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1. GENERAL REMARKS 

Gödel's legacy is still very much in evidence. His legacy is  
 

overwhelmingly decisive, particularly in the arena of general mathematical and  
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philosophical inquiry.  
 

The extent of Gödel's impact in the more restricted domain of  
 
mathematical practice is more open to question. In fact, there is an in depth  
 
assessment of this impact in Macintyre 2009. But even in this comparatively  
 
specialized domain, Gödel's impact is seen to be substantial. As indicated here,   
 
particularly in section 12, we believe that the potential impact of Gödel's work  
 
on mathematical practice is also overwhelming. However, the full realization of  
 
this potential impact will have to wait for some new breakthroughs. We have  
 
every confidence that these breakthroughs will materialize. 
 

Generally speaking, current mathematical practice has now become very  
 
far removed from general mathematical and philosophical inquiry, where  
 
Gödel's legacy is most decisively overwhelming. However, there are some signs  
 
that some of our most distinguished mathematicians recognize the need for some  
 
sort of reconciliation. Here is a quote from Atiyah M. 2008b: 
 

"Mathematicians took the role of philosophers, but I want to bring the 
 

philosophers back in. I hope someday we will be able to explain mathematics in a 
 

philosophical way using philosophical methods". 
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We will not attempt to properly discuss the full impact of Gödel's work 

and all of the ongoing important research programs that it suggests. This would 

require a book length manuscript. Indeed, there are several books discussing the 

Gödel legacy from many points of view, including, for example, (Wang 1987, 

1996), (Dawson 2005), and the historically comprehensive five volume set (Gödel 

1986-2003).  

In sections 2-7 we briefly discuss some research projects that are suggested 

by some of his most famous contributions.  

In sections 8-11 we discuss some highlights of a main recurrent theme in 

our own research, which amounts to an expansion of the Gödel incompleteness 

phenomena in new critical directions. 

The incompleteness phenomena lie at the heart of the Gödel legacy. Some 

careful formulations, informed by some post Gödelian developments, are 

presented in sections 3,4,5.  

One particular issue that arises with regard to incompleteness has been a 

driving force for a considerable portion of my work over the last forty years. This 

has been the ongoing search for necessary uses of set theoretic methods in 

normal mathematics.  

By way of background, Gödel’s first incompleteness theorem is an 

existence theorem not intended to provide a mathematically intelligible example 

of an unprovable sentence.  

Gödel’s second incompleteness theorem does provide an entirely 

intelligible example of an unprovable sentence - specifically, the crucially 

important consistency statement. (Remarkably, Gödel demonstrates by a brief 

semiformal argument, that the sentence he constructs for his first incompleteness 
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theorem is demonstrably implied by the consistency statement - hence the 

consistency statement is not provable. It was later established that the two are in 

fact demonstrably equivalent.) 

Nevertheless, the consistency statement is obviously of a logical nature 

rather than of a mathematical nature. This is a distinction that is readily noticed 

by the general mathematical community, which naturally resists the notion that 

the incompleteness theorem will have practical consequences for their own 

research.  

Genuinely mathematical examples of incompleteness from substantial set 

theoretic systems had to wait until the well known work on the axiom of choice 

and the continuum hypothesis by Kurt Gödel and Paul Cohen. See (Gödel 1940), 

(Cohen 1963-64). 

Here, the statement being shown to be independent of ZFC - the 

continuum hypothesis - is of crucial importance for abstract set theory.  

However, mathematicians generally find it easy to recognize an essential 

difference between overtly set theoretic statements like the continuum 

hypothesis (CH) and “normal” mathematical statements. Again, this is a 

particularly useful observation for the mathematicians.  

Specifically, the reference to unrestricted uncountable sets (of real 

numbers) in CH readily distinguishes CH from “normal” mathematics, which 

relies, almost exclusively, on the “essentially countable”, (e.g., the continuous or 

piecewise continuous).  

A more subtle example of an overtly set theoretic statement that requires a 

second look to see its overtly set theoretic character, is Kaplansky’s Conjecture 
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concerning automatic continuity. In one of its more concrete special forms, it 

asserts that  

*) every homomorphism from the Banach algebra c0 of infinite sequences 

of reals converging to 0 (under the sup norm) to any separable Banach algebra, is 

continuous.  

Now *) was refuted using the continuum hypothesis (due independently 

to H.G. Dales and J. Esterle), and later shown to be not refutable without the 

continuum hypothesis; i.e., not refutable in the usual ZFC axioms (due to R. 

Solovay). See (Dales 2001) for the refutation, and (Dales, Woodin 1987) for the 

consistency (non refutability) result.  

It is, of course, much easier for mathematicians to recognize the overtly set 

theoretic character after they learn that there are set theoretic difficulties. By 

taking the negation,  

**) there exists a discontinuous homomorphism from the Banach algebra 

c0 of infinite sequences of reals converging to 0 (under the sup norm) to some 

separable Banach algebra.  

It is clear that one is asking about the existence of an object that was well 

known, even at the time, to necessarily have rather pathological properties. This 

is the case even for discontinuous group homomorphisms from ℜ into ℜ (which 

can be shown to exist without the continuum hypothesis). For instance, it is well 

known that there are no discontinuous group homomorphisms from ℜ into ℜ 

that are Borel measurable.  
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At the outer limits, normal mathematics is conducted within complete 

separable metric spaces. (Of course, we grant that it is sometimes convenient to 

use fluff - as long as it doesn’t cause any trouble). Functions and sets are 

normally Borel measurable within such so called Polish spaces. In fact, the sets 

and functions normally considered in mathematics are substantially nicer than 

Borel measurable, generally being continuous or at least piecewise continuous - if 

not outright countable or even finite.1  

We now know that the incompleteness phenomena do penetrate the 

barrier into the relatively concrete world of Borel measurability - and even into 

the countable and the finite world - with independence results of a mathematical 

character.  

In sections 8-11 we discuss my efforts concerning such concrete 

incompleteness, establishing the necessary use of abstract set theoretic methods 

in a number of contexts, some of which go well beyond the ZFC axioms.  

Yet it must be said that our results to date are very limited in scope, and 

demand considerable improvement. We are only at the very beginnings of being 

able to assess the full impact of the Gödel incompleteness phenomena.  

                     

1Apparently, nonseparable arguments are being used in the proofs of certain 

number theoretic results such as Fermat’s Last Theorem. We have been 

suggesting strongly that this is an area where logicians and number theorists 

should collaborate in order to see just how necessary such appeals to 

nonseparable arguments are. We have conjectured that they are not, and that 

EFA = IΣ0(exp) = exponential function arithmetic suffices. See (Avigad 2003).  
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In particular, it is not yet clear how strongly and in what way the Gödel 

incompleteness phenomena will penetrate normal mathematical activity. 

Progress along these lines is steady but painfully slow. We are confident that a 

much clearer assessment will be possible by the end of this century - and perhaps 

not much earlier. 

In section 12, we take the opportunity to speculate far into the future.  

 

2. THE COMPLETENESS THEOREM. 

In his Ph.D. dissertation, (Gödel 1929), Gödel proved his celebrated 

completeness theorem for a standard version of the axioms and rules of first 

order predicate calculus with equality.  

This result of Gödel was anticipated, in various senses, by earlier work of 

T. Skolem as discussed in detail in the Introductory notes in Vol. I of (Gödel 

1986-2003 44-59). These Introductory notes were written by Burton Dreben and 

Jean van Heijenoort.  

On page 52, the following passage from a letter from Gödel to Hao Wang, 

is quoted (December 7, 1967): 

 “The completeness theorem, mathematically, is indeed an almost trivial 

consequence of Skolem 1923a. However, the fact is that, at the time, nobody 

(including Skolem himself) drew this conclusion (neither from Skolem 1923a nor, 

as I did, from similar considerations).” 

According to these Introductory Notes, page 52, the situation is properly 

summarized as follows: 
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“Thus, according to Gödel, the only significant difference between Skolem 

1923a and Gödel 1929-1930 lies in the replacement of an informal notion of 

“provable” by a formal one ... and the explicit recognition that there is a question 

to be answered.”2  

To this, we would add that Gödel himself relied on a semiformal notion of 

“valid” or “valid in all set theoretic structures”. The appropriate fully formal 

treatment of the semantics of first order predicate calculus with equality is 

credited to Alfred Tarski. However, as discussed in detail in (Feferman 2004), 

surprisingly the first clear statement in Tarski’s work of the formal semantics for 

predicate calculus did not appear until (Tarski 1952) and (Tarski, Vaught 1957).  

Let us return to the fundamental setup for the completeness theorem. The 

notion of structure is taken in the sense most relevant to mathematics, and in 

particular, general algebra: a nonempty domain, together with a system of 

constants, relations, and functions, with equality as understood.  

It is well known that the completeness proof is so robust that no analysis 

of the notion of structure need be given. The proof requires only that we at least 

admit the structures whose domain is an initial segment of the natural numbers 

(finite or infinite). In fact, we need only admit structures whose relations and 

functions are arithmetically defined; i.e., first order defined in the ring of 

integers.  

However, the axioms and rules of logic are meant to be so generally 

applicable as to transcend their application in mathematics. Accordingly, it is 

important to interpret logic with structures that may lie outside the realm of 

                     
2Skolem 1923a above is (Skolem 1922) in our list of references.  
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ordinary mathematics. A particularly important type of structure is a structure 

whose domain includes absolutely everything.  

Indeed, it can be argued that the original Fregean conception of logic 

demands that quantifiers range over absolutely everything. From this viewpoint, 

quantification over mathematical domains is a special case, as “being in a given 

mathematical domain” is treated as (the extensions of) a unary predicate on 

everything.  

