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Abstract. This paper introduces a variant of clausal normal form &alptethat

we call “hyper tableaux”. Hyper tableaux keep many des@dbhatures of ana-
Iytic tableaux while taking advantage of the central idemarfr(positive) hyper
resolution, namely to resolve away all negative literala afause in a single in-
ference step. Another feature of the proposed calculugisttensive use of uni-
versally quantified variables. This enables new efficienivéd-chaining proof
procedures for full first order theories as variants of tabiecalculi.

1 Introduction

This paper introduces a variant of clausal normal form &imtehat we call “hyper tab-
leaux”. Hyper tableaux keep many desirable features ofytinahbleaux while taking
advantage of the central idea from (positive) hyper regmufrom tableau calculi we
benefit from the following features:

— Tableau calculi offer a rich structure for the whole deiivatprocess; important
parts of the derivation history are stored in a tableau andeaused for subsequent
optimizations.

— As a byproduct of this structure we get, in our case, a modwedtcaction procedure.
At any state within a derivation each branch of the tableaurispresentation of a
partial model for the given set of clauses. This propertypéggefficient minimal
model reasoning, as demonstratediNiiemela, 1996b; Niemela, 1996a

— For disjunctive datalog, i.e. first order logic without fuien symbols our calculus
offers a decision procedure, by applying the subsumpticimigjue introduced.

From resolution we incorporate the following:

— The “hyper-property”, namely to resolve away all negatiterls of a clause in a
single inference step. From a resolution standpoint owubas can be described
as a positive hyperresolution calculus plus additionaicstire for controlling the
generation of new clauses. In saturation based theorenmgrthe latter turned out
to be a major problem; our calculus offers a solution by usirigbleau structure
and thus enabling refinements likptionalfactorization, regularity, level cut and
efficient memory management. In resolution terminologg, ‘tlevel cut” facility
enables a more goal-oriented behavior of hyper-resolliipdeletion of irrele-
vant derived clauses; by “memory management” we mean thalplity to delete
derived clauses by simple looking at the tableaux strudhstead of using a sub-
sumption-based search through the clauses.



— We further make extensive use of universally quantifiedaldeis. These enables
“subsumption” as the primary pruning technique, which iscmatronger than the
usual clausal tableaux pruning technique based on sycadgtequal literals. This
results in new efficient forward-chaining proof proceduedull first order theo-
ries as variants of tableaux calculi.

There is previous work on defining forward-chaining provikesSATCHMO (Man-
they and Bry, 1988; Lovelaret al,, 1993) and the MGTP systenfifujita and Hasegawa,
1991)). These systems are high-performance theorem provers paichkel version of
MGTP even discovered new mathematical results in finitetabyeHowever, these ap-
proaches have the disadvantage that they are only ap@it@aldnge restricted clauses.
Of course, there is a work-around which is used in these psomamely the introduc-
tion of so called domain predicates. This results in an ematioa of Herbrand terms,
thus giving up the full power of unification. Our experimedé&monstrate that there are
a lot of examples where the domain enumeration is a real disaage.

Our work can be seen as a formalization and extension of wonle @round SAT-
CHMO. It extends the above cited work done in the followingsee

— We do not restrict to range restricted clauses.

— In SATCHMO the “domain predicate” technique is employed jchhguarantees
that the tableau under construction contagjriaindliterals only. We use the domain
predicate technique in a much more restricted way, namelthfise clauses only
which contain a common variable in more than one positiegdit Since this can,
of course, never be the case for Horn clauses, we get as emrsagipositive hyper
resolution for Horn clauses. Where SATCHMO would put groineiances of the
unit clause, say(x) on the branch, we put the more compact form®(x) there
instead.

— We give a rigorous completeness proof.

Because of the implicitly universally quantification theratics of our variables
is different from the standard semantics for “free” tabbeaariables|Fitting, 1994,
according to which a free variable is a placeholder feirgleterm (also called &gid
variable). One crucial pointis that our “universal” vatiedallow to employ “subsump-
tion” instead of the weaker, usual test for identical bralitelnals in tableaux with rigid
variables. Further, unlike as in rigid variable tableaux, extension inference rule does
not act on the variables of the tableaux to be extended. Wéhcarook at “one branch
at a time”, isolated from the other branches and the varsahlere.

Another important point is that it seems extremely diffitaltefine a fairness con-
dition for derivations of tableaux with rigid variables whican be reasonably imple-
mented. By “reasonably implementable” we exclude the widskd backtracking ori-
ented iterative deepening over increasing resource bo@uth a scheme, as it is pro-
posed e.g. iffFitting, 1990; Beckert and Hahnle, 1992he latter deals with a mixed
rigid/universal variable model) is in principle not necassfor proof confluent calculi
like analytic tableau.

Our hyper tableaux calculus is proof confluence and henamitbe implemented
in a straightforward way without backtracking over the geed tableaux.



In [Hahnle, 199ba tableaux calculus is presented and proven to be compleiehw
is very similar to the ground version of hyper tableaux. Hegveit is left open there
how to lift the proof to the first order level (which is far fraoeing trivial). Also imple-
mentational issues are not considered. Our paper can tmbalkeen as a contribution
to solve open issues in that paper.

The rest of this paper is structured as follows: after defjniive formal framework
in the next section we introduce in Section 3 the hyper tablealculus. In Section 4,
the main part of the paper, a strongly complete variant ofctdeulus for the first-
order case is introduced together with a powerful redunglariterion and a fairness
condition. Finally we discuss a proof procedure and repofiractical experiments.

