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Syntax and Semantics

For the understanding of Gödel’s theorems it is essential to distinguish
between syntax and semantics.

This is sometimes complicated, because this distinction is normally
not important in Mathematics; in general we can identify a
syntactical expression with its semantic meaning.

In fact, in Computer Science we usually distinguish quite well the
syntactic level—the source code of a program—from the semantic
one: the specification we expect to be fulfilled when the program is
executed.
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The language of arithmetic

Definition (The language of arithmetic)

Logical symbols: {¬,∧,∨,→,∀,∃,=},
Variables: {x , y , z ,w , ...}.
Constant: 0,

Function symbol: succ ,+, ·, . . .,

Terms and formulas are build inductively from these symbols.

Example

Terme: succ(0), 0 + succ(x).

Formulas: ∀x ¬(succ(x) = 0), ∀x ∃y x + y = 0.
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Semantics: the structure of the natural numbers

The meaning of a mathematical expression is given in a structure.

Definition (Structure)

A structure M is given in terms of set theory and consists of

a non-empty set M (the universe),

constants c1, . . . (elements of M),

functions f1, . . . , fn, . . . (fi : Mki → M if fi has arity ki ).

Definition (The structure N of arithmetic)

N = 〈N, 0, succ ,+, ·〉

Remark

Here, + is not a symbol of the language, but a designation of the addition
function, given as the following set:
{(0, 0, 0), (0, 1, 1), (0, 2, 2), . . . , (1, 0, 1), (1, 1, 2), . . . , (2, 0, 2), (2, 1, 3), . . .}

Reinhard Kahle Gödel’s theorem 6/12/06 5 / 21



Semantics: the structure of the natural numbers

The meaning of a mathematical expression is given in a structure.

Definition (Structure)

A structure M is given in terms of set theory and consists of

a non-empty set M (the universe),

constants c1, . . . (elements of M),

functions f1, . . . , fn, . . . (fi : Mki → M if fi has arity ki ).

Definition (The structure N of arithmetic)

N = 〈N, 0, succ ,+, ·〉

Remark

Here, + is not a symbol of the language, but a designation of the addition
function, given as the following set:
{(0, 0, 0), (0, 1, 1), (0, 2, 2), . . . , (1, 0, 1), (1, 1, 2), . . . , (2, 0, 2), (2, 1, 3), . . .}
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Semantics: Truth

The relation between the syntactical expressions and the semantical
objects is given by a interpretation function.

Usually, this interpretation function is canonical. In fact, the choice of
the designations (0, +, ·) should be made in a way that the
interpretation is canonical.
Here, we indicate the function by colors:

I symbols in blue are syntactical entities;
I objects in green are sets (or elements of them).

Truth (Examples)

N |= 2̄ + 2̄ = 4̄ ⇔ (2, 2, 4) ∈ +

N |= ∃x x · x = x ⇔ it exists an n ∈ N such that (n, n, n) ∈ ·
N |= ¬φ ⇔ it does not hold N |= φ

The last clause ensures for all φ: N |= φ or N |= ¬φ.
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Syntax: Peano Arithmetic

As “syntax” we consider the construction of a mathematical theory
based on axiom systems.

Given the logical axioms and rules (Modus Ponens and
Generalization) it is only needed to specifiy the non-logical axioms.

Definition (Peano Arithmetic, PA)

1 ∀x ¬(succ(x) = 0),

2 ∀x ∀y succ(x) = succ(y) → x = y ,

3 ∀x x + 0 = x ,

4 ∀x ∀y x + succ(y) = succ(x + y),

5 ∀x x · 0 = 0,

6 ∀x x · succ(y) = (x · y) + x ,

7 φ(0) ∧ (∀y φ(y) → φ(succ(y))) → ∀x φ(x) for each formula φ.
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Correctness

A deductive system T is correct with respect to a given structure M, if

T ` φ =⇒ M |= φ.

