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Abstract. This paper introduces a variant of clausal normal form tableaux that
we call “hyper tableaux”. Hyper tableaux keep many desirable features of ana-
lytic tableaux while taking advantage of the central idea from (positive) hyper
resolution, namely to resolve away all negative literals ofa clause in a single in-
ference step. Another feature of the proposed calculus is the extensive use of uni-
versally quantified variables. This enables new efficient forward-chaining proof
procedures for full first order theories as variants of tableaux calculi.

1 Introduction

This paper introduces a variant of clausal normal form tableaux that we call “hyper tab-
leaux”. Hyper tableaux keep many desirable features of analytic tableaux while taking
advantage of the central idea from (positive) hyper resolution. From tableau calculi we
benefit from the following features:

– Tableau calculi offer a rich structure for the whole derivation process; important
parts of the derivation history are stored in a tableau and can be used for subsequent
optimizations.

– As a byproduct of this structure we get, in our case, a model construction procedure.
At any state within a derivation each branch of the tableau isa representation of a
partial model for the given set of clauses. This property enables efficient minimal
model reasoning, as demonstrated in[Niemelä, 1996b; Niemelä, 1996a].

– For disjunctive datalog, i.e. first order logic without function symbols our calculus
offers a decision procedure, by applying the subsumption technique introduced.

From resolution we incorporate the following:

– The “hyper-property”, namely to resolve away all negative literals of a clause in a
single inference step. From a resolution standpoint our calculus can be described
as a positive hyperresolution calculus plus additional structure for controlling the
generation of new clauses. In saturation based theorem proving the latter turned out
to be a major problem; our calculus offers a solution by usinga tableau structure
and thus enabling refinements likeoptional factorization, regularity, level cut and
efficient memory management. In resolution terminology, the “level cut” facility
enables a more goal-oriented behavior of hyper-resolutionby deletion of irrele-
vant derived clauses; by “memory management” we mean the possibility to delete
derived clauses by simple looking at the tableaux structureinstead of using a sub-
sumption-based search through the clauses.



– We further make extensive use of universally quantified variables. These enables
“subsumption” as the primary pruning technique, which is much stronger than the
usual clausal tableaux pruning technique based on syntactically equal literals. This
results in new efficient forward-chaining proof proceduresfor full first order theo-
ries as variants of tableaux calculi.

There is previous work on defining forward-chainingproverslike SATCHMO ([Man-
they and Bry, 1988; Lovelandet al., 1995]) and the MGTP system ([Fujita and Hasegawa,
1991]). These systems are high-performance theorem provers and aparallel version of
MGTP even discovered new mathematical results in finite algebra. However, these ap-
proaches have the disadvantage that they are only applicable to range restricted clauses.
Of course, there is a work-around which is used in these provers, namely the introduc-
tion of so called domain predicates. This results in an enumeration of Herbrand terms,
thus giving up the full power of unification. Our experimentsdemonstrate that there are
a lot of examples where the domain enumeration is a real disadvantage.

Our work can be seen as a formalization and extension of work done around SAT-
CHMO. It extends the above cited work done in the following sense:

– We do not restrict to range restricted clauses.
– In SATCHMO the “domain predicate” technique is employed, which guarantees

that the tableau under construction containsgroundliterals only. We use the domain
predicate technique in a much more restricted way, namely for those clauses only
which contain a common variable in more than one positive literal. Since this can,
of course, never be the case for Horn clauses, we get as consequence positive hyper
resolution for Horn clauses. Where SATCHMO would put groundinstances of the
unit clause, say,P�x� on the branch, we put the more compact formula�xP�x� there
instead.

– We give a rigorous completeness proof.

Because of the implicitly universally quantification the semantics of our variables
is different from the standard semantics for “free” tableaux variables[Fitting, 1990],
according to which a free variable is a placeholder for asingleterm (also called arigid
variable). One crucial point is that our “universal” variables allow to employ “subsump-
tion” instead of the weaker, usual test for identical branchliterals in tableaux with rigid
variables. Further, unlike as in rigid variable tableaux, our extension inference rule does
not act on the variables of the tableaux to be extended. We canthus look at “one branch
at a time”, isolated from the other branches and the variables there.