2 Preliminaries

In what follows, we assume that the reader is familiar with blasic concepts of first-
order logic. Aclauseis a multiset of literals, usually written as the disjunatiéy v
---VARV-B1V---V By, or the implicatiomy,...,An < B1,...,B,(m>0,n> 0). As
usual, the variables occurring in clauses are considerptiditly as being universally
quantified, a clause is considered logically as a disjunctibliterals, and a (finite)
clause set is taken as a conjunction of clauses. A groundelisla clause containing
no variables. LiteraK is aninstanceof literal L, written asK > L orL <K, iff K= Ly
for some substitutioy. Let L denote the complement of a litetal Two literalsL and
K arecomplementarif L = K.

Let X be a literal or a clauseX? is the set of all ground instancesXf(wrt. a given
signature which contains at least one constant symbol)l&ig if X is a clause set or
literal set, therX9 := Uyxex X9.

Definition 1 ((Literal tree, Clausal Tableau) [Letz et al., 1994). A literal treeis a pair
(t,A) consisting of a finite, ordered tré@nd a labeling functioh that assigns a literal
to every non-root node af Thesuccessor sequenoéa nodeN in an ordered treeis
the sequence of nodes with immediate predecddsiorthe order given by.

A (clausal) tableau Tof a set of clauseSis a literal tregt,A) in which, for every
successor sequends, ..., N, in t labeled with literalsKy, ..., Kp, respectively, there
is a substitutiors and a clausgLy,...,Ln} € Swith Kij = Lo for every 1<i <n.
{K4,...,Kn} is called atableau clauseand the elements of a tableau clause are called
tableau literals

Definition 2 ((Branch, Open and Closed Tableau, Selection Faction)). A branchof
a tableauT is a sequencély,...,N, (n > 0) of nodes inT such thatNy is the root
of T, N; is the immediate predecessorigf.; for 0 <i < n, andN, is a leaf of T.
We say branctb = Np,...,N, is a prefix of branchc, written asb < c or ¢ > b, iff
¢=No,...,Nn,Nnt1,...,Nnrk for some nodebdly; 1,. .., Nork, k> 0.

Thebranch literalsof branchb = N, ..., Ny are the set lito) = {A(N1),...A(Nn)}.
We find it convenientto use a branch in place where a litetassequired, and mean its
branch literals. For instance, we will write expressioks A € b instead ofA € lit(b).



In order to memorize the fact that a branch contains a coictiad, we allow to
label a branch as eith@penor closed A tableau isclosedif each of its branches is
closed, otherwise it ispen

A selection functioris a total functionf which maps an open tableau to one of its
open branches. If(T) = b we also say théh is selected in T by.f

Note that branches are always finite, as tableaux are finite.
Fortunately, there is no restriction on which selectionction to use. For instance,
one can use a selection function which always selects tffiist” branch.

Definition 3 ((Branch Semantics)). Let L be a possibly infinite set of literals. Define
LY := {VL|L € L} as theclause sebf L, whereVF denotes the universal closure of
formulaF. Whenever we take an atom getvhere a set of formulae were required, we
implicitly assume its clause sAf. By themodel of an atom set ke mean the minimal
Herbrand model oA which we denote byA]. Using a previous convention, we thus
identify in particular a branch with the clause setlit(b))". Hence, it is meaningful
to say that a branchis unsatisfiable, and aldb] = C is defined (the least Herbrand
model of the clause set bfsatisfies the clause).

Based on the above definitions we now introduce hyper taklead the inference steps
of the calculus.

3 The Calculus

We are going to define the calculus of hyper tableaux as a psoghich generates a
restricted form of clausal tableaux. For this, we need oneemeeliminary definition.

Definition 4 ((Pure clause)). A clauseC = Ay,...,An < Bu,...,By is calledpure iff
variables are not spread over distinct head literals, ff.&/air (A;) N Var(A;j) = 0, for
i,j €{1,...,m} andi # j. A substitutionrt is a purifying substitutiorfor C iff Crtis
pure.

Obviously, every non-pure clause can be turned into a pstarice thereof by applica-
tion of an appropriate substitution.

Definition 5 ((Hyper tableau)). Let S be a finite set of clauses arfdbe a selection
function.Hyper tableauxor Sare inductively defined as follows:

Initialization step: A one node literal tree is a hyper tableau ®its single branch is
marked as “open”.

Hyper extension step:If

1. T is an open hyper tableau f& f(T) = b (i.e. b is selected ifT by f) with open
leaf nodeN, and

2.C=Ay,...,An < By,...,Byis a clause frons (m > 0, n > 0), calledextending
clausein this context, and



3. o is a most general substitutibsuch thafb] |= V(B1 A --- A Bn)o (referred to as
hyper conditiof), and
4. mis a purifying substitution fo€o,

then the literal tred” is a hyper tableau fd8, whereT’ is obtained fronT by attaching
m+ n child nodedMy,...,Mm, N1, ..., N, to b with respective labels

Ai0Ty...,AnOTL—B10TT,. .., ~BroTT

and marking every new brancb,Ms),...,(b,Mm) with positive leaf as “open”, and
marking every new brancfb,N;), ..., (b,Ny)with negative leaf as “closed”.

We will write the fact thafl’ can be obtained fror by a hyper extension in the
way defined ad Fpc o T', and say tha€ is applicableto b (or T). Note that the
selection function does not appear explicitly in this rielatinstead we prefer to left
be given implicitly by the context.

Note that we daot take new variants, and that the substitut@mis not applied to
the whole tableau but only to the extending clause. Comdiothehyper condition
expresses thatll (instantiated) body literals have to be satisfied by the ddran be
extended. This similarity to hypegsolution[Robinson, 196pcoined the name “hyper
tableaux”.

