
3 The Model Existence Theorem

Although we don’t have compactness or a useful Completeness Theorem, Henkin-
style arguments can still be used in some contexts to build models. In this
section we describe the general framework and give two applications.

Throughout this section we will assume that L is a countable language and
that C is an infinite set of constant symbols of L (though perhaps not all of the
constant symbols of L). The following idea due to Makkai is the key idea. It
tells us exactly what we need to do a Henkin argument.

In the following a basic term is either a constant symbol (not necessarily
from C) or a term of the form f(c1, . . . , cn) where f is a function symbol of L
and c1, . . . , cn ∈ C. A closed term is a term with no variables.

Definition 3.1 A consistency property Σ is a collection of countable sets σ of
Lω1,ω-sentences with the following properties. Let σ ∈ Σ

C0) ∅ ∈ Σ and if σ, τ ∈ Σ with σ ⊆ τ and φ ∈ τ , then σ ∪ {φ};
C1) if φ ∈ σ, then ¬φ 6∈ σ;
C2) if ¬φ ∈ σ, then σ ∪ {∼ φ} ∈ Σ;
C3) if

∧
φ∈X φ ∈ σ, then σ ∪ {φ} ∈ Σ for all φ ∈ X ;

C4) if
∨
φ∈X φ ∈ σ, then σ ∪ {φ} ∈ Σ for some φ ∈ X ;

C5) if ∀vφ(v) ∈ σ, then σ ∪ {φ(c)} ∈ Σ for all c ∈ C;
C6) if ∃vφ(v) ∈ σ, then σ ∪ {φ(c)} ∈ Σ for some c ∈ C;
C7) let t be a basic term and let c, d ∈ C,

a) if c = d ∈ σ, then σ ∪ {d = c} ∈ Σ;
b) if c = t, φ(t) ∈ σ, then σ ∪ {φ(c)} ∈ Σ;
c) for some b ∈ C, σ ∪ {b = t} ∈ Σ.

Lemma 3.2 Let Σ be a consistency property with σ ∈ Σ, c, d, e ∈ C.
a) There is σ ∪ {c = c} ∈ τ .
b) If c = d, d = e ∈ σ, then σ ∪ {c = e} ∈ Σ.
c) If φ, φ→ ψ ∈ σ, then σ ∪ {ψ} ∈ Σ.

Proof a) By C7b) there is b ∈ C such that σ ∪ {b = c} ∈ Σ. By C7a)
σ1 = σ ∪ {b = c, c = b} ∈ Σ. Let φ(v) be the formula v = c. Since φ(b) and
c = b are in σ1, by C7b) τ = σ ∪ {c = c} ∈ Σ. By C0) σ ∪ {c = c} ∈ Σ.

b) Let φ(v) be the formula v = e. Then φ(d) ∈ σ and c = d ∈ σ. Thus by
C7b) σ ∪ {c = e} ∈ Σ.

c) Since ¬φ ∨ ψ ∈ σ, by C4) either σ ∪ {¬φ} ∈ Σ or σ ∪ {ψ} ∈ Σ. By C1)
the former is impossible.

The next exerecise shows that we really need only verify C1)-C7).

Exercise 3.3 Suppose Σ0 satisfies C1)-C7). Let

Σ = {∅} ∪ {σ0 ∪ ∆ : σ0 ∈ Σ0 and ∃σ ∈ Σ ∆ ⊆ σ,∆ finite }.

Prove that Σ is a consistency property.
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Theorem 3.4 (Model Existence Theorem) If Σ is a consistency property
and σ ∈ Σ, there is a countable M |= σ.

Proof Let φ0, φ1, . . . list all F -sentences. We assume that each sentence is
listed infinitely often. Let t0, t1, . . . , list all basic terms.

Using the fact that Σ is a consistency property, we build

σ = σ0 ⊆ σ1 ⊂ . . .

such that each σi ∈ Σ and
A) if σn ∪ {φn} ∈ Σ, then φn ∈ σn+1, in this case:

a) if φn is
∨
φ∈X φ, then φ ∈ σn+1 for some φ ∈ X ;

b) if φn is ∃vφ(v), then φ(c) ∈ σn+1 for some c ∈ C;
B) c = tn ∈ σn+1 for some c ∈ C.

Let Γ =
⋃∞
n=1

σn. We will build a model of Γ.
For c, d ∈ C we say c ∼ d if c = d ∈ Γ.