Another important point is that it seems extremely difficultto define a fairness con-
dition for derivations of tableaux with rigid variables which can be reasonably imple-
mented. By “reasonably implementable” we exclude the widely used backtracking ori-
ented iterative deepening over increasing resource bounds. Such a scheme, as it is pro-
posed e.g. in[Fitting, 1990; Beckert and Hähnle, 1992] (the latter deals with a mixed
rigid/universal variable model) is in principle not necessary for proof confluent calculi
like analytic tableau.

Our hyper tableaux calculus is proof confluence and hence it can be implemented
in a straightforward way without backtracking over the generated tableaux.



In [Hähnle, 1995] a tableaux calculus is presented and proven to be complete, which
is very similar to the ground version of hyper tableaux. However, it is left open there
how to lift the proof to the first order level (which is far frombeing trivial). Also imple-
mentational issues are not considered. Our paper can thus also be seen as a contribution
to solve open issues in that paper.

The rest of this paper is structured as follows: after defining the formal framework
in the next section we introduce in Section 3 the hyper tableaux calculus. In Section 4,
the main part of the paper, a strongly complete variant of thecalculus for the first-
order case is introduced together with a powerful redundancy criterion and a fairness
condition. Finally we discuss a proof procedure and report on practical experiments.

2 Preliminaries

In what follows, we assume that the reader is familiar with the basic concepts of first-
order logic. Aclauseis a multiset of literals, usually written as the disjunction A1 �� � ��Am� �B1� � � �� �Bn or the implicationA1 � � � � �Am � B1 � � � � �Bn (m� 0,n � 0). As
usual, the variables occurring in clauses are considered implicitly as being universally
quantified, a clause is considered logically as a disjunction of literals, and a (finite)
clause set is taken as a conjunction of clauses. A ground clause is a clause containing
no variables. LiteralK is aninstanceof literal L, written asK � L or L � K, iff K � Lγ
for some substitutionγ. Let L denote the complement of a literalL. Two literalsL and
K arecomplementaryif L � K.

Let X be a literal or a clause.Xg is the set of all ground instances ofX (wrt. a given
signature which contains at least one constant symbol). Similarly, if X is a clause set or
literal set, thenXg :� �X	X Xg.

Definition 1 ((Literal tree, Clausal Tableau) [Letz et al., 1994]). A literal tree is a pair
�t �λ� consisting of a finite, ordered treet and a labeling functionλ that assigns a literal
to every non-root node oft. Thesuccessor sequenceof a nodeN in an ordered treet is
the sequence of nodes with immediate predecessorN, in the order given byt.

A (clausal) tableau Tof a set of clausesS is a literal tree�t �λ� in which, for every
successor sequenceN1 � � � � �Nn in t labeled with literalsK1 � � � � �Kn, respectively, there
is a substitutionσ and a clause
L1 � � � � �Ln� � S with Ki � Liσ for every 1� i � n.

K1 � � � � �Kn� is called atableau clauseand the elements of a tableau clause are called
tableau literals.

Definition 2 ((Branch, Open and Closed Tableau, Selection Function)). A branchof
a tableauT is a sequenceN0 � � � � �Nn (n � 0) of nodes inT such thatN0 is the root
of T, Ni is the immediate predecessor ofNi
1 for 0 � i � n, andNn is a leaf ofT.
We say branchb � N0 � � � � �Nn is a prefix of branchc, written asb � c or c � b, iff
c � N0 � � � � �Nn �Nn
1 � � � � �Nn
k for some nodesNn
1 � � � � �Nn
k, k � 0.

Thebranch literalsof branchb � N0 � � � � �Nn are the set lit�b� � 
λ �N1� � � � �λ�Nn��.
We find it convenient to use a branch in place where a literal set is required, and mean its
branch literals. For instance, we will write expressions like A � b instead ofA � lit �b�.



In order to memorize the fact that a branch contains a contradiction, we allow to
label a branch as eitheropenor closed. A tableau isclosedif each of its branches is
closed, otherwise it isopen.