Expressing the hyper condition slightly different, we markranch as “closed” if
and only if it is unsatisfiable. For instance, a branch cormai literalsP(x) and—P(y)
is closed. In the standard tableaux with rigid variableg. (i@.[Fitting, 1990Q) a branch
is considered as closed if it contains a complementary iditeoals (notice thaP(x)
and—P(y) are not complementary). Of course, these notions coincidké ground
case.

The need for a purifying substitution in condition 4 in hymetension step will
guarantee the soundness of hyper tableaux calculi. Thelyimdgproperty is the easy
to prove observation that(Av B) = (VAV VB) holds if clauseAvV B is pure. The
substitutionss and 1t have to be applied in this order because if applied in exchdng
order, there is no guarantee that the resulting instandeeoéxtension clause is pure.
This would destroy soundness.

Example 6.For illustration consider the single-literal brarteck r (f (X)) and the clause
C = p(X),q(X,Y) « r(X). Then,[b] = Vr(X)o, whereo = {X + f(X')}. The head
(p(X),q(X,Y))o = p(f(X")),q(f(X"),Y) is impure. Taking e.g. a purifying substitu-
tion m= {X' + a} enables a hyper extension step, yielding the hyper tabldmsev
two open branches atg = (r(f (X)), p(f(a))) andbz = (r(f(X)),a(f(a),Y)). Now,
the intended model candidates for the input clause set srfi] or [by]. It is impor-
tant to note that the models are derived “locally” from théhgalone but not from
the whole tableaux. However, for this construction to bensbwe have to require that
Vb1 v Vby is a logical consequence @b, which indeed holds due to the application of
U

1 Here, “most general” means that whenefig] |= V(B1 A --- A Bp)d for some substitutior,
thena < & [Var(By A .-+ ABp)]. The notationo < & [V] means the restriction of the “more
general” relatiork to the variable¥ . See[Siekmann, 1980



We turn again back to Definition 5. The hyper condition in hygeension step is
— intentionally — given in a pure semantical way. With viewatproof procedure it is
mandatory to decide (and not only to semi-decide) wheth&neseC and most general
substitutiono as required exist. Fortunately, this is possible:

Proposition 7 ((Implementing the Hyper Condition)). For every finite atom set Aand
conjunction of atoms G= B A--- A By: if there is a substitutiory for C such that
[A] E V(B1A--- ABp)y then there is a SLD resolution refutation of the clause set
P=AuU{-B1V...V =By} with computed answer < y [Var(C)] and using exactly
|C| resolution steps. If there is no sughthen each of the finitely many SLD derivations
of P finitely fails.

Notice that the input clause set for SLD resolution is vemye: it consists of only one
negative clause and some positive unit clauses. We présdiotimulation over the unit
hyper resolution procedure [€hang and Lee, 197 ®ecause its answer completeness
result gives us immediately thatis amost generasubstitution as required in the hyper
condition.

The hyper extension step has the property that a branchdealié and only if it
ends in a negative literal. Thus it holds:

Proposition 8. Every hyper tableau is a clausal tableau where every innetenis
labeled with a positive literal. The converse does in gehesahold.

Itis this property that motivates us to take the body liteadlextending clauses into the
extended tableaux; leaving them away would no longer giaesal tableaux (however,
this is not a crucial point).

Definition 9 ((Hyper Tableaux Derivation)). Let S be a finite clause set, called the
set of input clausesand letf be a selection function. A (possible infinite) sequence
T1,...,Th,... Of hyper tableaux foSis called ahyper tableaux derivation fromif T,

is obtained by an initialization step, and for» 1, T_1 Fy_, c_,.0,_,,m_, Ti fOr some
clauseCi_1 € S, and some substitutionms_; andTg_4. This is also written as

T1bby,ci,00,m T20 - Tn Fbnco,on,m T
A hyper derivation is called hyper tableaux refutatioii it contains a closed tableau.

Note that extension steps are no longer applicable to actlogeer tableau. Figure 1
shows an example refutation.

We comment on the relation to hyper resolution. Considetr tfirs special case of
Horn theories. Any hyper tableaux refutation develops &etalx withone singleopen
branch, which is closed in the concluding step. In this bnariee literals are either
given positive unit clauses or positive literals derivediyans of definite input clauses
from the branch. Further, since all input clauses are Hbiey (and all their instances)

2 The missing proofs are contained in the long version. It caolitained in the WWW using
the URLhttp://www.uni-koblenz.de/universitaet/fb4/publications/
GelbeReihe/RR-8-96.ps.gz



(1) r(a),r(f(2) « T T
@ p(X),q(X,Y) < r(X) @
@ PX) < q(X,Y) "(2) (1)
4 <« p(a) m m
5) « p(f(b))
p(a) a@Y) p(f(b)) aq(f(b),Y)
‘ @) ‘ 3 ‘ (5) ‘ 3
—p(a) p(a) -p(f(b)) p(f(b))
‘(4) ‘(5)
-p(a) —p(f(b))

Fig. 1. A sample hyper tableaux refutation. The clause set is giyeriduses (1)—(5). Variables
are written in capital letters. The usage of the clausestension steps is indicated at the edges.
The initial tableaux is set up with clause (1) (there is nceotthoice). Extension at(a) with
clause (2) uses = {x + a}; sinceY is pure in the resulting head, we can choose € which
leaves u¥ as a universal variable. This extension step is indicaté(Pgas’ (the body literals are
not depicted). The further refutation of the left subtreewdti be obvious. For the right subtree
we can extend( f(Z)) with clause (2) again: first compute= {x « f(Z)}. The resulting head
p(f(Z))va(f(2),Y) of clause (2) is not pure; we guess- {Z « b} in order to find the refutation
immediately.

are trivially pure. Hence there is never need for a purifysagstitution. In this case
“hyper tableaux” is the same as hypsolution(with forward subsumption).