Claim ∼ is an equivalence relation
Let c ∈ C. The sentence c = c is φn for some n. By Lemma 3.2, and A)

c = c ∈ σn+1 ⊆ Γ. Thus c ∼ c.
If c = d ∈ Γ, then we can find n such that c = d ∈ σn and d = c is φn. Then

by C7) and condition A) d = c ∈ Γ.
If c = d, d = e ∈ Γ, choose n such that c = d, d = e ∈ σn and c = e is φn.

Then by Lemmma 3.2 and A) c = e ∈ Γ.

Let [c] denote the ∼-class of c. Let M = {[c] : c ∈ C}. We make M into an
L-structure.

Let f be an n-ary function symbol of L and let c1, . . . , cn ∈ C. By ii) there
is d ∈ C such that d = f(c1, . . . , cn) ∈ Γ. Suppose d1 = f(c1, . . . , cn) is also in
Γ, using C7b) and A) we see that d = d1 ∈ Γ and d ∼ d1. Also, note that if
c0 = f(c1, . . . , cn) ∈ Γ, and di ∼ ci for i = 0, . . . , n then,repeatedly using C7b),
d0 = f(d1, . . . , dn) ∈ Γ. Thus we can define fM : Mn →M by

f([c1], . . . , [cn]) = [d] ⇔ d = f(c1, . . . , cn) ∈ Γ.

For c1, . . . , cn and R an n-ary relation symbol of L, we say

RM([c1], . . . , [cn]) ⇔ R(c1, . . . , cn) ∈ Γ.

Again, this does not depend on the choice of ci.

Claim If φ ∈ Γ, then M |= φ. We need an annoying analysis of terms.
We prove this by induction on complexity.5

i) φ is s = t, where s and t are closed terms
We build a sequence of formulas s1 = t1, . . . , sm = tm where:
• s1 = s and t1 = t;
• sMi = sMi+1 and tMi = tMi+1;

5We need to be slightly careful how we define “complexity”. For example, ∃vψ(v) is more
complex than any ψ(c) and ¬

W

ψ∈X ψ is more complicated than ¬ψ for any ψ ∈ X.
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• si = ti ∈ Γ;
• sm and tm are constants in C.

If we accomplish i)-iv) then [sm] = [tm] and, by induction, sM = tM.
Given the formula si = ti ∈ Γ unless si, ti ∈ C, we can find a basic subterm

τ 6∈ C of one of them, say si, by B) there is c ∈ C such that c = τ ∈ Γ. Obtain
si+1 from si by substituting c for τ and let ti+1 = ti. An easy induction shows
that sMi = sMi+1. By C7) and A) si+1 = ti+1 ∈ Γ. si+1 = ti+1.

Thus M |= t1 = t2.

ii) φ is R(t1, . . . , tn)

Exercise 3.5 Prove that M |= R(t1, . . . , tn). [Hint: Similar to case i).]

iii) φ is
∧
ψ∈X φ

By C3) and A), φ ∈ Γ for each φ ∈ X . By induction M |= ψ for all φ ∈ X .
Thus M |= ψ.

iv) φ is
∨
ψ∈X ψ

By C4) and A), there is ψ ∈ X such that ψ ∈ Γ. By induction M |= ψ.
Thus M |= φ.

v) φ is ∀v ψ(v)
By C5) and A), ψ(c) ∈ Γ for all c ∈ C. By induction M |= ψ(c) for all

c ∈ C. Since every element of M is named by a constant, M |= φ.

vi) φ is ∃v ψ(v)
By A) there is c ∈ C such that ψ(c) ∈ Γ. By induction, M |= ψ(c). Thus

M |= φ.

vii) φ is ¬ψ
By C2) and A), ∼ ψ ∈ Γ. This now breaks into cases depending on ψ.
a) ψ is s = t where s and t are closed terms
As in the proof of i) above we can find a sequence of formulas

s1 6= t1, . . . , sm 6= tm

where each of the formulas is in Γ, sMi = sMi+1, t
M
i = tMi+1, and sm, tm ∈ C.

Thus M |= ¬ψ.

b) ψ is R(t1, . . . , tm)

Exercise 3.6 Prove M |= ¬R(t1, . . . , tm).

c) ψ is ¬θ
Then θ ∈ Γ. My induction M |= θ and M |= φ.

d) ψ is
∧
θ∈X θ

Then
∨
θ∈X ¬θ ∈ Γ and ¬θ ∈ Γ for some θ ∈ X . By induction, M |= ¬θ.