A selection functionis a total functionf which maps an open tableau to one of its
open branches. Iff �T � � b we also say thatb is selected in T by f.

Note that branches are always finite, as tableaux are finite.
Fortunately, there is no restriction on which selection function to use. For instance,

one can use a selection function which always selects the “leftmost” branch.

Definition 3 ((Branch Semantics)).Let L be a possibly infinite set of literals. Define
L� :� 
�L

�
L � L� as theclause setof L, where�F denotes the universal closure of

formulaF . Whenever we take an atom setA where a set of formulae were required, we
implicitly assume its clause setA� . By themodel of an atom set Awe mean the minimal
Herbrand model ofA� which we denote by��A��. Using a previous convention, we thus
identify in particular a branchb with the clause set�lit �b��� . Hence, it is meaningful
to say that a branchb is unsatisfiable, and also��b�� �� C is defined (the least Herbrand
model of the clause set ofb satisfies the clauseC).

Based on the above definitions we now introduce hyper tableaux and the inference steps
of the calculus.

3 The Calculus

We are going to define the calculus of hyper tableaux as a process which generates a
restricted form of clausal tableaux. For this, we need one more preliminary definition.

Definition 4 ((Pure clause)).A clauseC � A1 � � � � �Am � B1 � � � � �Bn is calledpure iff
variables are not spread over distinct head literals, i.e. iff Var �Ai � � Var�A j � � /0, for
i � j � 
1� � � � �m� and i �� j. A substitutionπ is a purifying substitutionfor C iff Cπ is
pure.

Obviously, every non-pure clause can be turned into a pure instance thereof by applica-
tion of an appropriate substitution.

Definition 5 ((Hyper tableau)). Let S be a finite set of clauses andf be a selection
function.Hyper tableauxfor Sare inductively defined as follows:
Initialization step: A one node literal tree is a hyper tableau forS. Its single branch is
marked as “open”.
Hyper extension step:If

1. T is an open hyper tableau forS, f �T � � b (i.e. b is selected inT by f ) with open
leaf nodeN, and

2. C � A1 � � � � �Am � B1 � � � � �Bn is a clause fromS (m � 0, n � 0), calledextending
clausein this context, and



3. σ is a most general substitution1 such that��b�� �� � �B1 � � � � � Bn�σ (referred to as
hyper condition), and

4. π is a purifying substitution forCσ,

then the literal treeT � is a hyper tableau forS, whereT � is obtained fromT by attaching
m� n child nodesM1 � � � � �Mm�N1 � � � � �Nn to b with respective labels

A1σπ � � � � �Amσπ ��B1σπ � � � � � �Bnσπ

and marking every new branch�b�M1� � � � � � �b�Mm� with positive leaf as “open”, and
marking every new branch�b�N1� � � � � � �b�Nn�with negative leaf as “closed”.

We will write the fact thatT � can be obtained fromT by a hyper extension in the
way defined asT �b�C�σ�π T �, and say thatC is applicableto b (or T). Note that the
selection function does not appear explicitly in this relation; instead we prefer to letf
be given implicitly by the context.

Note that we donot take new variants, and that the substitutionσπ is not applied to
the whole tableau but only to the extending clause. Condition 3, thehyper condition,
expresses thatall (instantiated) body literals have to be satisfied by the branch to be
extended. This similarity to hyperresolution[Robinson, 1965] coined the name “hyper
tableaux”.

Expressing the hyper condition slightly different, we marka branch as “closed” if
and only if it is unsatisfiable. For instance, a branch containing literalsP�x� and�P�y�
is closed. In the standard tableaux with rigid variables (e.g. in [Fitting, 1990]) a branch
is considered as closed if it contains a complementary pair of literals (notice thatP�x�
and �P�y� are not complementary). Of course, these notions coincide in the ground
case.

The need for a purifying substitution in condition 4 in hyperextension step will
guarantee the soundness of hyper tableaux calculi. The underlying property is the easy
to prove observation that� �A � B� � ��A� �B� holds if clauseA � B is pure. The
substitutionsσ andπ have to be applied in this order because if applied in exchanged
order, there is no guarantee that the resulting instance of the extension clause is pure.
This would destroy soundness.