Now for the general case. Consider Example 6 again. Hypetutsn when ap-
plied to the clauses(f (X)) (corresponding to the brandf) and clauseC yields the
clausep(f (X)) vq(f(X),Y), which is, of course, different to the purified instance, e.g
p(f(a)) vq(f(a),Y). Due to this purifying of variables it is possible to spliethead
of a rule as it is done by a hyper extension step. In hyper néisal terminology, this
allows to use only the units from a branch as satellites ofygrehresolution step. In
a hyper resolution calculus this can only be achieved bythicing an extra splitting
rule.

Using the tableaux in Figure 1 again we can argue for one nmbeesisting differ-
ence to hyper-resolution. There exists a hyper-resolataivation ofr (f (Z)) which is
similar in structure to the closed hyper tableaux below #fedranch in Figure 1. All
the derived (positive) clauses in that derivation, suclp@s v q(a,Y) v r(f(Z)), are
subsumed now by(f(Z)). However, in hyper tableaux reearchthrough the clauses
is necessary to delete the respective purified instanceapbe they all belong to the
closed subtree below(a). This observation is what we meant by the term “memory
management” in the introduction, and it serves as an exawipdee taking a tableaux
view can contribute to resolution.



4 Fairness, Redundancy and Completeness

We develop a completeness result of the above defined calgsing a model construc-
tion technique for open hyper tableau. The underlyaigesscondition guarantees that
anyderivation eventually leads to a refutation (for unsatigéaclause sets, of course).
The result allows to include a redundancy criterion basedursumptiorfor search
space pruning.

4.1 Redundancy, I-Paths and Fairness

For practical reasons, tableaux calculi should use a “seguicheck” which forbids to
have repetitions of the same literal along along a branch.

Definition 10 ((Redundancy)). A ground claus€ is redundanin a (possibly infinite)
set of atom&\iff [A] = C; on the general level, a clau€ds redundant i iff [A] =C’
for every ground instandg’ e C9.

Intentionally, a clause is redundant iff each of its groumstances is satisfied by the
interpretation given byA. It is, of course, different to say that the universal clesof
the clause is satisfied by the minimal interpretation giveib

Furthermore, it would be different to use the condiAde C instead (i.e. every,
not necessarily minimal, model & is a model ofC). The difference is important:
consider e.g. the single literal branBrand the clausé « B,C. It holds[B] = A «
B,C, howeverB [~ A + B,C. Thus, using the definition as it stands more clauses are
redundant. More severely, in the alternate approach we foeced to extend brandh
with A « B,C in order to satisfy it. However, this is obviously not possiby a hyper
extension step.

Our notion of redundancy covers the above-mentioned ragulzheck, because
if Ais on a branch and hyper extension results in a second oocerdA, then the
tableaux clause of which is part of, say...,A,... + B1,...,B, is a logical conse-
quence ofA, and hence redundant. For hyper tableaux we can easily allstnonger
condition than regularity based on literal subsumption:

Lemma 11 ((Sufficient Redundancy Criterion)). Let A be an atom setand€Ay,...,An
+ Ba,...,Bnbe aclause. IfA] = BiA---AB, implies A < A;, for some variant Aof
A€ Aandsomeé& {1,...,m}, then C is redundantin A.

For instance, in the example in Figure 1, the claugdg(X))),q(X) < r(X) would
be redundant in the atom set given by the branch up to poibt (Bcause(f(X')) <
r(f(g(X))), wherer(f(X’)) is a variant of the branch litera( f (X)).

In order to formalize fairness, we need one more prelimirtarycept (“i-paths”).
For this, we always suppose a selection function as giverlwhiowever, will not
referred to explicitly. Furthermor® always refers to a derivation written as

D = To Fg,Co,00,m0 T2+ Tn FonCoommin Tna -+

Definition 12 ((I-Path)). Let by be a selected branch . Then ani-path (infinite
path) starting froniy is a sequencéy (= biig), Dkriy , Dkriy, - - - OF branches such that



1. b (= braip) < iy < by, < -
2. ij <ijyqforall j > 0 (strictness) and
3. VI > k3j >1 such thaby, j appears in the sequence (infiniteness).

Hence, i-paths are just sequences of branches that argahfioften extended in the
derivation. Note that for a finite derivation there are nats.

To guarantee fairness it is sufficient to require that if sextension step is possible
for a clause in a branch that is infinitely often extendedclaese becomes redundant
at some point for each infinitely often extended continuatibthe branch. To formalize
this we need a notion of redundancy for an i-path.

Definition 13 ((Path semantics, Redundancy in a Path))Where appropriate, we iden-
tify an i-path p= bx(= biyiy), Bitiy , Pitiy, - - - With its atom set as followsA(p) =
Uj>0A(p)j, WhereA(p)j = lit(bkyi;). We have to generalize Definition 10 towards
paths: a claus€ = Ay,...,An + B1,...,B, is redundant in an i-path pff C is re-
dundant inA(p).

Thus, given a path, we look at the atoms of its chain limit idesrto determine redun-
dancy.

Definition 14 ((Fairness)). The derivatiorD from a clause se$is calledfair iff for all
k>0, Tkkp,con T’ for some tablead’ implies thatCoTtis redundant in every i-path
starting fromby.