Lemma

PA is correct with respect to N .
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The first incompleteness theorem

The question

1 Does PA proves all formulas which are true in N ?

N |= φ =⇒ PA ` φ ?

2 Does PA proves for each formula φ,

either PA ` φ or PA ` ¬φ ?

Because of correctness and the fact that the structure N is by definition
“complete”, i.e., N |= φ or N |= ¬φ holds for all φ, (1) and (2) are
equivalent.
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The Gödel sentence

This sentence is not provable.

If the sentence above is formalizable in PA, then PA is incomplete.

Goal: To formalize “This sentence is not provable.” in PA.

Two tasks:
1 To formalize the predicate “x is provable”.
2 To express the self-reference “This sentence. . . ”.

For the first task: Aritmetization or Gödelization of the notion of
provability.

For the second task: Diagonalization lemma
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The first incompleteness theorem (PA)

Theorem

(Gödelization): If PA is ω-consistent, then for every formula φ

PA ` φ⇔ PA ` BewPA(pφq).

(Diagonalization lemma): Let φ(x) be a formula of Peano Arithmetic
with exactly one free variable. Then there exists a sentence ψ such
that

PA ` ψ ↔ φ(pψq).

(The first incompleteness theorem): If PA is ω-consistent, then there
exists a formula φ such that

PA 6` φ and PA 6` ¬φ.

Proof.

Let φ such that φ↔ ¬BewPA(pφq).
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The first incompleteness theorem (general case)

To complete PA we could think of adding more axioms (which are
true in the structure N ).

But Gödel’s argument is generic: Replacing the provability predicate
BewPA(x) by the predicate BewT (x) which takes the new axioms in
considereation, we can actually follow literally the original proof to
establish the same result for T .

The only condition is that the set of new axioms is recursive (see
below).

Theorem (Gödel 1931, Rosser 1936)

For every consistent deduction system T, which is a recursive extension of
PA, there exist a formula φ such that

T 6` φ and T 6` ¬φ.
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The condition of recursiveness

The Gödelization is a method to associate natural numbers with
syntactic expression: φ 7→ pφq.

The provability predicate BewPA(pφq) expresses—within PA—
that φ is provable in PA.

The definition of BewPA within PA is possible since proofs are
inductively defined (starting from axioms and closed under rules), and
such inductive definitions are formalizable in PA by use of recursive
functions.

However, for the base case—the axioms—in the inductive definition
of BewPA it is needed that the set of axioms is at most recursive.
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Tarski’s theorem

Why Gödel’s argument does not work in the same way for the
structure N of the natural numbers and the sentence:

This sentence is not true in N .

Here, we would need a relation, definable in N , which expresses:
“ · is true in N”.

Theorem (Tarski)

Truth in N is not arithmetical definable.

In other words:

The set {φ | N |= φ} is not recursive.

This relates to the condition of recursiveness in Gödel’s theorem:

A complete axiomatization of N
The set of axioms {φ | N |= φ} is trivially complete, but it is not recursive.
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A complete axiomatization of N
The set of axioms {φ | N |= φ} is trivially complete, but it is not recursive.
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The Entscheidungsproblem

Situation:

There exist formulas φ such that PA 6` φ and PA 6` ¬φ.

Let us call a formula φ for which we can prove PA ` φ or PA ` ¬φ
determinated.

Question:

Can we at least separate the determinated from the non-determinated
formulas?

This equivalent to the question to decide whether PA ` φ or not?

Answer:

No.

Theorem (Church 1936 and Turing 1936)

There is no recursive function f such that

f (φ) =

{
0, if PA ` φ
1, otherwise.
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Church’s thesis

The condition of recursive function in the undecidability theorem is
essential.

The significance of this theorem for computer science is based on the
following fact:

Chruch’s thesis

The recursive function correspond exactly to the functions which are
intuitively computable.