These general philosophical considerations were sufficient for an applied 

philosopher like me to begin reworking logic using structures whose domain 

consists of absolutely everything.   

The topic of logic in the universal domain has been taken up in the 

philosophy community, and in particular, by T. Williamson in (Rayo, Williamson 

2003), and (Williamson 2000, 2003, 2006).  

We have not yet published on this topic, but unpublished reports on our 

results are available on the web. Specifically, in (Friedman 1999), and in 

(Friedman 2002a 65-99). We plan to publish a monograph on this topic in the not 

too distant future. 

 

3. THE FIRST INCOMPLETENESS THEOREM.  

The Gödel first incompleteness theorem is first proved in (Gödel 1931). It 

is proved there in detail for a specific variant of what is now known as the simple 

theory of types (going back to Bertrand Russell), with natural numbers at the 

lowest type. This is a rather strong system, nearly as strong as Zermelo set 

theory.  



 10 

It asserts that there is a sentence that is neither provable nor refutable in 

this system. 

In (Gödel 1932b), Gödel formulates his incompleteness theorems for 

extensions of a variant of what is now known as PA = Peano arithmetic.  

 (Gödel 1934) gives another treatment of the results in [Gödel 31], but also, 

most importantly, introduces the notion of recursive functions and relations.   

At the end of (Gödel 1931 195), Gödel writes that “The results will be 

stated and proved in full generality in a sequel to be published soon.” Also we 

find, on page 195, from Gödel: 

“Note added 28 August 1963. In consequence of later advances, in particular of the 

fact that due to A.M Turing’s work a precise and unquestionably adequate 

definition of the general notion of formal system can now be given, a completely 

general version of Theorems VI and XI is now possible. That is, it can be proved 

rigorously that in every consistent formal system that contains a certain amount 

of finitary number theory there exist undecidable arithmetic propositions and 

that, moreover, the consistency of any such system cannot be proved in the 

system.”  

The sequel was never published at least partly because of the prompt 

acceptance of his results after the publication of (Gödel 1931).  

Today, Gödel is credited for quite general forms of the first 

incompleteness theorem. There are already claims of generality in the original 

paper, (Gödel 31). In modern terms: in every 1-consistent recursively enumerable 

formal system containing a small amount of arithmetic, there exist arithmetic 

sentences that are neither provable nor refutable.  

Office 2004 Test Drive User

Office 2004 Test Drive User
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 (Rosser 1936) is credited for significant additional generality, using a 

clever modification of Gödel’s original formal self referential construction. It is 

shown there that the hypothesis of 1-consistency can be replaced with the weaker 

hypothesis of consistency.  

Later, methods from recursion theory were used to prove yet more 

general forms of first incompleteness, and where the proof avoids use of formal 

self reference - although even in the recursion theory, there is, arguably, a trace 

of self reference present in the elementary recursion theory used.   

The recursion theory approach, in a powerful form, appears in (Robinson 

1952), and (Tarski, Mostowski, Robinson 1953), with the use of the formal system 

Q. 

Q is a single sorted system based on 0,S,+,•,≤,=. In addition to the usual 

axioms and rules of logic for this language, we have the nonlogical axioms   

1. Sx ≠ 0. 

2. Sx = Sy → x = y. 

3. x ≠ 0 → (∃y)(x  = Sy). 

4. x + 0 = x. 

5. x + Sy = S(x + y). 

6. x • 0 = 0. 

7. x • Sy = (x • y) + x. 

8. x ≤ y ↔ (∃z)(z + x = y). 

The last axiom is purely definitional, and is not needed for present 

purposes (in fact, we do not need ≤).  
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THEOREM 3.1. Let T be a consistent extension of Q in a relational type in many 

sorted predicate calculus of arbitrary cardinality. The sets of all existential 

sentences in L(Q), with bounded universal quantifiers allowed, that are i) 

provable in T, ii) refutable in T, iii) provable or refutable in T, are each not 

recursive.  

For the proof, see (Robinson 1952), and (Tarski, Mostowski, Robinson 

1953). It uses the construction of recursively inseparable recursively enumerable 

sets; e.g., {n: ϕn(n) = 0} and {n: ϕn(n) = 1}.  

One can obtain the following strong form of first incompleteness as an 

immediate Corollary. 

THEOREM 3.2. Let T be a consistent extension of Q in many sorted predicate 

calculus whose relational type and axioms are recursively enumerable. There is 

an existential sentence in L(Q), with bounded universal quantifiers allowed, that 

is neither provable nor refutable in T.  

We can use the negative solution to Hilbert’s tenth problem in order to 

obtain other forms of first incompleteness that are stronger in certain respects. In 

fact, Hilbert’s tenth problem is still a great source of very difficult problems on 

the border between logic and number theory, which we will discuss below.  

Hilbert asked for a decision procedure for determining whether a given 

polynomial with integer coefficients in several integer variables has a zero. 

The problem received a negative answer in 1970 by Y. Matiyasevich, 

building heavily on earlier work of J. Robinson, M. Davis, and H. Putnam. It is 

commonly referred to as the MRDP theorem (in reverse historical order). See 
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(Davis 1973), (Matiyasevich 1993). The MRDP theorem was shown to be provable 

in the weak fragment of arithmetic, EFA = IΣ0(exp), in (Dimitracopoulus, 

Gaifman 1982). 

We can use (Dimitracopoulus, Gaifman 1982) to obtain the following.  

THEOREM 3.3. Let T be a consistent extension of EFA in many sorted predicate 

calculus whose relational type and axioms are recursively enumerable. There is a 

purely existential equation (∃x1,...,xn)(s = t) in L(Q) that is neither provable nor 

refutable in T.  

It is not clear whether EFA can be replaced by a weaker system in 

Theorem 3.3 such as Q.  

An important issue is whether there is a “reasonable” existential equation 

(∃x1,...,xn)(s = t) that can be used in Theorem 3.3 for, say, T = PA or T = ZFC. Note 

that (∃x1,...,xn)(s = t) corresponds to the Diophantine problem “does the 

polynomial s-t with integer coefficients have a solution in the nonnegative 

integers?”  

Let us see what can be done on the purely recursion theoretic side with 

regards to the complexity of polynomials with integer coefficients. The most 

obvious criteria are  

a. The number of unknowns.  

b. The degree of the polynomial. 

c. The number of operations (additions and multiplications).  

In 1992, Matiyasevich showed that nine unknowns over the nonnegative 

integers suffices for recursive unsolvability. One form of the result (not the 
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strongest form) says that the problem of deciding whether or not a polynomial 

with integer coefficients in nine unknowns has a zero in the nonnegative 

integers, is recursively unsolvable. A detailed proof of this result (in sharper 

form) was given in (Jones 1982).  

Also (Jones 1982) proves that, e.g., the problem of deciding whether or not 

a polynomial with integer coefficients defined by at most 100 operations 

(additions and multiplications with integer constants) has a zero in the 

nonnegative integers, is recursively unsolvable.  

It is well known that degree 4 suffices for recursive unsolvability. In (Jones 

1982), it is shown that degree 4 and 58 nonnegative integer unknowns suffice for 

recursive unsolvability. I.e, the problem of deciding whether or not a polynomial 

with integer coefficients, of degree 4 with at most 58 unknowns, is recursively 

unsolvable. 

In fact, (Jones 1982) provides the following sufficient pairs 

<degree,unknowns>, where all unknowns range over nonnegative integers: 

<4,58>, <8,38>, <12,32>, <16,29>, 

<20,28>, <24,26>, <28,25>, <36,24>, 

<96,21>, <2668,19>, <2 × 105,14>, 

<6.6 × 1043,13>, <1.3 × 1044,12>, 

<4.6 × 1044,11>, <8.6 × 1044,10>, 

<1.6 × 1045,9>. 

For degree 2 (a single quadratic) we have an algorithm (over the 

nonnegative integers, the integers, and the rationals), going back to (Siegel 72). 

See (Grunewald, Segal 1981), (Masser 1998).  
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For degree 3, the existence of an algorithm is wide open, even for three 

variables (over the integers, the nonnegative integers, or the rationals). For 

degree 3 in two integer variables, an algorithm is known, but it is wide open for 

degree 3 in two rational variables. 

It is clear from this discussion that the gap between what is known and 

what could be the case is enormous, just in this original context of deciding 

whether polynomials with integer coefficients have a zero in the (nonnegative) 

integers. Specifically, <3,3> could conceivably be on this list of pairs.  

These upper bounds on the complexity sufficient to obtain recursive 

unsolvability can be directly imported into Theorem 3.3, as the underlying 

number theory and recursion theory can be done in EFA. Although one obtains 

upper bounds on pairs  (number of variables, degree) in this way, this does not 

address the question of the size of the coefficients needed in Theorem 3.3.  

In particular, let us call a polynomial P a Gödel polynomial if  

i. P is a polynomial in several variables with integer coefficients. 

ii. The question of whether P has a solution in nonnegative integers is 

neither provable nor refutable in PA. (We can also use ZFC here instead of PA).  

We have never seen an upper bound on the “size” of a Gödel polynomial 

in the literature. In particular, we have never seen a Gödel polynomial written 

down fully in base 10 on a small piece of paper.  

One interesting theoretical issue is whether one can establish any 

relationship between the “size” of a Gödel polynomial using PA and the “size” 

of a Gödel polynomial using ZFC.  

4. THE SECOND INCOMPLETENESS THEOREM. 
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In (Gödel 1931), Gödel only sketches a proof of his second incompleteness 

theorem, after proving his first incompleteness theorem in detail. His sketch 

depends on the fact that the proof of the first incompleteness theorem, which is 

conducted in normal semiformal mathematics, can be formalized and proved 

within (systems such as) PA.  