Example 6.For illustration consider the single-literal branchb� r � f �X�� and the clause
C � p�X� �q�X �Y� � r �X�. Then, ��b�� �� �r �X�σ, whereσ � 
X � f �X � ��. The head
�p�X� �q�X �Y��σ � p� f �X � �� �q� f �X � � �Y� is impure. Taking e.g. a purifying substitu-
tion π � 
X � � a� enables a hyper extension step, yielding the hyper tableau whose
two open branches areb1 � �r � f �X�� �p� f �a��� andb2 � �r � f �X�� �q� f �a� �Y��. Now,
the intended model candidates for the input clause set are just ��b1�� or ��b2��. It is impor-
tant to note that the models are derived “locally” from the paths alone, but not from
the whole tableaux. However, for this construction to be sound we have to require that
�b1 � �b2 is a logical consequence of�b, which indeed holds due to the application of
π.
1 Here, “most general” means that whenever��b�� �	 
 �B1 � 
 
 
 � Bn�δ for some substitutionδ,

then σ � δ �Var�B1 � 
 
 
 � Bn��. The notationσ � δ �V � means the restriction of the “more
general” relation� to the variablesV. See[Siekmann, 1989].



We turn again back to Definition 5. The hyper condition in hyper extension step is
— intentionally – given in a pure semantical way. With view toa proof procedure it is
mandatory to decide (and not only to semi-decide) whether a clauseC and most general
substitutionσ as required exist. Fortunately, this is possible:2

Proposition 7 ((Implementing the Hyper Condition)). For every finite atom set A and
conjunction of atoms C� B1 � � � � � Bn: if there is a substitutionγ for C such that
��A�� �� � �B1 � � � � � Bn�γ then there is a SLD resolution refutation of the clause set
P � A� 
�B1 � � � � � �Bn� with computed answerσ � γ �Var�C�� and using exactly�
C

�
resolution steps. If there is no suchγ, then each of the finitely many SLD derivations

of P finitely fails.

Notice that the input clause set for SLD resolution is very simple: it consists of only one
negative clause and some positive unit clauses. We prefer this formulation over the unit
hyper resolution procedure in[Chang and Lee, 1973] because its answer completeness
result gives us immediately thatσ is amost generalsubstitution as required in the hyper
condition.

The hyper extension step has the property that a branch is closed if and only if it
ends in a negative literal. Thus it holds:

Proposition 8. Every hyper tableau is a clausal tableau where every inner node is
labeled with a positive literal. The converse does in general not hold.

It is this property that motivates us to take the body literals of extending clauses into the
extended tableaux; leaving them away would no longer give clausal tableaux (however,
this is not a crucial point).

Definition 9 ((Hyper Tableaux Derivation)). Let S be a finite clause set, called the
set of input clauses, and let f be a selection function. A (possible infinite) sequence
T1 � � � � �Tn � � � � of hyper tableaux forS is called ahyper tableaux derivation from Siff T1

is obtained by an initialization step, and fori � 1, Ti�1 �bi�1 �Ci�1 �σi�1�πi�1 Ti for some
clauseCi�1 � S, and some substitutionsσi�1 andπi�1. This is also written as

T1 �b1 �C1 �σ1 �π1 T2
� � �Tn �bn �Cn �σn �πn Tn
1

� � �

A hyper derivation is called ahyper tableaux refutationif it contains a closed tableau.

Note that extension steps are no longer applicable to a closed hyper tableau. Figure 1
shows an example refutation.