Notice that all finite derivations are fair and fairness isissue only when infinite
derivations are concerned. To state the completenessseseiheed a notion of fn-
ished derivatiorby which we mean an infinite derivation or a derivation whetbes
a closed tableau or a tableau witHimished branchs obtained. A branch is finished
when we know that it cannot be closed no matter what exterstips are taken. The
notion of redundancy can be employed to formalize this motio

Definition 15 ((Finished Branch)). A branch in a tableau in a derivation from clause
setSis calledfinishediff every clause irSis redundant in the branch.

A derivation from clause s&is calledfinishediff (i) there is closed tableau in the
derivation or (ii) there is a tableau with a finished branclthi@ derivation or (iii) the
derivation is infinite.

4.2 Completeness

There exist various completeness results which could bsidered to be applicable to
our case. The SATCHMORE program is proven completf_iovelandet al., 1995

for range-restricted programs (thus only ground tableawcansidered). We are aware
of the fairness-based completeness resultgyfound calculi of our type in[Hahnle,
1995; Fujita and Hasegawa, 199Unfortunately, the widely used standard lifting proof
technique (see e.§Fitting, 1994 for the tableau case), and also the refined approach
with universal formulas ofBeckert and Hahnle, 1992is not applicable in our case
because it would only give us tleistencef a hyper tableau refutation. Since we aim
at a completeness result fevery(fair) strategy, we have to develop a new proof from
scratch.



Theorem 16 ((Models of Open Hyper Tableaux.)).Let D be a (possibly infinite) fair
finished derivation D= To Fpy,co.00,1% 117 Tn Fbn,Cnyonmm Tne1--- from a possibly in-
finite, possibly non-ground, clause set S, such that evefiy>10) is open. Then S is
satisfiable.

Proof. If the derivation is finite, there is a tableau with a finishego branct. Hence,
by Definition 15, every claus€ € Sis redundant irb. By definition of redundancy
(Def. 10) this is the same §B]C. In other wordsSis satisfiable by virtue dfb].

Otherwise the derivation is infinite and there is an i-pat& b, boti,, Bo+is, - - -
starting frombg. We show [A(p)] = S Since we deal with Herbrand interpretations
this is equivalenttdA(p)] = S. Now, suppose, to the contrary, tfai( p)] i~ S holds.
Hence

[A(p)] EC for some ground claus® € S. Q)

The clauseC’ is of the form C' = A},..., A, « Bj,...,B;, for some corresponding
clauseC = A, ...,Am < By,...,B, from S. Now, Equation 1 implies

[API EBLA---ABy and  [A(P)] ALY -V Ay (2)

From 2 we conclude that there existrate subse®’ C A(p) such thafA'] = BjA---A
Bj,. Recall tha’( p) is the chain limit of every increasing atom s&{®)o C A(p)1 C - -+
Hence, A’ C A(p)i, for somel, whereA(p), = lit(bo+i,). Now we know[b; ] = B} A
--- A B By virtue of C', a hyper extension stefy;, "bil Con T’ exists, wheres andt
are appropriate substitutions such t8ais a ground instance @oTt By fairnessCar
is redundant in every i-path starting frdm. Hence Cortis in particular redundant in
the i-patf p' = by, b;,,,..., wherep= (b, bi,,...,bj_,) o p’. Thus, sincepandp’ are
the same wrt. limitsCoTt is trivially also redundant irp. But then, by the definition
of redundancy¢’ is redundant inp, too. This means jufA(p)] = C' which plainly
contradicts the choice @' (Equation 1). Hence, the assumption must be wrong, and
thus the theorem follows.

For theorem proving applications the converse directiothefprevious theorem
usually is more interesting: from a given (possible infipiet ofunsatisfiableclauses
infer that a refutation exists, i.e. that a tableau is délavhere every branch is closed.

It is clear that once a closed tableau is derived, the désivaannot be continued,
because the “hyper extension step” is no longer applic&ldeever, it isnot obvious
that this closed tableau will be derived aftimitely many steps (i.e. it is not obvious that
a refutation is order isomorphic to — not even for denumerable clause sets, because
an inference rule might be non-continuous). Essentidllyeduires to apply Kdnigs
lemma and to prove the continuity of the tableaux transfognaiperators.

Fortunately, this “refutational completeness” followsiawithin our setup as the
proof below shows. This proof makes essentially use of thetfeat we view tableau
construction as arocesgqderivation). An alternative approach is to define tableasix
static objects, which obey a closure property of branches similayur fairness con-
dition. This approach then requires to allow branches tofbefmite length, whereas

3 Here, %" denotes the append function for sequences.



we consider limits of branches @ihite length. The alternative approach is attractive
because it needs less formalism than our approach, and dbé gfrthe theorem cor-
responding to our Theorem 16 is very simpiéahnle, 199k On the other hand, we
think that our formalism now pays off in order to obtain thegirof refutational com-
pleteness (without appealing to compactness, of course):

Corollary 17 ((Refutational Completeness)).Let S be a possibly infinite, possibly non-
ground, unsatisfiable clause set not containing the empiyse. Then any fair finished
derivation D from S is finite and is a refutation, i.e. D is o&tlorm D= To Fp,.cy,00,m
T1---Tn FbnGn,onm Tn+1 fOr some > 0, and 41 is a closed tableau.

Proof. By Theorem 16 applied in the contrapositive direction wewkrbat any fair
derivation must contain some non-open, i.e. closed, tabledt is a trivial inductive
consequence of our definition of “derivation” that everyi¢glT; (i > 0) in a derivation
contains only finitely many nodes, se{T;), and than(Ti;+1) > n(T;) (the initialization
step produces a tableau with finitely many nodes, and evgrgrtextension step applied
to T; adds only finitely many nodes M, yielding Ti11). Hence, foD to be infinite, we
would have to have(n(Tp) = 1) < n(T1) < --- < n(Ty) < --- < Nn(T) to be an infinite
chain which is impossible by well-orderedness of naturahbers. Henc® contains
only finitely many elements.