Gödel promised a part 2 of (Gödel 1931), but this never appeared. There is 

some difference of opinion as to whether Gödel planned to provide detailed 

proofs of his second incompleteness theorem in part 2, or whether Gödel 

planned to let others carry out the details.  

In any case, the necessary details were carried out in (Hilbert, Bernays 

1934,1939), and later in (Feferman 1960), and most recently, in (Boolos 1993).  

In (Hilbert, Bernays 1934,1939), the so called Hilbert Bernays derivability 

conditions were isolated in connection with a detailed proof of Gödel’s second 

incompleteness theorem given in (Hilbert, Bernays 1934,1939). Later, these 

conditions were streamlined in (Jerosolow 1973).  

We take the liberty of presenting our own particularly careful and clear 

version of the Hilbert Bernays conditions. 

Our starting point is the usual language L = predicate calculus with 

equality, with infinitely many constant, relation, and function symbols. For 

specificity, we will use  

i) variables xn, n ≥ 1; 

ii) constant symbols cn, n ≥ 1; 

iii) relation symbols Rn
m, n,m ≥ 1; 

iv) function symbols Fn
m, n,m ≥ 1; 
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v) connectives ¬,∧,∨,→,↔; 

vi) quantifiers ∃,∀. 

We start with the following data: 

1. A relational type RT of constant symbols, relation symbols, and function 

symbols. 

2. A set T of sentences in (the language based on) RT.  

3. A one-one function # from formulas of RT into closed terms of RT. 

4. A distinguished unary function symbol NEG in RT, meaning “negation”. 

5. A distinguished unary function symbol SSUB in RT, meaning “self 

substitution”.  

6. A distinguished unary function symbol PR in RT, meaning “provability 

statement”. 

7. A distinguished formula PROV with at most the free variable x1, expressing 

“provable in T”. 

We require the following. Let A be a formula of RT. 

8. NEG(#(A)) = #(¬A) is provable in T. 

9. SSUB(#(A)) = #(A[x1/#(A)]) is provable in T.  

10. PR(#(A)) = #(PROV[x1/#(A)]) is provable in T.   

11. PROV[x1/#(A)] → PROV[x1/PR(#(A))] is provable in T. 

12. If A is provable in T, then PROV[x1/#(A)] is provable in T. 

Here #(A) is the Gödel number of the formula A, as a closed term of RT.  
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THEOREM 4.1. (Self reference lemma). Let A be a formula of RT. There exists a 

closed term t of RT such that T proves  t = #(A[x1/t]).  

Proof: Let s = #(A[x1/SSUB(x1)]). Write s = #B, where B = A[x1/SSUB(x1)]. 

Note that  

B[x1/#(B)] = B[x1/s] = A[x1/SSUB(s)]. 

We now apply condition 9 to B. We have that 

SSUB(#(B)) = #(B[x1/#(B)]) 

is provable in T. Hence  

SSUB(s) = #(A[x1/SSUB(s)]) 

 is provable in T. Thus the closed term SSUB(s) is as required. QED 

LEMMA 4.2. (“I am not provable” Lemma). There exists a closed term t such that 

T proves t = #(¬PROV[x1/t]). 

Proof: By Theorem 4.1, setting A = ¬PROV. QED 

We fix a closed term t provided by Lemma 4.2. 

LEMMA 4.3. Suppose T proves ¬PROV[x1/t]. Then T is inconsistent.  

Proof: Assume T proves ¬PROV[x1/t]. By condition 12, 

PROV[x1/#(¬PROV[x1/t])] 

is provable in T. By Lemma 4.2, T proves PROV[x1/t]. Hence T is inconsistent. 

QED 

LEMMA 4.4. T proves PROV[x1/t] → PROV[x1/PR(t)]. T proves PROV[x1/t] → 

PROV[x1/NEG(PR(t))]. 

Proof: Let A = ¬PROV[x1/t]. By condition 11,  
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PROV[x1/#(A)] → PROV[x1/PR(#(A))] 

is provable in T. By Lemma 4.2,  

PROV[x1/t] → PROV[x1/PR(t)] 

is provable in T. By condition 10, T proves 

PR(t) = #(PROV[x1/t]). 

By condition 8, T proves 

NEG(#(PROV[x1/t])) = #(¬PROV[x1/t]) . 

By Lemma 4.2, T proves 

NEG(PR(t)) = t. 

The second claim follows immediately. QED 

We let CON be the sentence 

 (∀x1)(¬(PROV ∧ PROV[x1/NEG(x1)])). 

THEOREM 4.5. (Abstract second incompleteness). Let T obey conditions 1-12. 

Suppose T proves CON. Then T is inconsistent.  

Proof: Suppose T is as given. By Lemma 4.4, T proves  

PROV[x1/t] → PROV[x1/PR(t)] ∧ PROV[x1/NEG(PR(t))]. 

Since T proves CON, T proves  

¬(PROV[x1/PR(t)] ∧ PROV[x1/NEG(PR(t))]). 

Hence T proves ¬PROV[x1/t]. By Lemma 4.3, T is inconsistent. QED 

Informal statements of Gödel's Second Incompleteness Theorem are 

simple and dramatic. However, current versions of the Formal Second 

Incompleteness are complicated and awkward. Even the abstract form of second 
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incompleteness given above using derivability conditions are rather subtle and 

involved.  

We recently addressed this problem in (Friedman 2007a), where we 

present new versions of Formal Second Incompleteness that are simple, and 

informally imply Informal Second Incompleteness.  

These results rest on the isolation of simple formal properties shared by 

consistency statements. Here we do not address any issues concerning proofs of 

Second Incompleteness. 

We start with the most commonly quoted form of Gödel's Second 

Incompleteness Theorem - for the system PA = Peano Arithmetic. 

PA can be formulated in a number of languages. Of these, L(prim) is the 

most suitable for supporting formalizations of the consistency of Peano 

Arithmetic.  

We write L(prim) for the language based on 0,S and all primitive recursive 

function symbols. We let PA(prim) be the formulation of Peano Arithmetic for 

the language L(prim). I.e., the nonlogical axioms of PA(prim) consist of the 

axioms for successor, primitive recursive defining equations, and the induction 

scheme applied to all formulas in L(prim). 

INFORMAL SECOND INCOMPLETENESS (PA(prim)). Let A be a 

sentence in L(prim) that adequately formalizes the consistency of PA(prim), in 

the informal sense. Then PA(prim) does not prove A. 

We have discovered the following result. We let PRA be the important 

subsystem of PA(prim), based on the same language  L(prim), where we require 

that the induction scheme be applied only to quantifier free formulas of L(prim). 
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FORMAL SECOND INCOMPLETENESS (PA(prim)). Let A be a sentence in 

L(prim) such that every equation in L(prim) that is provable in PA(prim), is also 

provable in PRA + A. Then PA(prim) does not prove A. 

Informal second incompleteness for PA(prim) can be derived in the usual 

semiformal way from the above formal second incompleteness for PA(prim). 

FORMAL CRITERION THEOREM 1. Let A be a sentence in L(prim) such that 

every equation in L(prim) that is provable in PA(prim), is also provable in PRA + 

A. Then for all n, PRA + A proves the consistency of PA(prim)n.  

Here PA(prim)n consists of the axioms of PA(prim) in prenex form with at 

most n quantifiers. 

The above development can be appropriately carried out for systems with 

full induction. However, there is a more general treatment which covers finitely 

axiomatized theories as well.  

We use the system EFA = exponential arithmetic for this more general 

treatment. EFA is the system of arithmetic based on addition, multiplication and 

exponentiation, with induction applied only to formulas all of whose quantifiers 

are bounded to terms. This is the same as the system IΣ0(exp) in (Hajek, Pudlak 

1993 p. 37). 

INFORMAL SECOND INCOMPLETENESS (general many sorted, EFA). Let L be 

a fragment of L(many) containing L(EFA). Let T be a consistent extension of EFA 

in L. Let A be a sentence in L that adequately formalizes the consistency of T, in 

the informal sense. Then T does not prove A.  
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FORMAL SECOND INCOMPLETENESS (general many sorted, EFA). Let L be a 

fragment of L(many) containing L(EFA). Let T be a consistent extension of EFA 

in L. Let A be a sentence in L such that every universalized inequation in L(EFA) 

with a relativization in T, is provable in EFA + A. Then T does not prove A. 

FORMAL CRITERION THEOREM II. Let L be a fragment of L(many) containing 

L(EFA). Let T be a consistent extension of EFA in L. Let A be a sentence in L such 

that every universalized inequation in L(EFA) with a relativization in T, is 

provable in EFA + A. Then EFA proves the consistency of every finite fragment 

of T.  

Here, a relativization of a sentence ϕ of L(EFA), in T, is an interpretation of 

ϕ in T which leaves the meaning of all symbols unchanged, but where the 

domain is allowed to consist of only some of the nonnegative integers from the 

point of view of T. 

Finally, we mention an interesting issue that we are somewhat unclear 

about, but which can be gotten around in a satisfactory way. 

It can be said that Gödel’s second incompleteness theorem has a defect in 

that one is relying on a formalization of Con(T) within T via the indirect method 

of Gödel numbers. Not only is the assignment of Gödel numbers to formulas 

(and the relevant syntactic objects) ad hoc, but one is still being indirect and not 

directly dealing with the objects at hand - which are syntactic and not numerical. 

It would be preferable to directly formalize Con(T) within T, without use 

of any indirection. Thus in such an approach, one would add new sorts for the 

relevant syntactic objects, and introduce the various relevant relations and 
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function symbols, together with the relevant axioms. Precisely this approach was 

adopted by (Quine, 1940, 1951, Chapter 7). 

However, in so doing, one has expanded the language of T. Accordingly, 

two choices are apparent.  