We comment on the relation to hyper resolution. Consider first the special case of
Horn theories. Any hyper tableaux refutation develops a tableaux withone singleopen
branch, which is closed in the concluding step. In this branch, the literals are either
given positive unit clauses or positive literals derived bymeans of definite input clauses
from the branch. Further, since all input clauses are Horn, they (and all their instances)

2 The missing proofs are contained in the long version. It can be obtained in the WWW using
the URL���� ������ ��
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r �a�
r �a� �r � f �Z�� �
p�X � �q�X �Y� � r �X�
p�X � � q�X �Y�
� p�a�
� p� f �b��

(1)

r � f �Z��

�p� f �b��

�p� f �b��

p� f �b��

p� f �b��

q� f �b� �Y�p�a�

�p�a� p�a�

�p�a�

q�a�Y�
(2)b(2)a

(4) (3)

(4)

(5) (3)

(5)

(1)

(3)

(2)

(5)

(4)

Fig. 1. A sample hyper tableaux refutation. The clause set is given by clauses (1)–(5). Variables
are written in capital letters. The usage of the clauses in extension steps is indicated at the edges.
The initial tableaux is set up with clause (1) (there is no other choice). Extension atr �a� with
clause (2) usesσ 	 �x � a�; sinceY is pure in the resulting head, we can chooseπ 	 ε which
leaves usY as a universal variable. This extension step is indicated as“(2)a” (the body literals are
not depicted). The further refutation of the left subtree should be obvious. For the right subtree
we can extendr � f �Z�� with clause (2) again: first computeσ 	 �x � f �Z��. The resulting head
p� f �Z���q� f �Z� 	Y� of clause (2) is not pure; we guessπ 	 �Z � b� in order to find the refutation
immediately.

are trivially pure. Hence there is never need for a purifyingsubstitution. In this case
“hyper tableaux” is the same as hyperresolution(with forward subsumption).

Now for the general case. Consider Example 6 again. Hyper resolution when ap-
plied to the clausesr � f �X�� (corresponding to the branchb) and clauseC yields the
clausep� f �X�� � q� f �X� �Y�, which is, of course, different to the purified instance, e.g.
p� f �a�� � q� f �a� �Y�. Due to this purifying of variables it is possible to split the head
of a rule as it is done by a hyper extension step. In hyper resolution terminology, this
allows to use only the units from a branch as satellites of an hyper resolution step. In
a hyper resolution calculus this can only be achieved by introducing an extra splitting
rule.

Using the tableaux in Figure 1 again we can argue for one more interesting differ-
ence to hyper-resolution. There exists a hyper-resolutionderivation ofr � f �Z�� which is
similar in structure to the closed hyper tableaux below the left branch in Figure 1. All
the derived (positive) clauses in that derivation, such asp�a� � q�a�Y� � r � f �Z��, are
subsumed now byr � f �Z��. However, in hyper tableaux nosearchthrough the clauses
is necessary to delete the respective purified instances, because they all belong to the
closed subtree belowr �a�. This observation is what we meant by the term “memory
management” in the introduction, and it serves as an examplewhere taking a tableaux
view can contribute to resolution.



4 Fairness, Redundancy and Completeness

We develop a completeness result of the above defined calculus using a model construc-
tion technique for open hyper tableau. The underlyingfairnesscondition guarantees that
anyderivation eventually leads to a refutation (for unsatisfiable clause sets, of course).
The result allows to include a redundancy criterion based onsubsumptionfor search
space pruning.

4.1 Redundancy, I-Paths and Fairness

For practical reasons, tableaux calculi should use a “regularity check” which forbids to
have repetitions of the same literal along along a branch.

Definition 10 ((Redundancy)). A ground clauseC is redundantin a (possibly infinite)
set of atomsA iff ��A�� �� C; on the general level, a clauseC is redundant inA iff ��A�� �� C�
for every ground instanceC� �Cg.

Intentionally, a clause is redundant iff each of its ground instances is satisfied by the
interpretation given byA. It is, of course, different to say that the universal closure of
the clause is satisfied by the minimal interpretation given by A.

Furthermore, it would be different to use the conditionA
�� C instead (i.e. every,

not necessarily minimal, model ofA is a model ofC). The difference is important:
consider e.g. the single literal branchB and the clauseA � B�C. It holds ��B�� �� A �
B�C, howeverB ��� A � B�C. Thus, using the definition as it stands more clauses are
redundant. More severely, in the alternate approach we wereforced to extend branchB
with A � B�C in order to satisfy it. However, this is obviously not possible by a hyper
extension step.