In fact, the recursive functions are equivalent to the functions
computable on a Turing machine; they are Turing complete.

There is no model of computation known which exceeds the class of
recursive function (also not quantum computing!).
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The divorce

The first incompleteness theorem refers to the relation of recursive
axiomatizations and mathematical structures.

1 If we consider structures as the fundamental entities, we have as main
result that the set of mathematical truth is not recursive. But, “the
world” is still divided in true and false. The question whether what we
can prove as true or false is another issue.

2 If we consider recursive axiomatizations as fundamental entities, the
existence of sentences which we can neither prove nor disprove are
taken as “real” such that the principle of bivalence is rejected.

Since recursiveness corresponds to the computational capabilities of
computers (Church’s thesis), it is natural (maybe the only possible
way) for Computer Science to adopt the second position.

However, the mathematical self-conception follows the first position.

Here, mathematics and computer science separate:
While mathematics investigates non-recursive structures,
computer science deals with recursive sets.
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Reinhard Kahle Gödel’s theorem 6/12/06 17 / 21



The divorce

The first incompleteness theorem refers to the relation of recursive
axiomatizations and mathematical structures.

1 If we consider structures as the fundamental entities, we have as main
result that the set of mathematical truth is not recursive. But, “the
world” is still divided in true and false. The question whether what we
can prove as true or false is another issue.

2 If we consider recursive axiomatizations as fundamental entities, the
existence of sentences which we can neither prove nor disprove are
taken as “real” such that the principle of bivalence is rejected.

Since recursiveness corresponds to the computational capabilities of
computers (Church’s thesis), it is natural (maybe the only possible
way) for Computer Science to adopt the second position.

However, the mathematical self-conception follows the first position.

Here, mathematics and computer science separate:
While mathematics investigates non-recursive structures,
computer science deals with recursive sets.
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A rough comparison

Mathematics Computer Science

non-recursive sets recursive sets
undecidable (semi-)decidable
structures axiomatic systems
semantics syntax

An analogy within Computer Science:

Recursive Feasible

recursive functions polytime functions
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The second incompleteness theorem

Theorem (Gödel 1931, Rosser 1936)

Any consistent deduction system T, which is a recursive extension of PA,
can not prove its own consistency.

The consistency ConT of T is formalizable by ¬BewT (p0 = 1q).

For the theorem it is shown: T 6` ConT .
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The consistency of PA

Thus, PA 6` ConPA.

The use of PA is a restriction imposed by philosophical reasons.

The unprovability of consistency is relativized to the methods we are
allowed to use.
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The consistency of PA

Thus, PA 6` ConPA.

The use of PA is a restriction imposed by philosophical reasons.

The unprovability of consistency is relativized to the methods we are
allowed to use.

Classical Geometry

There is an analogy to the classical construction problems of
geometry:

It makes part of the specification that we can use only compass and
ruler!

There exist other geometric instruments which, for instance, allow to
trisection of an angle.
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The consistency of PA

Thus, PA 6` ConPA.

The use of PA is a restriction imposed by philosophical reasons.

The unprovability of consistency is relativized to the methods we are
allowed to use.

We can use other means to prove the consistency of PA:
I Transfinite induction up to ε0,
I Functionals of higher types (introduced by Gödel in 1958).

These alternative means, however, are (in a certain sense)
non-recursive, and therefore outside the scope of Computer Science.

Thus, we can read Gödel’s second incompleteness theorem as:

Computers cannot prove the consistency of PA.
Mathematicians and/or philosophers might can...
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Kurt Gödel 1906 – 1978

Kurt Gödel’s achievement in modern logic . . . is a landmark which will remain
visible far in space and time.

John von Neumann

Reinhard Kahle Gödel’s theorem 6/12/06 21 / 21


	Syntax and semantics
	The first incompleteness theorem
	Tarski's theorem
	The Entscheidungsproblem
	The second incompleteness theorem