5 Implementation

We have developed and implemented a proof procedure aogotalihe results of the
previous sections; its characteristics are, thatit (axador the full first-order logit,
and (b) does not backtrack over the tableaux generated #iemtgrivation, and (c) uses
universally quantified variables, and (d) employs subsionginstead of “regularity
check”). To our knowledge, no other tableaux proof procedumith these properties
exists. The perhaps most advanced (non-hyper) tableawt procedure is the one in
[Beckert and Hahnle, 199@vhich uses both rigid and universal variables, but does not
have property (b): if there is no refutation within a givesaarce bound of a maximal
number of formula copies allowed for the tableaux genemnatize tableau generated os
far is given up, and a new one is constructed with increaseddm

Having a proof procedure without backtracking is in patacimportant for the
case of tableaux, because tableaux calculi usually aref padluent (with the ex-
ception of model elimination) and so there is in principlensed for backtracking. In
contrast to that, all full first-order tableaux proof proaess known to ufFitting, 1990;
Hahnleet al., 1994; Beckert and Posegga, 1994; Oppacher and Suer, 4ié8& em-
ploy some form of backtracking or use theule to ground-instantiate the variables; we
suspect the reason for this to be that no one is aware of a&fasirrondition which can
be reasonably implemented without backtracking.

Our proof procedure is described in more detail in the longiea of this paper.
Here, we will only sketch the main idea. As mentioned in theoiduction, the difficult

4 By a full first order tableaux calculi we mean a calculus whisks variables at the inference
level in order to abstract from terms; excluded are calctliclv enumerate ground clauses,
e.g. SATCHMO[Manthey and Bry, 19g8and MGTP[Fujita and Hasegawa, 1901



issue for tableaux calculi is how to achieve fairness. Weawgeight boundn the terms
which may appear in the tableaux under construction. Moeeipely, theweightof a
term (or literal) is the number of function symbols occugrin it with arity greater or
equal to 1. Thaveightof a tableaux is the weight of a maximal literal occurringtin i

Now, we start with the tableali obtained by an initialization step and initially set
the weight boundav to some low value, say 1. Then, all those hyper extensiors step
carried out which (1) do not violate the current weight botenad (2) do not result in
new leafs which are subsumed by the branch to be extendedoBudsumptioand
the weight bound there is no risk of an infinite loop here. Thearlying observation is
that there is no infinite sequentg,L1,...,Ly,... of literals, each being lighter tham
and such thalt; is notsubsumed by somig, for j <i.

If the current weight bound/ is exhaustedy is increased by some constant value
(we use 1) and the next round starts with the hyper tableatojotained with depth
boundw.

In sum, we never backtrack over the generated tableaux,amks$s is achieved
by stepwisely increasing the weight bound and exhaustihbygler extension steps
modulo subsumption within the given weight bound.

ImprovementsWhen interested primarily in refutational completenessia are) sev-
eral improvements are conceivable. Currently, we implesafactorizationandlevel
cut

By factorizationwe mean to mark an open branbh=Lq,...,L,...,Ln (k< n)
as closed in presence of an open brabck=L;,...,Lk,L, provided that.,6 = L for
some substitutiod (and, of course, thdt andL, are labels of different nodes in case
k=n-—1). Note tha®d is notapplied to the tableaux.

The motivation for factoring is to avoid unnecessary reisdgion of subproofs; fac-
torization and its relatives have been studied in the camtemodel eliminatior{Letz
et al, 1994. What we call factorization was proposed in a similar wayS&if CHMO
(called “complement splitting” ilManthey and Bry, 1983.

For thelevel cutimprovement we keep track whether an inner node is “used” to
close the subtree below it. A nodieis “used” in this sense if its label resolves away
at least one negative literal in the SLD-refutation of asteane extending clause in
the subtree below. We can take advantage of this informatafter a closed subtree
below nodeN is derived. Namely: ilN is not used, then the extension step yieldg
was unnecessary to obtain the closed subtree bilos a consequence, we can think
of that extension step as if it were not carried out at all and 6ff” that level, i.e. we
delete all open brother nodes Mf Of course, the cancelling effect is better the more
open sibling nodes are cut in this way, and the more root-thistoccurs. The level
cut facility was also considered as “proof condensationthe@ HARP tableau prover
[Oppacher and Suen, 1988

5.1 Practical Experiments

The proof procedure of the previous section is implementedgrototypical way as an
interpreter in ECLiIPSe Prolog. We ran several examples ffamous problem domains,



and related our implementation to SATCHM® anthey and Bry, 1988and OTTER.
The underlying hardware is a SUN 4 workstation for all prever

The respective entries in Figure 2 are to be read as followsroblem identifier
such asrpoo1-1 refers to its index in the TPTP problem librd§utcliffe et al,, 1994.
Columns 2 — 5 contain the entries for our Hyper tableaux pr(simply called “Hyper”
from now on). “L. Cut” means the level cut facility, which, &sctorization, can be
switched off (“-") or on (“+"). For hyper tableaux, table ei@s such as e.g. “25”
and “25+ 0” in GrRP001-1 mean that the refutation took2b seconds, with 25 hyper
extension steps and O factorization steps. Blank entriesrtiet nothing changed with
respect to the more leftmost entries.

“Range Restriction”, which is mandatory for SATCHMO, medhat the input
clause set is transformed into range restricted forwhereas “Universal Variables”
means that range restriction is not used.