Our notion of redundancy covers the above-mentioned regularity check, because
if A is on a branch and hyper extension results in a second occurrence ofA, then the
tableaux clause of whichA is part of, say� � � �A� � � � � B1 � � � � �Bn is a logical conse-
quence ofA, and hence redundant. For hyper tableaux we can easily allowa stronger
condition than regularity based on literal subsumption:

Lemma 11 ((Sufficient Redundancy Criterion)). Let A be an atom set andC�A1 � � � � �Am

� B1 � � � � �Bn be a clause. If��A�� �� B1 � � � �� Bn implies A� � Ai , for some variant A� of
A � A and some i� 
1� � � � �m�, then C is redundant in A.

For instance, in the example in Figure 1, the clauser � f �g�X��� �q�X� � r �X� would
be redundant in the atom set given by the branch up to point (2)b, becauser � f �X � �� �
r � f �g�X���, wherer � f �X � �� is a variant of the branch literalr � f �X��.

In order to formalize fairness, we need one more preliminaryconcept (“i-paths”).
For this, we always suppose a selection function as given which, however, will not
referred to explicitly. Furthermore,D always refers to a derivation written as

D � T0 �b0 �C0 �σ0 �π0 T1
� � �Tn �bn �Cn �σn �πn Tn
1

� � �

Definition 12 ((I-Path)). Let bk be a selected branch inD. Then ani-path (infinite
path) starting frombk is a sequencebk �� bk
 i0 � �bk
 i1 �bk
 i2 � � � � of branches such that



1. bk �� bk
 i0 � � bk
 i1 � bk
 i2 � � � �
2. i j � i j
1 for all j � 0 (strictness) and
3. � l � k � j � l such thatbk
 j appears in the sequence (infiniteness).

Hence, i-paths are just sequences of branches that are infinitely often extended in the
derivation. Note that for a finite derivation there are no i-paths.

To guarantee fairness it is sufficient to require that if someextension step is possible
for a clause in a branch that is infinitely often extended, theclause becomes redundant
at some point for each infinitely often extended continuation of the branch. To formalize
this we need a notion of redundancy for an i-path.

Definition 13 ((Path semantics, Redundancy in a Path)).Where appropriate, we iden-
tify an i-path p � bk �� bk
 i0� �bk
 i1 �bk
 i2 � � � � with its atom set as follows:A�p� �
� j�0A�p� j , whereA�p� j � lit �bk
 i j �. We have to generalize Definition 10 towards
paths: a clauseC � A1 � � � � �Am � B1 � � � � �Bn is redundant in an i-path piff C is re-
dundant inA�p�.
Thus, given a path, we look at the atoms of its chain limit in order to determine redun-
dancy.

Definition 14 ((Fairness)). The derivationD from a clause setS is calledfair iff for all
k � 0, Tk �bk �C�σ �π T � for some tableauT � implies thatCσπ is redundant in every i-path
starting frombk.

Notice that all finite derivations are fair and fairness is anissue only when infinite
derivations are concerned. To state the completeness results we need a notion of afin-
ished derivationby which we mean an infinite derivation or a derivation where either
a closed tableau or a tableau with afinished branchis obtained. A branch is finished
when we know that it cannot be closed no matter what extensionsteps are taken. The
notion of redundancy can be employed to formalize this notion.

Definition 15 ((Finished Branch)). A branch in a tableau in a derivation from clause
setS is calledfinishediff every clause inS is redundant in the branch.

A derivation from clause setS is calledfinishediff (i) there is closed tableau in the
derivation or (ii) there is a tableau with a finished branch inthe derivation or (iii) the
derivation is infinite.

4.2 Completeness

There exist various completeness results which could be considered to be applicable to
our case. The SATCHMORE program is proven complete in[Lovelandet al., 1995]
for range-restricted programs (thus only ground tableau are considered). We are aware
of the fairness-based completeness results forgroundcalculi of our type in[Hähnle,
1995; Fujita and Hasegawa, 1991]. Unfortunately, the widely used standard lifting proof
technique (see e.g.[Fitting, 1990] for the tableau case), and also the refined approach
with universal formulas of[Beckert and Hähnle, 1992], is not applicable in our case
because it would only give us theexistenceof a hyper tableau refutation. Since we aim
at a completeness result forevery(fair) strategy, we have to develop a new proof from
scratch.