The first choice is to make sure that as one adds new sorts and new 

relevant relations and function symbols and new axioms to T, associated with 

syntax, one also somehow has already appropriately treated, directly, the new 

syntactic objects and axioms beyond T that arise when one is performing this 

addition to T.  

The second choice is to be content with adding the new sorts and new 

relevant relations and function symbols and new axioms to T, associated with the 

syntax of T only - and not try to deal in this manner with the extended syntax 

that arises from this very process. This is the choice made in (Quine, 1940, 1951, 

Chapter 7). 

We lean towards the opinion that the first choice is impossible to realize in 

an appropriate way. Some level of indirection will remain. Perhaps the level of 

indirection can be made rather weak and subtle. Thus we lean towards the 

opinion that it is impossible to construct extensions of, say, PA that directly and 

adequately formalize their entire syntax. We have not tried to prove such an 

impossibility result, but it seems possible to do so.  

In any case, the second choice, upon reflection, turns out to be wholly 

adequate for casting what may be called “direct second incompleteness”. This 

formulation asserts that for any suitable theory T, if T’ is the (or any) extension of 

T through the addition of appropriate sorts, relations, functions, and axioms, 
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directly formalizing the syntax of T, including a direct formalization of the 

consistency of T, then T’ does not prove the consistency of T (so expressed).  

We can recover the usual second incompleteness theorem for T from the 

above direct second incompleteness, by proving that there is an interpretation of 

T’ in T. This was also done in (Quine, 1940, 1951, Chapter 7). 

Thus under this view of second incompleteness, one does not view Con(T) 

as a sentence in the language of T, but instead as a sentence in the language of an 

extension T’ of T. Con(T) only becomes a sentence in the language of T through 

an interpretation (in the sense of Tarski) of T’ in T. There are many such 

interpretations, all of which are ad hoc. This view would then eliminate ad hoc 

features in the formulation of second incompleteness, while preserving the 

foundational implications.  

5. LENGTHS OF PROOFS. 

In (Gödel 1936), Gödel discusses a result which, in modern terminology, 

asserts the following. Let RTT be Russell’s simple theory of types with the axiom 

of infinity. Let RTTn be the fragment of RTT using only the first n types. Let f:N 

→ N be a recursive function. For each n ≥ 0 there are infinitely many sentences ϕ 

such that  

f(n) < m 

where n is the least Gödel number of a proof of ϕ in RTTn+1 and m is the least 

Gödel number of a proof of ϕ in RTTn.  

Gödel expressed the result in terms of lengths of proofs rather than Gödel 

numbers or total number of symbols. Gödel did not publish any proofs of this 

result or results of a similar nature. As can be surmised from the Introductory 
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remarks by R. Parikh, it is likely that Gödel had inadvertently used lengths, and 

probably intended Gödel numbers or numbers of symbols.   

In any case, the analogous result with Gödel numbers was proved in 

(Mostowski 1952). Similar results were also proved in (Ehrenfeucht, Mycielski 

1971) and (Parikh 1971). Also see (Parikh 1973) for results going in the opposite 

direction concerning the number of lines in proofs in certain systems.  

In (Friedman 79), we considered, for any reasonable system T, and 

positive integer n, the finite consistency statement Conn(T) expressing that “every 

inconsistency in T uses at least n symbols”. We gave a lower bound of n1/4 on the 

number of symbols required to prove in Conn(T) in T, provided n is sufficiently 

large. A more careful version of the argument gives the lower bound of n1/2 for 

sufficiently large n. We called this “finite second incompleteness”. 

A much more careful analysis of finite second incompleteness is in 

(Pudlak 1985), which establishes an (n(log(n))-1/2) lower bound and an O(n) 

upper bound, for systems T satisfying certain reasonable conditions.  

It would be very interesting to extend finite second incompleteness in 

several directions. One direction is to give a treatment of a good lower bound for 

a proof of Conn(T) in T, which is along the lines of the Hilbert Bernays 

derivability conditions, adapted carefully for finite second incompleteness. We 

offer our treatment of the derivability conditions in section 4 above as a 

launching point. A number of issues arise as to the best way to set this up, and 

what level of generality is appropriate. 

Another direction to take finite second incompleteness is to give some 

versions which are not asymptotic. I.e., they involve specific numbers of symbols 

that are argued to be related to actual mathematical practice.  
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Although the very good upper bound of O(n) is given in (Pudlak 1985) for 

a proof of Conn(T) in T, at least for some reasonable systems T, the situation 

seems quite different if we are talking about proofs in S of Conn(T), where S is 

significantly weaker than T. For specificity, consider how many symbols it takes 

to prove Conn(ZF) in PA, where n is large. It seems plausible that there is no 

subexponential upper bound here.  

But obviously, if there is some algorithm and polynomial P that PA can 

prove is an algorithm for testing satisfiability of Boolean expressions whose run 

time is bounded by P, then PA proves Conn(ZF) using a polynomial number of 

symbols in n (assuming Con(ZF) is in fact true). So in order to show that there is 

no subexponential upper bound here, we will have to refute this strong version 

of P ≠ NP. However, this appears to be as challenging as proving P ≠ NP.  

There are some other aspects of lengths of proofs that seem important. 

One is the issue of overhead. 

Gödel established in [Gödel 1940] that any proof of an arithmetic sentence 

A in NBG + AxC can be converted to a proof of A in NBG. He used the method 

of relativization. Thus one obtains constants c,d such that if arithmetic A is 

provable in NBG + AxC using n symbols, then A is provable in NBG using at 

most cn+d symbols.  

What is not at all clear here is whether c,d can be made reasonably small. 

There is clearly a lot of overhead involved on two counts. One is in the execution 

of the actual relativization, which involves relativizing to the constructible sets. 

The other overhead is that one must insert the proofs of various facts about the 

constructible sets including that they form a model of NBG.  
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The same remarks can be made with regard to NBG + GC + CH and NBG 

+ GC, where GC is the global axiom of choice. Also, these remarks apply to ZFC 

and ZF, and also to ZFC + CH and ZFC. Also they apply equally well to the 

Cohen forcing method (Cohen 1963-1964), and proofs from ZF + ¬AxC, and from 

ZFC + ¬CH.  

We close with another issue regarding lengths of proofs in a context that is 

often considered immune to incompleteness phenomena. Finite incompleteness 

phenomena is very much in evidence here. 

Alfred Tarski, in (Tarski 1951), proved the completeness of the usual 

axioms for real closed fields using quantifier elimination. This also provides a 

decision procedure for recognizing the first order sentences in (ℜ,<,0,1,+,-,•). His 

method applies to the following three fundamental axiom systems:  

1) The language is 0,1,+,-,•. The axioms consist of the usual field axioms, together 

with -1 is not the sum of squares, x or -x is a square, and every polynomial of odd 

degree with leading coefficient 1 has a zero.  

2) The language is 0,1,+,-,•,<. The axioms consist of the usual ordered field 

axioms, together with every positive element has a square root, and every 

polynomial of odd degree with leading coefficient 1 has a zero.  

3) The language is 0,1,+,-,•,<. The axioms consist of the usual ordered field 

axioms, together with the axiom scheme asserting that if a first order property 

holds of something, and there is an upper bound to what it holds of, then there is 

a least upper bound to what it holds of.  

For reworking and improvements on Tarski, see (Cohen 1969), (Renegar 

1982a-c), (Basu, Pollack, Roy 2006). In terms of computational complexity, the set 
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of true first order sentences in (ℜ,<,0,1,+,-,•) is exponential space easy and 

nondeterministic exponential time hard. The gap has not been filled. Even the 

first order theory of (ℜ,+) is nondeterministic exponential time hard.  See Rabin 

1977. 

The work just cited concerns mainly the computational complexity of the 

set of true sentences in the reals (sometimes with only addition). It does not 

directly deal with the lengths of proofs in systems 1),2),3).   

What can we say about number of symbols in proofs in systems 1),2),3)? 

We conjecture that with the usual axioms and rules of logic, in all three cases, 

there is a double exponential lower and upper bound on the number of symbols 

required in a proof of any true sentence in each of 1),2),3).  

What is the relationship between sizes of proofs of the same sentence 

(without <) in 1),2),3)? We conjecture that, asymptotically, there are infinitely 

many true sentences without < such that there is a double exponential reduction 

in the number of symbols needed to prove it when passing from system 1) to 

system 3).  

These issues concerning sizes of proofs are particularly interesting when 

the quantifier structure of the sentence is restricted. For instance, the cases of 

purely universal, purely existential are particularly interesting, particularly when 

the matrix is particularly simple. Other cases of clear interest are ∀...∀∃...∃, and 

∃...∃∀...∀, with the obviously related conditions of surjectivity and 

nonsurjectivity being of particular interest. 

Another aspect of sizes of proofs comes out of strong mathematical Π0
2 

sentences. The earliest ones were presented in (Goodstein 1944) and (Paris, 
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Harrington 1977), and are proved just beyond PA. We discovered many 

examples in connection with theorems of J.B. Kruskal (Kruskal 1960), and 

Robertson, Seymour (Roberton, Seymour 1985, 2004), which are far stronger, 

with no predicative proofs. See (Friedman 2002b).  

None of these three references discusses the connection with sizes of 

proofs. This connection is discussed in (Smith 1985 132-135), and in the 

unpublished abstracts (Friedman 2006a-g) from the FOM Archives.3  

The basic idea is this. There are now a number of mathematically natural 

Π0
2 sentences (∀n)(∃m)(R(n,m)) which are provably equivalent to the 1-

consistency of various systems T. One normally gets, as a consequence, that the 

Skolem function m of n grows very fast, asymptotically, so that it dominates the 

provably recursive functions of T.  