For SATCHMO (columns 6 and 7), the “basic” version uses aolimglete depth-
first search; the “level saturation” variant uses a fairtetyg (this is described ifMan-
they and Bry, 198B. The numbers given are the runtimes in seconds.

OTTER (column 8) was run in “auto” mode, where it analyzesitiput clause
set and determines inference rules and strategies by. itlsafiost examples, positive
hyper resolution was the inference rule chosen autombtigaissibly augmented by
a completion-based equality handling. However, since werainly interested in the
relationship Hyper tableaux vs. hyper resolution, we haehbenfair to OTTER in a
few cases and forced positive hyper resolution without acdeéeld equality reasoning.
The entries give the runtimes in seconds (such as “0.1688010-1), and, in the sub-
sequent row (such as “5” f@RP010-1), the number of clauses kept in the refutation.
The values in parenthesis are the results where backwasdisygtion is switchedff.
We are aware that this is again unfair to OTTER, but it sugpartiirect comparison
between the Hyper tableaux and hyper resolution calculi.

Let us comment on the results in Figure 2. We distinguish &poups, which are
horizontally separated by double lines; we proceed fromaddmttom.

Propositional and Horn ProblemsSince the calculi underlying the three provers are the
same, we can use such examples to evaluate the quality cdrimepitation. As probably

is to be expected, OTTER (written in C) is about eight timefaasas Hyper (being an
interpreter written in Prolog). The good results for SATCBMan be explained by a
better usage of the built-in term retrieval primitives @ggetract).

Propositional and non-Horn Problems:or theunsatisfiablgoroblems #SC007-1) the
timing results for Hyper are close to that of OTTER withoutka&ard subsumption
(this is unlike to the previous group). We emphasize thatuinémes for Hyper areot
normalized. SATCHMO performs well for the reason stated.

For thesatisfiableSYNO91 examples we can observe a real advantage of the tableaux
approach. Hyper (as well as SATCHMO) immediately stops as ss one branch is

5 A clause isrange restrictedff every variable occurring in the head also occurs in theyho
every clause set can trivially be transformed into ranggiotsd form, se¢Manthey and Bry,
1989.



Hyper Tableaux SATCHMO OTTER
Domain Restriction] Universal Variableg Dom. Restr. Auto
+L.Cut | -L. Cut | +L. Cut | -L. Cut
Problem +Factor | -Factor | +Factor| -Factor || Basic | Lev.Sat.
SYN089-1.005 0.8 0.1 0.1 0.4(0.4)
2640 111(111)
SYNO89-1.010 21 15 0.9 2.8(2.8)
10140 471(471)
SYN089-1.015 123 6.4 30| 152(15.2)
226+0 1081(1081)
MSC007-1.004 0.4 0.1 0.2 0.2(0.2)
Pigeonh. 4in3 4940 49(49)
MSC007-1.005 35 2.0 39 1.3(3.6)
Pigeonh. 5in4 || 26140 187(187)
MSC007-1.006 218 36 81 15(314)
Pigeonh. 6in5 || 1631+ 0 952(952)
SYN091-1.005 0.4 0.1 0.1 17(28)
(satisfiable) 940 15381537
SYN091-1.010 4.1 0.5 0.4 > 0.5h
(satisfiable) 19+ 0
GRP001-1 1.25 0.35 >0.5h| >0.5h 0.1(0.1)
(Group Th.) 2540 1140 5(5)
GRP010-1 156 58 >0.5h| > 0.5h 0.3(0.4)
(Group Th.) 179+0 92+0 42(42)
GRP013-1 > 0.5h > 0.5h >0.5h| > 0.5h 10(7.5)
(Group Th.) 92+0 21222122
MSC006-1 0.9 132 0.8 115 19 2230 3.6(3.7)
(NonObv) 574+6| 50740 534+6| 503+0 70(70)
PRV002-1 131| > 0.5h 13 215][ > 0.5h| > 0.5h 1.0(1.0)
(Progr. Verif.) 490+0 8940 183183
PUZ001-2 31 61 11 14[[ > 0.5h| > 0.5h 3.4(3.1)
(Pelletier55) 226+1| 359+0| 104+1| 117+0 546(546)
PUZ005-1 286 > 0.5h 3.7 1837 > 0.5h| > 0.5h 2.02.9)
(Lion+Unic.) 628+ 35 104+ 13| 495740 255242
PUZ023-1 151 405 0.6 0.8 16| > 0.5h 0.3(0.3)
(Knights+Kn.) 1244+-0| 159+0 31+3 48+0 43(43)
PUZ024-1 9.9 0.2 0.1| >0.5h 0.1(0.1)
(Knights+Kn.) 6040 1640 16(16)
PUZ025-1 672 2321 31 14 7.8| >0.5h 1(1)
(Knights+Kn.) 173+4| 605+0 67+3| 329+0 131(131)
PUZ026-1 104 109 0.8 0.9 0.1| >0.5h 19(27)
(Knights+Kn.) 68+14| 8240 3349 4340 203212
PUZ030-1 2.8 2.3 1.8 1.4 75 720(| 50(> 0.5h)
(Salt+Must.) 1054-10| 119+0]|100+10| 114+0 518
Steamroller 21 0.9 14 52 0.7(1)
(SATCHMO) 4640 2840 68(68)
Steamroller* 123 510 55 22 14] >05h 1(1)
113+1| 590+0 71+1| 320+0 146(146)

Fig. 2. Runtime results for our hyper tableau prover, SATCHMO and BR.



finished and reports the model. OTTER will not recognize titésBability that early
and continues building hyper resolvents.