Thus M |= φ.

e) ψ is
∨
θ∈X θ

Then
∧
θ∈X ¬θ ∈ Γ and ¬θ ∈ Γ for all θ ∈ X . By induction M |= ¬θ for all

θ ∈ X . Thus M |= φ.

f) ψ is ∃v θ(v)
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Then ∀v¬θ(v) ∈ Γ and θ(c) ∈ Γ for all c ∈ C. By induction, M |= ¬θ(c) for
all c ∈ C. Thus M |= ¬φ.

g) ψ is ∀v θ(v).
Then ∃v¬θ(v) ∈ Γ and θ(c) ∈ Γ for some c ∈ C. But then M |= ¬θ(c) and

M |= ¬φ.

This completes the induction. Thus M |= Γ.

The next exercise gives a useful extension of the Model Existence Theorem.

Exercise 3.7 [Extended Model Existence Theorem] Suppose Σ is a consistency
property and T is a countable set of sentences such that for all σ ∈ Σ and φ ∈ T ,
σ ∪ {φ} ∈ Σ. Then σ ∪ T has a model for all σ ∈ Σ. [Hint: Consider

Σ1 = {σ ∪ T : σ ∈ Σ}.

The Interpolation Theorem

We give two applications of the Model Existence Theorem. Both results were
first proved by Lopez-Escobar by different means. The first is the Lω1,ω version
of Craig’s Interpolation Theorem.

Theorem 3.8 Suppose φ1 and φ2 are Lω1,ω-sentences with φ1 |= φ2. There is
an Lω1,ω-sentence θ such that φ1 |= θ, θ |= φ2 and every relation, function and
constant symbol occurring in θ occurs in both φ1 and φ2.

Proof Let C be a countably infinite collection of new constant symbols. Let
Fi be a countable fragment containing φi, where every relation and function
symbol and every constant symbol not in C occurs in φi and every formula
contains only finitely many constants from C. Let F = F1 ∩ F2.

Let Σ be the collection of finite σ = σ1 ∪σ2 where σi is a set of Fi-sentences
and if ψ1, ψ2 are F -sentences such that σ1 |= ψ1 and σ2 |= ψ2, then ψ1 ∧ ψ2 is
satisfiable.

Claim Σ is a consistency property.
We verify a couple of properties and leave the rest as an exercise.

C3) Suppose
∧
ψ∈X ψ ∈ σ ∈ Σ, where σ = σ1 ∪ σ2 as above. Suppose∧

ψ∈X ψ ∈ σ1. Let σ′
1 = σ1 ∪{ψ}. We claim that σ′

1 ∪σ2 ∈ Σ. Suppose σ′
1 |= θ1

and σ2 |= θ2. Then σ1 |= θ1. Hence θ1 ∧ θ2 is satisfiable. This is similar if∧
ψ∈X ψ ∈ σ2.

C4) Suppose
∨
ψ∈X ψ ∈ σ1. Let σ1,ψ = σ1 ∪ {ψ}. We claim that some

σ1,ψ ∪ σ2 ∈ Σ. Suppose not. Then for each ψ there are θ1,ψ, θ2,ψ ∈ F such
that σ1,ψ |= θ1,ψ, σ2 |= θ2,ψ and θ1,ψ ∧ θ2,ψ is unsatisfiable. Then θ1,ψ |= ¬θ2,ψ.
Since

σ1 |=
∨

ψ∈X

ψ,

14



σ1 |=
∨

ψ∈X

θ1,ψ.

But
σ2 |=

∧

ψ∈X

θ2,ψ

and ∨

ψ∈X

θ1,ψ |= ¬
∧

ψ∈X

θ2,ψ

contradicting that σ ∈ Σ.

Exercise 3.9 Finish the proof that Σ is a consistency property.

We now finish the proof of the Interpolation Theorem. Since φ1 |= φ2, by
the Model Existence Theorem, {φ1,¬φ2} 6∈ Σ. Thus there are θ1 and θ2 ∈ F
such that φ1 |= θ1, ¬φ2 |= θ2 and θ1 ∧ θ2 is unsatisfiable.

Thus
φ1 |= θ1, θ1 |= ¬θ2, and ¬θ2 |= φ2.

It follows that
φ1 |= θ1 and θ1 |= φ2.

We would be done except θ1 may contain constants from C. Let θ1 = ψ(c),
where ψ(v) is a F -formula with no constants from C. Then

φ1 |= ∀v ψ(v) and ∃v ψ(v) |= φ2.

Thus we can take
∀v ψ(v)

as the interpolant.