Theorem 16 ((Models of Open Hyper Tableaux.)).Let D be a (possibly infinite) fair
finished derivation D� T0 �b0 �C0 �σ0 �π0 T1

� � �Tn �bn �Cn �σn �πn Tn
1
� � � from a possibly in-

finite, possibly non-ground, clause set S, such that every Ti (i � 0) is open. Then S is
satisfiable.

Proof. If the derivation is finite, there is a tableau with a finished open branchb. Hence,
by Definition 15, every clauseC � S is redundant inb. By definition of redundancy
(Def. 10) this is the same as��b��C. In other words,S is satisfiable by virtue of��b��.

Otherwise the derivation is infinite and there is an i-pathp � b0 �b0
 i1 �b0
 i2 � � � �
starting fromb0. We show ��A�p��� �� S� Since we deal with Herbrand interpretations
this is equivalent to��A�p��� �� Sg �Now, suppose, to the contrary, that��A�p��� ��� Sg holds.
Hence

��A�p��� ��� C� for some ground clauseC� � Sg. (1)

The clauseC� is of the form C� � A�1 � � � � �A�m � B�1 � � � � �B�n for some corresponding
clauseC � A1 � � � � �Am � B1 � � � � �Bn from S. Now, Equation 1 implies

��A�p��� �� B�1 � � � �� B�n and ��A�p��� ��� A�1 � � � �� A�m (2)

From 2 we conclude that there exists afinitesubsetA� � A�p� such that��A� �� �� B�1� � � ��
B�n. Recall thatA�p� is the chain limit of every increasing atom setsA�p�0 � A�p�1 � � � �.
Hence, A� � A�p�l , for somel , whereA�p�l � lit �b0
 i l �. Now we know��bi l ��

�� B�1 �� � � � B�n. By virtue ofC�, a hyper extension stepTi l �bil
�C�σ �π T � exists, whereσ andπ

are appropriate substitutions such thatC� is a ground instance ofCσπ. By fairness,Cσπ
is redundant in every i-path starting frombi l . Hence,Cσπ is in particular redundant in
the i-path3 p� � bi l �bi l�1 � � � �, wherep � �b0 �bi1 � � � � �bi l�1� � p�. Thus, sincep andp� are
the same wrt. limits,Cσπ is trivially also redundant inp. But then, by the definition
of redundancy,C� is redundant inp, too. This means just��A�p��� �� C� which plainly
contradicts the choice ofC� (Equation 1). Hence, the assumption must be wrong, and
thus the theorem follows.

For theorem proving applications the converse direction ofthe previous theorem
usually is more interesting: from a given (possible infinite) set ofunsatisfiableclauses
infer that a refutation exists, i.e. that a tableau is derivable where every branch is closed.

It is clear that once a closed tableau is derived, the derivation cannot be continued,
because the “hyper extension step” is no longer applicable.However, it isnot obvious
that this closed tableau will be derived afterfinitelymany steps (i.e. it is not obvious that
a refutation is order isomorphic toω — not even for denumerable clause sets, because
an inference rule might be non-continuous). Essentially, it requires to apply Königs
lemma and to prove the continuity of the tableaux transforming operators.

Fortunately, this “refutational completeness” follows easily within our setup as the
proof below shows. This proof makes essentially use of the fact that we view tableau
construction as aprocess(derivation). An alternative approach is to define tableauxas
static objects, which obey a closure property of branches similar to our fairness con-
dition. This approach then requires to allow branches to be of infinite length, whereas

3 Here, “�” denotes the append function for sequences.



we consider limits of branches offinite length. The alternative approach is attractive
because it needs less formalism than our approach, and the proof of the theorem cor-
responding to our Theorem 16 is very simple[Hähnle, 1995]. On the other hand, we
think that our formalism now pays off in order to obtain the proof of refutational com-
pleteness (without appealing to compactness, of course):

Corollary 17 ((Refutational Completeness)).Let S be a possibly infinite, possibly non-
ground, unsatisfiable clause set not containing the empty clause. Then any fair finished
derivation D from S is finite and is a refutation, i.e. D is of the form D� T0 �b0 �C0 �σ0 �π0

T1
� � �Tn �bn�Cn �σn �πn Tn
1 for some n� 0, and Tn
1 is a closed tableau.