However, we have observed that in many cases, one can essentially 

remove the asymptotics. I.e., in many cases, we have verified that we can fix n to 

be very small (numbers like 3 or 9 or 15), and consider the resulting Σ0
1 sentence 

(∃m)(R(n,m)). The result is that any proof in T (or certain strong fragments of T) 

of this Σ0
1 sentence must have an absurd number of symbols - e.g., an exponential 

stack of 100 2’s. Yet if we go a little beyond T, we can prove the full Π0
2 sentence 

(∀n)(∃m)(R(n,m)) in a normal size mathematics manuscript, thereby yielding a 

proof just beyond T of the resulting Σ0
1 sentence R(n,m) with n fixed to be a small 

(or remotely reasonable) number. This provides a myriad of mathematical 

examples of Gödel’s original length of proof phenomena from (Gödel 1936). 

6. THE NEGATIVE INTERPRETATION. 
                     
3See http://cs.nyu.edu/pipermail/fom/ 
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Gödel wrote four fundamental papers concerning formal systems based 

on intuitionistic logic: (Gödel 1932a), (Gödel 1933a), (Gödel 1933b), (Gödel 1958). 

(Gödel 1972) is a revised version of (Gödel 1958).  

In (Gödel 32a), Gödel proves that the intuitionistic propositional calculus 

cannot be viewed as a classical system with finitely many truth values. He shows 

this by constructing an infinite descending chain of logics intermediate in 

strength between classical propositional calculus and intuitionistic propositional 

calculus. For more on intermediate logics, see (Hosoi, Ono 1973) and (Minari 

1983).   

In (Gödel 1933a), Gödel introduces his negative interpretation in the form 

of an interpretation of PA = Peano arithmetic in HA = Heyting arithmetic. Here 

HA is the corresponding version of PA = Peano arithmetic based on intuitionistic 

logic. It can be axiomatized by taking the usual axioms and rules of intuitionistic 

predicate logic, together with the axioms of PA as usual given. Of course, one 

must be careful to present ordinary induction in the usual way, and not use the 

least number principle. 

It is natural to isolate his negative interpretation in these two ways:  

a. An interpretation of classical propositional calculus in intuitionistic 

propositional calculus. 

b. An interpretation of classical predicate calculus in intuitionistic 

predicate calculus. 

In modern terms, it is convenient to use ⊥,¬,∨,∧,→. The interpretation for 

propositional calculus inductively interprets  

⊥ as ⊥. 
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¬ as ¬. 

∧ as ∧. 

→ as →. 

∨ as ¬¬∨. 

For predicate calculus,  

∀ as ∀. 

∃ as ¬¬∃. 

ϕ as ¬¬ϕ, where ϕ is atomic.  

Now in HA, we can prove n = m ∨ ¬n = m. It is then easy to see that the 

successor axioms and the defining equations of PA are sent to theorems of HA, 

and also each induction axiom of PA is sent to a theorem of HA.  

Also the axioms of classical predicate calculus become theorems of 

intuitionistic predicate calculus, and the rules of classical predicate calculus 

become rules of intuitionsitic predicate calculus.  

So under the negative interpretation, theorems of classical propositional 

calculus become theorems of intuitionsitic propositional calculus, theorems of 

classical predicate calculus become theorems of intuitionistic predicate calculus, 

and theorems of PA become theorems of HA.  

Also, any Π0
1 sentence (∀n)(F(n) = 0), where F is a primitive recursive 

function symbol of PA, is sent to a sentence that is provably equivalent to 

(∀n)(F(n) = 0). 

It is then easy to conclude that every Π0
1 theorem of PA is a theorem of 

HA.  

Gödel’s negative interpretation has been extended to many pairs of 
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systems, most of them of the form T,T’, where T,T’ have the same nonlogical 

axioms, and where T is based on classical predicate calculus, whereas T’ is based 

on intuitionistic predicate calculus. For example, see (Kreisel 68a 344), (Kreisel 

68b Section 5), (Myhill 74), (Friedman 73), (Leivant 85). 

A much stronger result holds for PA over HA. Every Π0
2 sentence 

provable in PA is provable in HA. The first proofs of this result were from the 

proof theory of PA via Gentzen (see (Gentzen 1969), (Schütte 1977)), and from 

Gödel’s so called Dialectica or functional interpretation, in (Gödel 1958), (Gödel 

1972).  

However, for other pairs for which the negative interpretation shows that 

they have the same provable Π0
1 sentences - say classical and intuitionistic 

second order arithmetic - one does not have the required proof theory. In this 

case, the Dialectica interpretation has been extended by Spector in (Spector 1962), 

and the fact that these two systems have the same provable Π0
2 sentences then 

follows.  

Nevertheless, there are many appropriate pairs for which the negative 

interpretation works, yet there is no proof theory and there is no functional 

interpretation.  

In (Friedman 1978), we broke this impasse by modifying Gödel’s negative 

interpretation via what is now called the A translation. Also see (Dragalin 1980). 

We illustrate the technique for PA over HA, formulated with primitive recursive 

function symbols.  

Let A be any formula in L(HA) = L(PA). We define the A-translation ϕA of 

the formula ϕ in L(HA), in case no free variable of A is bound in ϕ. Take ϕA to be 
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the result of simultaneously replacing every atomic subformula ψ of ϕ by (ψ ∨ 

A). In particular, ⊥ gets replaced by what amounts to A.  

The A translation is an interpretation of HA in HA. I.e., if ϕA is defined, 

and HA proves A, then HA proves ϕA. Also, obviously HA proves A → ϕA. 

Now suppose (∃n)(F(n,m) = 0) is provable in PA, where F is a primitive 

recursive function symbol. By Gödel’s negative interpretation, ¬¬(∃n)(F(n,m) = 

0) is provable in HA. Write this as ((∃n)(F(n,m) = 0) → ⊥) → ⊥.  

By taking the A translation, with A = (∃n)(F(n,m) = 0), we obtain that HA 

proves  

((∃n)(F(n,m) = 0 ∨ (∃n)(F(n,m) = 0)) → (∃n)(F(n,m) = 0)) → (∃n)(F(n,m) = 0. 

((∃n)(F(n,m) = 0) → (∃n)(F(n,m) = 0)) →  

(∃n)(F(n,m) = 0. 

(∃n)(F(n,m) = 0). 

This method applies to a large number of pairs T/T’ as indicated in 

(Friedman 1973) and (Leivant 1985).  

(Godel 1958) and (Godel 1972) present Gödel’s so called Dialectica 

interpretation, or functional interpretation, of HA. Here HA = Heyting 

arithmetic, is the corresponding version of PA = Peano arithmetic with 

intuitionistic logic. It can be axiomatized by taking the usual axioms and rules of 

intuitionistic predicate logic, together with the axioms of PA as usual given. Of 

course, one must be careful to present ordinary induction in the usual way, and 

not use the least number principle.  

In Gödel’s Dialectica interpretation, theorems of HA are interpreted as 

derivations in a quantifier free system T of primitive recursive functionals of 
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finite type that is based on quantifier free axioms and rules, including a rule of 

induction.  

The Dialectica interpretation has had several applications in different 

directions. There are applications to programming languages and category 

theory which we will not discuss.  

To begin with, the Dialectica interpretation can be combined with Godel’s 

negative interpretation of PA in HA to form an interpretation of PA in Gödel’s 

quantifier free system T.  

One obvious application, and motivation, is philosophical, and Gödel 

discusses this aspect in both papers, especially the second. The idea is that the 

quantifiers in HA or PA, ranging over all natural numbers, are not finitary, 

whereas T is arguably finitary - at least in the sense that T is quantifier free. 

However, the objects of T are at least prima facie infinitary, and so there is the 

difficult question of how to gauge this tradeoff. One idea is that the objects of T 

should not be construed as infinite completed totalities, but rather as rules. We 

refer the interested reader to the rather extensive Introductory notes to (Gödel 

58) in (Gödel 1986-2003 Vol. II).  

Another application is to extend the interpretation to the two sorted first 

order system known as second order arithmetic, or Z2. This was carried out by 

Clifford Spector in (Spector 1962). Here the idea is that one may construe such a 

powerful extension of Gödel’s Dialectica interpretation as some sort of 

constructive consistency proof for the rather metamathematically strong and 

highly impredicative system Z2. However, in various communications, Gödel 

was not entirely satisfied that the quantifier free system Spector used was truly 

constructive.  
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We believe that the Spector development has not been fully exploited. In 

particular, it ought to give rather striking mathematically interesting 

characterizations of the provably recursive functions and provable ordinals of Z2 

and various fragments of Z2.  

Another fairly recent application is to use the Dialectica interpretation, 

and extensions of it to systems involving functions and real numbers, in order to 

obtain sharper uniformities in certain areas of functional analysis that had been 

obtained before by the specialists. This work has been pioneered by U. 

Kohlenbach. See the five references to Kohlenbach (and joint authors) in the list 

of references.  

7. THE AXIOM OF CHOICE AND THE CONTINUUM 

HYPOTHESIS. 

Gödel wrote six manuscripts directly concerned with the continuum 

hypothesis: Two abstracts, (Gödel 1938), (Gödel 1939a). One paper with sketches 

of proofs, (Gödel 1939b). One research monograph with fully detailed proofs, 

(Gödel 1940). One philosophical paper, (Gödel 1947,1964), in two versions.  

The normal abbreviations for the axiom of choice is AxC. The normal 

abbreviation for the continuum hypothesis is CH. 

A particularly attractive formulation of CH asserts that every set of real 

numbers is either in one-one correspondence with a set of natural numbers, or in 

one-one correspondence with the set of real numbers. 

Normally, one follows Gödel in considering CH only in the presence of 

AxC. However, note that in this form, CH can be naturally considered without 

the presence of AxC. However, Solovay’s model satisfying ZFCD + “all sets are 



 36 

Lebesgue measurable” also satisfies CH in the strong form that every set of reals 

is countable or has a perfect subset (this strong form is incompatible with AxC). 