First-Order Horn Problems. The results in columns 2 and 3 (“domain restriction”)
vs. columns 4 and 5 (“universal variables”) demonstratestifgeriority of the univer-
sal variables approach within Hyper tableaux. For the dtet@mples, it prevents the
prover from enumerating instances of the reflexivity axigns= X; instead it extends
with X = X in the first step, and then subsumes all possibly upcomirignigss of it.

The Hyper prover in the domain restriction setting is coraps to SATCHMO.
The superiority of Hyper to SATCHMO in this case might be o@ight-bounded enu-
meration of literals. The rationale for this strategy is #ssumption that if a refutation
is within the possibilities of our prover at all, then it whle discovered at a shallow
term level. This is because as the weight bound gets too hizaxtpo many terms will
be generated in purifying substitutions and the prover lpsts

The success of OTTER compared to Hyper @HP013-1) can be explained by
using a more clever weighting function.

First-Order non-Horn Problems.Hyper performs well on all examples. Notice that
in many cases SATCHMO fails to find a refutation, in particufahe complete level
saturation strategy is employed. When relating the timagylts of OTTER to that of
Hyper, one should keep in mind that there is a factor of eighid observed due to
the quality of implementation (cf. the first group). If noriimad, the results for Hyper
would be better than that of OTTER in almost all cases. Fumtloee, as was also argued
for in the previous group, OTTER seems to use a more clevaghtiap function. This
lets us speculate that Hyper can be improved significantliebyning the weighting
function from OTTER.

In this problem group, the calculi underlying the three mevdeviate significantly.
The effects mentioned in the previous group apply here ak tuglin an even more
drastic way. For instance, the enumeration of ground imss0fX = X in PUZ001-2°
will happen in every branch (Hyper with domain restrictiode&8ATCHMO). By enu-
merating the ground instances a higher local search spatieef&LD-resolution in hy-
per extension steps results. This might be one of the keyetsuccess of the universal
variables. This claim is supported by almost all of the peazxamples anBRV002-1.

A counterexample i$1SC006-1, but here the set of ground instances is small (four
constants, no function symbols).

Next we discuss the merits &ctorizationandlevel cut For this, column 3 (resp.
5) has to be compared to column 2 (resp. 4). There are sevenapdes where these
techniques turn out to be useful, with the most striking dasiegPUZ005-1. Here, a
seven place disjunctiomondayX) V - -- V sundayX) is present, which can be used for
extension steps at almost every time. Cutting off uselepicapions of this clause is
most effective in this case. Another example where thisiapjs “steamroller”. In the
“steamroller*” version (taken frorfLovelandet al., 1993), a redundant clause

animalX), animalY) — quicker(X,Y) ;smallerY, X)

6 [Beckert and Hahnle, 1992eport on a proof of this problem in about 4 seconds, but their
prover has special inference rules for equality.



is added, which results in many useless case analyses. @uergolves this by the level
cut facility; the SATCHMORE provellovelandet al, 1995 solves this problem by a
relevance analysis ¢fuicker’ is pure in the input clause set). It should be noted that the
other drastic example frofiLovelandet al., 1995 (Example 19) which demonstrates
the usefulness of the relevance analysis can also be soihaibut 1 second with our
prover when the level cut is employed.

We switched the two flags individually in all four combinaig but did not report
on the results in Figure 2. Instead we summarize our obsengthat thdevel cutis
far superior to the factorization rule. All problems coresied by us can be computed in
almost the same (quite often even in shorter time) if leveisused alone.

To summarize our experiments, we think that the design otalaulus and proof
procedure results in a significant improvement of bottom+updel-based theorem
proving.

6 Conclusion

We presented thbyper tableawcalculus, which combines ideas from resolution (sub-
sumption, universal variables) with analytic tableaux. M#ained a completeness re-
sult which allows for a reasonable procedure without baakiing over the generated
tableaux. We demonstrated its practical usefulness usiaggles from various prob-
lem domains. We are aware that the calculus/proof procectamestill be consider-
ably improved by lifting the ground terms generated in punij substitutions to rigid
variables. Another interesting improvement is proposedBilfon, 1996 within his
disconnection method. This is a proof confluent calculusciviextends the similar-
ity to resolution with respect to universally quantified evaore. Translated into our
framework the idea is to avoid rigid variables by extendirtyranch not only with an
input clause but additionally by appropriate instancesef‘bther parent clauses”. If
the input clauses contaip(x),q(x) <+ andr < p(f(y)) and a tableau is constructed
which contains a branch with(x) stemming from the disjunctive fact, an extension
with r < p(f(y)) is possible. But additionally the instangg(f(y)),q(f(y)) « of
p(x),q(x) « has to be fanned below(x) before the extension with < p(f(y)) is
carried out. We are currently adapting this idea to hypdetaix and its implementa-
tion.

An intersting relation to SLO-resolution was pointed out dy anonymous ref-
eree. As it is introduced ifiRajasekar, 1999SLO-resolution is a goal oriented cal-
culus for positive disjunctive programs which is preserdsdan extension of SLD-
resolution. If all literal signs from the program clauses drom the goal clause are
complemented (which preserves satisfiability) our hyplele@ux calculus corresponds
to SLO-resolution. It is exactly the case for ground derivat, whereas in non-ground
cases our calculus is an extension of SLO-resolution. Ailddtanvestigation of this
topic can be found ilBaumgartner and Furbach, 1996

Finally it is worth mentioning, that this kind of model gea&on by tableau calculi
is very well suited for the construction of minimal modelsgddence for non-monotonic
reasoning. IfNiemela, 1996b; Niemela, 1996a variant of hyper tableaux is used to



compute minimal model entailment of negated atoms ar{Big and Yaha, 1996a
formalization of SATCHMO is used to derive minimal models.
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