof. To be completed.

Proposition:

- 1. If a theory T is axiomatic then the set of all its theorems is r.e.
- 2. If a theory T is exponentially safe, i.e. for all its axioms A, $A \ge Fv(A)$, and thus Eeffective², then the syntax predicates 1-11 are all r.e. and exponentially safe. 12 is not anymore effective.
- If T is not _E≻ safe but rather semi-effective, that is, in ∑₁, then 12 is also semi-effective (since, ∑₁ is closed under ∃.)

2.4 Numeral Accurate Theories

Definition $(T \succ)$:

Let T be a consistent theory that satisfies these conditions:

- (i) If $k \neq n$ then $T \vdash \bar{k} \neq \bar{n}$.
- (ii) If $t(\bar{y})$ is a term then for every \bar{n} there is a k such that $T \vdash t(\bar{n}) = k$.

Then $_T \succ$ is defined as follows:

 $\varphi(\bar{x},\bar{y}) \xrightarrow{T} \bar{x}$ if for all \bar{k} there exists a finite set A such that:

$$T \vdash \varphi(\bar{x}, \bar{k}) \leftrightarrow \bar{x} \in A$$

Definition(BA):

(i) A numeral accurate consistent theory that satisfies both (i) and (ii) conditions for $_{T} \succ$ is a theory in which the following conditions hold for every n, k and m (BA):

- 1. If $n \neq k$ then $T \vdash \bar{n} \neq \bar{k}$
- 2. If n + k = m then $T \vdash \bar{n} + \bar{k} = \bar{m}$

²Notice that if a formula A is safe for some \succ then it is also effective. But the opposite is not allways true.

 $\sum_{1} - consistency$

3. If $n \cdot k = m$ then $T \vdash \bar{n} \cdot \bar{k} = \bar{m}$

(ii) T is accurate with respect to a formula φ if for every closed instance φ' of φ we have:

$$\begin{split} N &\models \varphi' \iff T \vdash \varphi' \\ N &\not\models \varphi' \iff T \vdash \neg \varphi' \end{split}$$

Note: from now on T is a numeral accurate theory.

Definition(B.N.): *PA without induction scheme is a numeral accurate and finite theory (i.e. includes BA).*

Definition: T respects a safety relation $\succ \subseteq N \succ$ when

1. $_T \succ \supseteq \succ$

2. T is accurate with respect to every formula φ that is \succ -effective (i.e. $\varphi \succ \emptyset$).

Proposition: T respects a safety relation $\succ \subseteq {}_{N}\succ$ that is defined by a standard induction on the basic rules (2) if for every basic rule of the form $\varphi \succ X$:

- (i) $\varphi T \succ X$.
- (ii) T is accurate with respect to φ .

Proposition: (RR^{-})

Let RR^- be an infinite theory containing BA and all formulae of the form

 $T \vdash \forall x \le k \iff (x=0) \lor (x=1) \lor \dots \lor (x=k).$

Then a consistent theory T respects b-safety iff it includes RR^- (i.e. it prooves all axioms of RR^- .)

Definition(Q): The theory Q is obtained from B.N. by adding the axiom:

$$\forall x(x = 0 \lor \exists y.x = s(y))$$

(The \leq is not in the language of Q and is defined by the + and = signs.)

2.5 $\sum_1 - consistency$

Proposition: If T is a consistent extension of RR^- and φ is a true \sum_1 sentence then $T \vdash \varphi$.

Definition $(\sum_1 - consistency)$: A theory T is $\sum_1 - consistent$ if for every \sum_1 formula $\varphi = \exists \bar{x}.\psi(\bar{x})$, i.e. such that $\psi(\bar{x})$ is p-effective:

$$T \vdash \varphi \implies \exists \bar{n} \in N. \ T \vdash \psi(\bar{n}).$$

Proposition: If T is a \sum_1 -consistent extension of RR^- and φ is a \sum_1 sentence then $T \vdash \varphi$ iff φ is a true sentence.

Note: from now on T is an axiomatic, \sum_{1} -consistent extension of RR^{-} .

2.6 Definability of Relations and Functions

Definition:

1. We say a relation $P \subseteq N^k$ is enumerable in T by a formula $\varphi(\bar{x})$ if for all $\bar{n} \in N$:

$$T \vdash \varphi\{\bar{n}/\bar{x}\} \iff \bar{n} \in P.$$

We say a relation P ⊆ N^k is binumerable in T by a formula φ(x̄) if for all n̄ ∈ N:
φ(x̄) enumerates P in T;
¬φ(x̄) enumerates P̄ in T.

propositions of proof of simple diagonalization theorem. (lexture 9)

Proposition: If an r.e. relation P is ('semantically') defined by φ in N, then for every T, a \sum_{1} -consistent extension of RR^{-} , φ enumerates P in T.

Corollary: If a \sum_1 -consistent extension of RR^- , T, is axiomatic then Pr_T is enumerable in T.

Definition: We say a function f is representable in a theory T by a formula φ if:

- 1. φ enumerates f in T.
- 2. for all \bar{n} we have:
 - (i) $T \vdash \exists y.\varphi(\bar{n},y)$
 - (ii) $T \vdash \varphi(\bar{n}, y_1) \land \varphi(\bar{n}, y_2) \longrightarrow y_1 \neq y_2$.

Proposition: Let T be a consistent and axiomatic extension of RR^- , then the diagonalization function $d(n) = \lceil E_n(\lceil E_n \rceil) \rceil$ is representable in T.

3 Results: Gödel's incompleteness theorem (strong version)

Theorem: ((Simple) Diagonalization Theorem)

If $\varphi(x)$ is a formula, with x as its single free variable, then there exists a Gödel sentence E_n for φ such that $RR^- \vdash E_n \longleftrightarrow \varphi(\lceil E_n \rceil)$, where E_n is a sentence with n as its Gödel number.

Reminder : The two conditions for Gödel's incompleteness theorem, strong variant:

- (i) Pr_T is enumerable in T.
- (ii) Diagonalization condition holds in T, according to the diagonalization theorem.

Theorem: (Tarski on truth definitions) Let ψ be a truth definition for T in T such that for every sentence A:

 $T \vdash A \longleftrightarrow \psi(\lceil A \rceil).$

If T is a consistent extension of RR^- then T has no truth definition in T.

Theorem: (Gödel's incompleteness theorem) Let T be an axiomatic and consistent extension of RR^- , then:

- 1. There exists a true Π_1 sentence, φ , such that $T \not\vdash \varphi$.
- 2. If T is \sum_{1} -consistent then also $T \not\vdash \neg \varphi$ and thus T is incomplete.
- 3. Moreover, T in (2) is ω -incomplete; that is, there exists a sentence $\forall x.A(x)$ such that $T \not\vdash \forall x.A(x)$ and for all $n \in N$ $T \vdash A\{n/x\}$.

4 Church's and Gödel-Rosser's theorems

Proposition: The following propositions are equivalent with respect to a relation $R \subseteq N^k$:

- (i) R is r.e.
- (ii) R is enumerable in some axiomatic theory T.
- (iii) R is enumerable in every axiomatic \sum_1 -consistent extension of RR^- .

Definition(RR): RR is the formal system obtained from RR^- by adding for every $n \in N$ the axiom:

$$x \le n \quad \lor \quad n \le x$$

Proposition: A relation R is decidable iff it is binumerable in some (any) axiomatic consistent extension of RR.

Theorem: (Church) Every consistent extension of RR is incomplete.

Theorem: (Gödel - Rosser) Let T be an axiomatic and consistent extension of RR, then T is incomplete.