See (Solovay 1970). 

The statement of CH is due to Cantor. Gödel also considers the 

generalized continuum hypothesis, GCH, whose statement is credited to 

Hausdorff. The GCH asserts that for all sets A, every subset of ℘(A) is either in 

one-one correspondence with a subset of A, or in one-one correspondence with 

℘(A). Here ℘ is the power set operation.  

Gödel’s work establishes an interpretation of ZFC + GCH in ZF. This 

provides a very explicit way of converting any inconsistency in ZFC + GCH to an 

inconsistency in ZF.  

We can attempt to quantify these results. In particular, it is clear that the 

interpretation given by Gödel of ZFC + GCH in ZF, by relativizing to the 

constructible sets, is rather large, in the sense that when fully formalized, results 

in a lot of symbols. It also seems to result in a lot of quantifiers. How many? 

So far we have been talking about the crudest formulations in primitive 

notation, without the benefit of abbreviation mechanisms. But abbreviation 

mechanisms are essential for the actual conduct of mathematics. In fact, current 

proof assistants - where humans and computers interact to create verified proofs 

- necessarily incorporate very substantial abbreviation mechanisms. See, e.g., 

(Barendregt, Wiedijk 2005), (Wiedijk 2006). 

So the question arises as to how simple can an interpretation be of ZFC + 

GCH in ZF, with abbreviations allowed in the presentation of the interpretation? 

This is far from clear. 
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P.J. Cohen proved that if ZF is consistent then so is ZF + ¬AxC and ZFC + 

¬CH, thus complementing Gödel’s results. See (Cohen 1963-1964). The proof 

does not readily give an interpretation of ZF + ¬AxC, or of ZFC + ¬CH in ZF. It 

can be converted into such an interpretation by a general method whereby under 

certain conditions (met here), if the consistency of every given finite subsystem of 

one system is provable in another, then the first system is interpretable in the 

other (see (Feferman 1960)).  

Again, the question arises as to how simple can an interpretation be of ZF 

+ ¬AxC or of ZFC + ¬CH, in ZF, with abbreviations allowed in the presentation 

of the interpretation? Again this is far from clear. And how does this question 

compare with the previous question? 

There is another kind of complexity issue associated with the CH that is of 

interest. First some background. It is known that every 3 quantifier sentence in 

primitive notation ∈,=, is decided in a weak fragment of ZF. See (Gogol 1979), 

(Friedman 2003a). Also there is a 5 quantifier sentence in ∈,= that is not decided 

in ZFC (it is equivalent to the existence of a subtle cardinal over ZFC). See 

(Friedman 2003b). It is also known that AxC can be written with five quantifiers 

in ∈,=, over ZFC. See (Maes 2007).  

The question is: how many quantifiers are needed to express CH over 

ZFC, in ∈,=? We can also ask this and related questions where abbreviations are 

allowed.  

Most mathematicians instinctively take the view that since CH is neither 

provable nor refutable from the standard axioms for mathematics (ZFC), the 

ultimate status of CH has been settled and there is nothing left to ponder.  



 38 

However, many mathematical logicians, particularly those in set theory, 

take a quite different view. This includes Kurt Gödel. They take the view that the 

continuum hypothesis is a well defined mathematical assertion with a definite 

truth value. The problem is to determine just what this truth value is. 

The idea here is that there is a definite system of objects that exists 

independently of human minds, and that human minds can no more manipulate 

the truth value of statements of set theory than they can manipulate the truth 

value of statements about electrons and stars and galaxies.  

This is the so called Platonist point of view that is argued so forcefully and 

explicitly in (Gödel 1947,1964).  

The late P.J. Cohen led a panel discussion at the Gödel Centenary called 

On Unknowability, where he conducted a poll roughly along these lines. The 

question he asked was, roughly, “does the continuum hypothesis have a definite 

answer”, or “does the continuum hypothesis have a definite truth value”.  

The response from the audience appeared quite divided on the issue.  

Of the panelists, the ones who have expressed very clear views on this 

topic were most notably Cohen and Woodin. Cohen took a formalist viewpoint, 

whereas Woodin takes a Platonist one. See their respective contributions to this 

volume.  

My own view is that we simply do not know enough in the foundations of 

mathematics to decide the truth or appropriateness of the formalist versus the 

Platonist viewpoint - or, for that matter, what mixture of the two is true or 

appropriate.  

But then it is reasonable to place the burden on me to explain what kind of 

additional knowledge could be relevant for this issue. 
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My ideas are not very well developed, but I will offer at least something 

for people to consider.  

It may be possible to develop a theory of ‘fundamental mental pictures’ 

which is so powerful and compelling that it supplants any discussion of 

formalism/Platonism in anything like its present terms. What may come out is a 

fundamental mental picture for the axioms of ZFC, even with some large 

cardinals, along with a theorem to the effect that there is no fundamental mental 

picture for CH and no fundamental mental picture for ¬CH.     

8. WQO THEORY. 

Wqo theory is a branch of combinatorics which has proved to be a fertile 

source of deep metamathematical pheneomena. 

A qo (quasi order) is a reflexive transitive relation (A,≤). A wqo (well 

quasi order) is a qo (A,≤) such that for all infinite sequences x1,x2,... from A,  ∃ i < j 

such that xi ≤ xj.  

The highlights of wqo theory are that certain qo’s are wqo’s, and certain 

operations on wqo’s produce wqo’s.  

(Kruskal 1960), treats finite trees as finite posets, and studies the qo   

there exists an inf preserving embedding from T1 into T2. 

THEOREM 8.1. (Kruskal 1960). The above qo of finite trees as posets is a wqo.  

The simplest proof of Theorem 8.1 and some extensions, is in (Nash-

Williams 1963), with the introduction of minimal bad sequences. 

We observed that the connection between wqo’s and well orderings can 

be combined with known proof theory to establish independence results.  
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The standard formalization of “predicative mathematics” is due to 

Feferman/Schutte = FS. See (Feferman 1964,1968), (Feferman 1998). Poincare, 

Weyl, and others railed against impredicative mathematics. See (Weyl 1910), 

(Weyl 1987), (Feferman 1998 289-291), and (Foline 1992). 

THEOREM 8.2. (Friedman 2002b). Kruskal’s tree theorem cannot be proved in 

FS. 

KT goes considerably beyond FS, and an exact measure of KT is known. 

See (Rathjen, Weiermann 1993). 

J.B. Kruskal actually considered finite trees whose vertices are labeled 

from a wqo ≤*. The additional requirement on embeddings is that label(v) ≤* 

label(h(v)). 

THEOREM 8.3. (Kruskal 1960). The qo of finite trees as posets, with vertices 

labeled from any given wqo, is a wqo.  

Labeled KT is considerably stronger, proof theoretically, than KT, even 

with only 2 labels, 0 ≤ 1. We have not seen a metamathematical analysis of 

labeled KT.  

Note that KT is a Π1
1 sentence and labeled KT is a Π1

2 sentence. 

THEOREM 8.4. Labeled KT does not hold in the hyperarithmetic sets. In fact, 

RCA0 + KT implies ATR0.  

A proof of Theorem 8.4 will appear in (Friedman, Montalban, Weiermann 

in preparation).  
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It is natural to impose a growth rate in KT in terms of the number of 

vertices of Ti. 

COROLALRY 8.5. (Linearly bounded KT). Let T1,T2,... be a linearly bounded 

sequence of finite trees. ∃ i < j such that Ti is inf preserving embeddable into Tj. 

COROLLARY 8.6. (Computational KT). Let T1,T2,... be a sequence of finite trees in 

a given complexity class. There exists i < j such that Ti is inf preserving 

embeddable into Tj. 

Note that Corollary 8.6 is Π0
2.   

THEOREM 8.7. Corollary 8.5 cannot be proved in FS. This holds even for linear 

bounds n+k with variable n and constant k.  

THEOREM 8.8. Corollary 8.6 cannot be proved in FS, even for linear time, 

logarithmic space. 

By an obvious application of weak Konig’s lemma, Corollary 8.5 has very 

strong uniformities.  

THEOREM 8.9. (Uniform linearly bounded KT). Let T1,T2,... be a linearly 

bounded sequence of finite trees. There exists i < j ≤ n such that Ti is inf 

preserving embeddable into Tj, where n depends only on the given linear bound, 

and not on T1,T2,...  

With this kind of strong uniformity, we can obviously strip Theorem 8.9 of 

infinite sequences of trees. Using the linear bounds n+k, k fixed, we obtain: 
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THEOREM 8.10. (finite KT). Let n >> k. For all finite trees T1,...,Tn with each |Ti| 

≤ i+k, there exists i < j such that Ti is inf preserving embeddable into Tj.  

Since Theorem 8.10 → Theorem 8.9 → Corollary 8.5 (using bounds n+k, 

variable n, k constant), we see that Theorem 8.10 is not provable in FS. 

Other Π0
2 forms of KT involving only the internal structure of a single 

finite tree can be found in (Friedman 2002b).   

We proved analogous results for EKT = extended Kruskal theorem, which 

involves a finite label set and a gap embedding condition. Only here the strength 

jumps up to that of Π1
1-CA0.  

We said that the gap condition was natural (i.e., EKT was natural). Many 

people were unconvinced. 

Soon later, EKT became a tool in the proof of the well known graph minor 

theorem of Robertson, Seymour (Robertson, Seymour 1985, 2004). 

THEOREM 8.11. Let G1,G2,... be finite graphs. There exists i < j such that Gi is 

minor included in Gj. 

We then asked Robertson and Seymour to prove a form of EKT that we 

knew implied full EKT, just from GMT. They complied, and we wrote the triple 

paper (Friedman, Robertson, Seymour 1987).  