Definition 3.10 We say that K is a PCω1,ω-class of L-structures, L∗ an
expansion of L and φ ∈ L∗

ω1,ω
such that K is the collection of L-reducts of

models of φ.

Exercise 3.11 Show that the following classes are PCω1,ω.
a) incomplete dense linear orders;
b) dense linear orderings where |(a, b)| = |(c, d)| for all a < b and c < d;
c) bipartite graphs;
d) free groups and free abelian groups;
e) groups with a proper subgroup of finite index;
f) ordered fields with a bounded real closed subfield;

Give other natural examples

Exercise 3.12 Suppose K1 and K2 are disjoint PCω1,ω-classes of L-structures.
Prove there is φ ∈ Lω1,ω such that M |= φ for M ∈ K1 and M |= ¬φ for
M ∈ K2.
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Exercise 3.13 † For this exercise we consider only countable structures with
universe N. Suppose L is a countable language, let X be the set of all L-
structures with universe N. Topologize X so that the set of models satisfying
any atomic formula is clopen.

We say that a subset of X is invariant if it is closed under isomorphism.
a) Prove that {M : M |= φ} is an invariant Borel set.
b) Prove that any PCω1,ω-class of models is an invariant Σ1

1-set.
c) (Scott)∗ Prove that every invariant Σ1

1-set is PCω1,ω.
d) Prove that every invariant Borel set is {M : M |= φ} for some φ ∈ Lω1,ω.

The Undefinability of Well-Ordering

Let L = {<, . . .}

Theorem 3.14 Suppose φ is an Lω1,ω-sentence and for all α < ω1 there is
M |= φ where (α,<) embeds into <M. Then there is N |= φ where (Q, <)
embeds into <N .

Corollary 3.15 If φ is an Lω1,ω-sentence and <M is well-ordered for all M |=
φ, then there is α < ω1 such that <M has order type at most α for all M |= φ.

Proof Let L be our original language. Form L by adding new constants C and
D = {dq : q ∈ Q}. Let σ ∈ Σ be of the form σ0∪{φ}∪{dq < dr : q < r} where σ
is a finite set of Lω1,ω sentences using only finitely many constants from C ∪D.
We write σ0(c, di1 , . . . , dim) where i1 < . . . < im to stress the role of the extra
constants used. Then σ ∈ Σ if and only if for all α < ω1 there is an L-structure
M where
(*)

M |= φ ∧ ∃x σ0(x, b1 . . . , bm)

where there is a subset A of M well ordered by <M, b ∈ A and

α ≤ b1, b1 + α ≤ b2, . . . , bm−1 + α ≤ bm.

In particular, taking σ0 = ∅, we see that {φ} ∪ {dq < dr : q < r} ∈ Σ. Thus,
once we prove that Σ is a consistency property, we will have a model where <
contains a densely ordered subset.

Thus we need only show that Σ is a consistency property. We do several of
the non-routine claims and leave the rest of the verification as an exercise.

C4) Suppose
∨
ψ∈X ψ ∈ σ. Then for each α there is ψα ∈ X and M such

that (*) holds for ψα. There is ψ ∈ X such that ψ = ψα for uncountably many
α. Note that if ψ works for α it works for all β < α. Thus σ ∪ {ψ} ∈ Σ

C7c) Suppose t = dr and σ0 uses di1 , . . . , dim where i0 < . . . < im. Suppose
is < r < is+1. Let c be element of C not yet used. We claim that σ ∪ {c =
dr} ∈ Σ.

Let α < ω1. Pick β > α+ α. By (*) there is

M |= φ ∧ ∃x s0(x, b)
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where
β ≤ b1, b1 + β ≤ b2, . . . , bm−1 + β ≤ bm.

Let b = bs + α. Then bs + α ≤ b and b+ α ≤ bs+1 as desired.

Exercise 3.16 Complete the proof that Σ is a consistency property.

We give one more application of the Model Existence Theorem.

Exercise 3.17 [Omitting Types Theorem] Let F be a countable fragment and
let T be a satisfiable set of F -sentences. Suppose Xn(v1, . . . , vmn

) is a set
of F -formulas with free variables from v1, . . . , vn such that for all n and all
ψ(v1, . . . , vmn

) ∈ F such that

T ∪ {∃x ψ(x)}

is satisfiable, then there is φ ∈ Xn such that

T ∪ {∃x (ψ(x) ∧ φ(x))}

is satisfiable. Prove that

T ∪ {∀x
∨

ψ∈Xn

ψ(x) : n = 1, 2, . . .}

is satisfiable.
Why is this called the Omitting Types Theorem?
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