The upshot is that GMT is not provable in Π1
1-CA0. Just where GMT is 

provable is unclear, and recent discussions with Robertson have not stabilized. 

We disavow remarks in (Friedman, Robertson, Seymour 1987) about where GMT 

can be proved. 
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An extremely interesting consequence of GMT is the subcubic graph 

theorem. A subcubic graph is a graph where every vertex has valence ≤ 3. (Loops 

and multiple edges are allowed). 

THEOREM 8.12. Let G1,G2,... be subcubic graphs. There exists i < j such that Gi is 

embeddable into Gj as topological spaces (with vertices going to vertices). 

Robertson, Seymour also claims to be able to use the subcubic graph 

theorem for linkage to EKT (see (Robertson, Seymour 1985), (Friedman, 

Robertson, Seymour 1987)). Therefore the subcubic graph theorem (even in the 

plane) is not provable in Π1
1-CA0.  

We have discovered lengths of proof phenomena in wqo theory. We use 

Σ0
1 sentences. See (Friedman 2006a-g). 

*) Let T1,...,Tn be a sufficiently long sequence of trees with vertices labeled 

from {1,2,3}, where each |Ti| ≤ i. There exists i < j such that Ti is inf and label 

preserving embeddable into Tj. 

**) Let T1,...,Tn be a sufficiently long sequence of subcubic graphs, where 

each |Ti| ≤ i+13. There exists i < j such that Gi is homeomorphically embeddable 

into Gj.  

THEOREM 8.13. Every proof of *) in FS uses at least 2[1000] symbols. Every proof 

of **) in Π1
1-CA0 uses at least 2[1000] symbols. 

9. BOREL SELECTION. 

Let S ⊆ ℜ2 and E ⊆ ℜ. A selection for A on E is a function f:E → ℜ whose 

graph is contained in S.  
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A selection for S is a selection for S on ℜ.  

We say that S is symmetric if and only if S(x,y) ↔ S(y,x). 

THEOREM 9.1. Let S ⊆ ℜ2 be a symmetric Borel set. Then S or ℜ2\S has a Borel 

selection.  

My proof of Theorem 9.1 in (Friedman 1981) relied heavily on Borel 

determinacy, due to D.A. Martin. See (Martin 1975), (Martin 1985), and (Kechris 

1994 137-148).       

THEOREM 9.2. (Friedman 1981). Theorem 9.1 is provable in ZFC, but not 

without the axiom scheme of replacement.  

There is another kind of Borel selection theorem that is implicit in work of 

Debs and Saint Raymond of Paris VII. They take the general form: if there is a 

nice selection for S on compact subsets of E, then there is a nice selection for S on 

E. See the five papers of Debs and Saint Raymond in the references.  

THEOREM 9.3. Let S ⊆ ℜ2 be Borel and E ⊆ ℜ be Borel with empty interior. If 

there is a continuous selection for S on every compact subset of E, then there is a 

continuous selection for S on E.  

THEOREM 9.4. Let S ⊆ ℜ2 be Borel and E ⊆ ℜ be Borel. If there is a Borel 

selection for S on every compact subset of E, then there is a Borel selection for S 

on E.  
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THEOREM 9.5. (Friedman 2005). Theorem 9.3 is provable in ZFC but not without 

the axiom scheme of replacement. Theorem 9.4 is neither provable nor refutable 

in ZFC.  

We can say more.  

THEOREM 9.6. (Friedman 2005). The existence of the cumulative hierarchy up 

through every countable ordinal is sufficient to prove Theorems 9.1 and 9.3. 

However, the existence of the cumulative hierarchy up through any suitably 

defined countable ordinal is not sufficient to prove Theorem 9.1 or 9.3.  

DOM: The f:N → N constructible in any given x ⊆ N are eventually dominated 

by some g:N → N. 

THEOREM 9.7. ZFC + Theorem 9.4 implies DOM (Friedman 2005). ZFC + DOM 

implies Theorem 9.4 (Debs, Saint Raymond 2007). 

10. BOOLEAN RELATION THEORY. 

The principal reference for this section is the forthcoming book Friedman 

2010.  

We begin with two examples of statements in BRT of special importance for the 

theory. 

THIN SET THEOREM. Let k ≥ 1 and f:Nk → N. There exists an infinite set A ⊆ N 

such that f[Ak] ≠ N. 

COMPLEMENTATION THEOREM. Let k ≥ 1 and f:Nk → N. Suppose that for all 

x ∈ Nk, f(x) > max(x). There exists an infinite set A ⊆ N such that f[Ak] = N\A. 
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These two theorems are official statements in BRT. In the 

complementation theorem, A is unique. 

We now write them in BRT form. 

THIN SET THEOREM. For all f ∈ MF there exists A ∈ INF such that fA ≠ N. 

COMPLEMENTATION THEOREM. For all f ∈ SD there exists A ∈ INF such that 

fA = N\A.  

The thin set theorem lives in IBRT in A,fA. There are only 22^2 = 16 

statements in IBRT in A,fA. These are easily handled.  

The complementation theorem lives in EBRT in A,fA. There are only 22^2 = 

16 statements in IBRT in A,fA. These are easily handled. 

For EBRT/IBRT in A,B,C,fA,fB, fC,gA,gB,gC, we have 22^9 = 2512 

statements. This is entirely unmanageable. It would take several major new ideas 

to make this manageable.  

DISCOVERY. There is a statement in EBRT in A,B,C,fA,fB, fC,gA,gB,gC that is 

independent of ZFC. It can be proved in SMAH+ but not in SMAH, even with 

the axiom of constructibility.  

Here SMAH+ = ZFC + (∀n)(∃κ)(κ is a strongly k-Mahlo cardinal). SMAH 

= ZFC + {(∃κ)(κ is a strongly k-Mahlo cardinal}k. 

The particular example is far nicer than any “typical” statement in EBRT 

in A,B,C,fA,fB,fC,gA,gB,gC. However, it is not nice enough to be regarded as 

suitably natural.  



 47 

Showing that all such statements can be decided in SMAH+ seems to be 

too hard.  

What to do? Look for a natural fragment of full EBRT in 

A,B,C,fA,fB,fC,gA,gB,gC that includes the example, where we can decide all 

statements in the fragment within SMAH+.  

We also look for a bonus: a striking feature of the classification that is itself 

independent of ZFC. Then we have a single natural statement independent of 

ZFC.  

In order to carry this off, we need to use the function class ELG of 

functions ofs expansive linear growth.  

These are functions f:Nk → N such that there exist constants c,d > 1 such 

that  

c|x| ≤ f(x) ≤ d|x| 

holds for all but finitely many x ∈ Nk.  

TEMPLATE. For all f,g ∈ ELG there exist A,B,C ∈ INF such that  

X ∪. fY ⊆ V ∪. gW 

 P ∪. fR ⊆ S ∪. gT. 

Here X,Y,V,W,P,R,S,T are among the three letters A,B,C.  

Note that there are 6561 such statements. We have shown that all of these 

statements are provable or refutable in RCA0, with exactly 12 exceptions.  

These 12 exceptions are really exactly one exception up to the obvious 

symmetry: permuting A,B,C, and switching the two clauses. 

The single exception is the exotic case: 
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PROPOSITION A. For all f,g ∈ ELG there exist A,B,C ∈ INF such that  

A ∪. fA ⊆ C ∪. gB 

 A ∪. fB ⊆ C ∪. gC. 

This statement is provably equivalent to the 1-consistency of SMAH, over 

ACA’. 

If we replace “infinite” by “arbitrarily large finite” then we can carry out 

this second classification entirely within RCA0.  

Inspection shows that all of the non exotic cases come out with the same 

truth value in the two classifications, and that is of course provable in RCA0.  

Furthermore, the exotic case comes out true in the second classification.  

THEOREM 10.1. The following is provable in SMAH+ but not in SMAH, even 

with the axiom of constructibility. An instance of the Template holds if and only 

if in that instance, “infinite” is replaced by “arbitrarily large finite”.  

11. FINITE INCOMPLETENESS. 

Here we present some Fixed Point Propositions, involving operators on 

subsets of Qk, where Q is the rationals. These Propositions cannot be proved in 

ZFC. This development leads to a finite form that is explicitly Π0
1.  

For more details, including further results involving much larger 

cardinals, see Friedman 2009.  

We caution the reader that this is intensively ongoing research, which has 

not been published. We expect a submission for publication by early 2010. 

We say that R ⊆ Qk × Qk is strictly dominating if and only if R(x,y) → 

max(x) < max(y). We say that E ⊆ Qk is order invariant if and only if membership 
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in E depends only on the order type of x ∈ Qk. We say that R ⊆ Qk × Qk is order 

invariant if and only if R is order invariant as a subset of Q2k. For A ⊆ Qk, we 

write R[A] for the image of A under R.  

We write SDOI(Qk) for the family of all strictly dominating order invariant 

R ⊆ Qk × Qk. 

The upper shift of x ∈ Qk, is defined as us(x) = x+1 if x ≥ 0; x if x < 0. For x 

∈ Qk, us(x) is obtained from x by applying us coordinatewise. For A ⊆ Qk, we 

define us(A) = {us(x): x ∈ A}.  

For A ⊆ Qk, write cube(A,0) for the least set Vk such that A ⊆ Vk ∧ 0 ∈ V. 

We use \ for set theoretic difference.  

UPPER SHIFT FIXED POINT PROPOSITION. For all R ∈ SDOI(Qk), some 

A = cube(A,0)\R[A] contains us(A). 

THEOREM 11.1. The Upper Shift Fixed Point Proposition is provable in 

SUB+ but not in any consistent fragment of SUB. It is provably equivalent to 

Con(SUB), in WKL0.  

Here SUB+ = ZFC + "for all k there exists a k-subtle cardinal". SUB = ZFC 

+ {there exists a k-subtle cardinal}k. For the definition of k-subtle cardinal, due to 

J. Baumgartner, see Friedman 2001. WKL0 is one of the principal five systems of 

Reverse Mathematics. See Simpson 1999.  

SEQUENTIAL UPPER SHIFT FIXED POINT PROPOSITION. For all R ∈ 

SDOI(Qk), there exist finite A1,A2,... ⊆ Qk such that for all i ≥ 1, Ai ∪ us(Ai) ⊆ Ai+1 

= cube(Ai+1,0).  
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FINITE SEQUENTIAL UPPER SHIFT FIXED POINT PROPOSITION. For 

all R ∈ SDOI(Qk), there exist finite A1,...,Ak ⊆ Qk such that for all 1 ≤ i ≤ k-2, Ai ∪ 

us(Ai) ⊆ Ai+1 = cube(Ai+1,0).  

ESTIMATED UPPER SHIFT FIXED POINT PROPOSITION. For all R ∈ 

SDOI(Qk), there exist finite A1,...,Ak ⊆ Qk such that for all 1 ≤ i ≤ k-2, Ai ∪ us(Ai) ⊆ 

Ai+1 = cube(Ai+1,0), where the numerators and denominators used have 

magnitude at most (8k)!. 

Note that the second of these is explicitly Π0
2 and the third of these is 

explicitly Π0
1.  

THEOREM 11.2. WKL0 proves that all four Upper Shift Fixed Point 

Propositions are equivalent. In particular, Theorem 11.1 applies to both 

Sequential Upper Shift Fixed Point Propositions and the Estimated Upper Shift 

Fixed Point Proposition. 

12. INCOMPLETENESS IN THE FUTURE. 

The Incompleteness Phenomena, the centerpiece of Gödel’s legacy, has 

come a long way. The same is true of the related phenomenon of recursive 

unsolvability, also part of the Gödel legacy. The phenomena is so deep, and rich 

in possibilities, that we expect the future to eclipse the past and present.  

Yet continued substantial progress is expected to be painfully slow, 

requiring considerably more than the present investment of mathematical and 

conceptual power devoted to the extension and expansion of the phenomena.  

This assessment also applies, if we consider the P = NP problem as part of 

the Gödel legacy (as is common today) on the basis of his letter of March 20, 

1956, to John von Neumann (see (Gödel 1986-2003 Vol. V, letter 21, 373-377). 
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Also consider the recursive unsolvability phenomena. Perhaps the most 

striking example of this for the working mathematician is the recursive 

unsolvability of Diophantine problems over the integers (Hilbert’s tenth 

problem), as discussed in section 3. We have, at present, no idea of the boundary 

between recursive decidability and recursive undecidability in this realm. Yet I 

conjecture that we will understand this in the future, and that we will find, 

perhaps, that recursive undecidability kicks in already for degree 4 with 4 

variables. However, this would require a complete overhaul of the current 

solution to Hilbert’s tenth problem, replete with new deep ideas. This would 

result in a sharp increase in the level of interest for the working mathematician 

who is not particularly concerned with issues in the foundations of mathematics.  

In addition, we still do not know if there is an algorithm to decide 

whether a Diophantine problem has a solution over the rationals. I conjecture 

that this will be answered in the negative, and that the solution will involve some 

clever number theoretic constructions of independent interest for number theory. 

We now come to the future of the Incompleteness Phenomena. We have 

seen how far this has developed thus far: 

i. First Incompleteness. Some incompleteness in the presence of some 

arithmetic. (Gödel 1931). 

ii. Second Incompleteness. Incompleteness concerning the most basic 

metamathematical property - consistency. (Gödel 31), (Hilbert Bernays 

1934,1939), (Feferman 1960), (Boolos 93). 

iii. Consistency of the AxC. Consistency of the most basic, and once 

controversial, early candidate for a new axiom of set theory. (Gödel 1940).  
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iv. Consistency of the CH. Consistency of the most basic set theoretic 

mathematical problem highlighted by Cantor. (Gödel 1940).  

v. ∈0 consistency proof. Consistency proof of PA using quantifier free 

reasoning on the fundamental combinatorial structure, ∈0. (Gentzen 1969). 

vi. Functional recursion consistency proof. Consistency proof of PA using 

higher type primitive recursion, without quantifiers. (Gödel 1958), (Gödel 1972).  

vii. Independence of AxC. Independence of CH (over AxC). Complements 

iii,iv. (Cohen 1963-1964). Forcing. 

viii. Open set theoretic problems in core areas shown independent. 

Starting soon after (Cohen 1963-1964), starting dramatically with R.M. Solovay 

(e.g., his work on Lebesgue measurability (Solovay 1970), and his independence 

proof of Kaplansky’s Conjecture (Dales, Woodin 1987)), and continuing with 

many others. See the rather comprehensive (Jech 2006). Also see the many set 

theory papers in (Shelah, 1969-2007). 

Core mathematicians have learned to avoid raising new set theoretic 

problems, and the area is greatly mined.  

ix. Large cardinals necessarily used to prove independent set theoretic 

statements. Starting dramatically with measurable cardinals implies V ≠ L (Scott 

1961). Continuing with solutions to open problems in the theory of projective 

sets (using large cardinals), culminating with the proof of projective 

determinacy, (Martin, Steel 1989).  

x. Large cardinals necessarily used to prove the consistency of set theoretic 

statements. See (Jech 2006).  

xi. Uncountably many iterations of the power set operation necessarily 
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used to prove statements in and around Borel mathematics. See (Friedman 1971), 

(Martin 1975), (Friedman 2005), (Friedman 2007b). Includes Borel determinacy, 

and some Borel selection theorems of Debs and Saint Raymond (see section 9 

above). 

xii. Large cardinals necessarily used to prove statements around Borel 

mathematics. (Friedman 1981), (Stanley 85), (Friedman 2005), (Friedman 2007b). 

Includes some Borel selection theorems of Debs and Saint Raymond (see section 

9 above and the references to Debs and Saint Raymond). 

xiii. Independence of finite statements in or around existing combinatorics 

from PA and subsystems of second order arithmetic. Starting with (Goodstein 

1944), (Paris, Harrington 1977), and, most recently, with (Friedman 2002b), and 

(Friedman 2006a-g). Uses extensions of v) above, (Gentzen, 1969), from 

(Buchholz, Feferman, Pohlers, Seig 1981). Includes Kruskal’s theorem, the graph 

minor theorem of Robertson, Seymour (Robertson, Seymour, 1985, 2004), and the 

trivalent graph theorem of Robertson, Seymour (Robertson, Seymour, 1985). 

xiv. Large cardinals necessarily used to prove sentences in discrete 

mathematics, as part of a wider theory (Boolean Relation Theory). (Friedman 

1998), and (Friedman 2010). 

xv. Large cardinals necessarily used to prove explicitly Π0
1 sentences. See 

section 11 above for the current state of the art.  

Yet this development of the Incompleteness Phenomena has a long way to 

go before it realizes its potential to dramatically penetrate core mathematics.  

However, I am convinced that this is a matter of a lot of time and 

resources. The quality man/woman hours devoted to expansion of the 
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incompleteness phenomena is trivial when compared with other pursuits. Even 

the creative (and high quality) study of U.S. tax law dwarfs the effort devoted to 

expansion of the incompleteness phenomena by orders of magnitude - let alone 

any major sector of technology, particularly the development of air travel, 

telecommunications, or computer software and hardware.   

Through my efforts over 40 years, I can see, touch, and feel a certain 

combinatorial structure that keeps arising - a demonstrably indelible footprint of 

large cardinals. I am able to display this combinatorial structure through Borel, 

and discrete, and finitary statements that are increasingly compelling 

mathematically.  

But I don’t quite have the right way to express it. I likely need some richer 

context than the completely primitive combinatorial settings that I currently use. 

This difficulty will definitely be overcome in the future, and that will make a 

huge difference in the quality, force, and relevance of the results to mathematical 

practice.  

In fact, I will go so far as to make the following dramatic conjecture. It’s 

not that the incompleteness phenomena is a freak occurrence. Rather, it is 

everywhere.  

Every interesting substantial mathematical theorem can be recast as 

one among a natural finite set of statements, all of which can be 

decided using well studied extensions of ZFC, but not all of which 

can be decided within ZFC itself. 
Recasting of mathematical theorems as elements of natural finite sets of 
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statements represents an inevitable general expansion of mathematical activity. 

This, I conjecture, will apply to any standard mathematical context.  

This program has been carried out, to some very limited extent, by BRT – 

as can be seen in section 10 above.  

This may seem like a ridiculously ambitious conjecture, which goes totally 

against the current conventional wisdom of mathematicians - who think that 

they are immune to the incompleteness phenomena.  

But I submit that even fundamental features of current mathematics are 

not likely to bear much resemblance to the mathematics of the future.  

Mathematics as a professional activity with serious numbers of workers, is 

quite new. Let’s say 100 years old – although even that is a stretch. 

Assuming the human race thrives, what is this compared to, say, 1000 

more years? Probably merely a bunch of simple observations in comparison. 

Of course, 1000 years is absolutely nothing in evolutionary or geological 

time. A more reasonable number is 1M years. And what does our present 

mathematics look like compared to that in 1M years time? These considerations 

should apply to our present understanding of the Gödel phenomena.  

We can of course take this even further. 1M years time is absolutely 

nothing in astronomical time. This Sun has several billion good years left 

(although the Sun will cause a lot of global warming!).  

Mathematics in 1B years time? Who can know what that will be like. But I 

am convinced that the Gödel legacy will remain very much alive – at least as 

long as there is vibrant mathematical activity.  
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