Proof. By Theorem 16 applied in the contrapositive direction we know that any fair
derivation must contain some non-open, i.e. closed, tableau T. It is a trivial inductive
consequence of our definition of “derivation” that every tableauTi (i � 0) in a derivation
contains only finitely many nodes, sayn�Ti �, and thatn�Ti
1� � n�Ti � (the initialization
step produces a tableau with finitely many nodes, and every hyper extension step applied
to Ti adds only finitely many nodes toTi , yieldingTi
1). Hence, forD to be infinite, we
would have to have�n�T0� � 1� � n�T1� � � � � � n�Tn� � � � � � n�T � to be an infinite
chain which is impossible by well-orderedness of natural numbers. HenceD contains
only finitely many elements.

5 Implementation

We have developed and implemented a proof procedure according to the results of the
previous sections; its characteristics are, that it (a) works for the full first-order logic4,
and (b) does not backtrack over the tableaux generated alongthe derivation, and (c) uses
universally quantified variables, and (d) employs subsumption (instead of “regularity
check”). To our knowledge, no other tableaux proof procedure with these properties
exists. The perhaps most advanced (non-hyper) tableaux proof procedure is the one in
[Beckert and Hähnle, 1992] which uses both rigid and universal variables, but does not
have property (b): if there is no refutation within a given resource bound of a maximal
number of formula copies allowed for the tableaux generation, the tableau generated os
far is given up, and a new one is constructed with increased bounds.

Having a proof procedure without backtracking is in particular important for the
case of tableaux, because tableaux calculi usually are proof confluent (with the ex-
ception of model elimination) and so there is in principle noneed for backtracking. In
contrast to that, all full first-order tableaux proof procedures known to us[Fitting, 1990;
Hähnleet al., 1994; Beckert and Posegga, 1994; Oppacher and Suen, 1988] either em-
ploy some form of backtracking or use theγ rule to ground-instantiate the variables; we
suspect the reason for this to be that no one is aware of a fairness condition which can
be reasonably implemented without backtracking.

Our proof procedure is described in more detail in the long version of this paper.
Here, we will only sketch the main idea. As mentioned in the introduction, the difficult

4 By a full first order tableaux calculi we mean a calculus whichuses variables at the inference
level in order to abstract from terms; excluded are calculi which enumerate ground clauses,
e.g. SATCHMO[Manthey and Bry, 1988] and MGTP[Fujita and Hasegawa, 1991].



issue for tableaux calculi is how to achieve fairness. We useaweight boundon the terms
which may appear in the tableaux under construction. More precisely, theweightof a
term (or literal) is the number of function symbols occurring in it with arity greater or
equal to 1. Theweightof a tableaux is the weight of a maximal literal occurring in it.

Now, we start with the tableauT obtained by an initialization step and initially set
the weight boundw to some low value, say 1. Then, all those hyper extension steps are
carried out which (1) do not violate the current weight bound, and (2) do not result in
new leafs which are subsumed by the branch to be extended. Dueto subsumptionand
the weight bound there is no risk of an infinite loop here. The underlying observation is
that there is no infinite sequenceL0 �L1 � � � � �Ln � � � � of literals, each being lighter thanw
and such thatLi is not subsumed by someL j , for j � i.

If the current weight boundw is exhausted,w is increased by some constant value
(we use 1) and the next round starts with the hyper tableaux just obtained with depth
boundw.

In sum, we never backtrack over the generated tableaux, and fairness is achieved
by stepwisely increasing the weight bound and exhausting all hyper extension steps
modulo subsumption within the given weight bound.

ImprovementsWhen interested primarily in refutational completeness (as we are) sev-
eral improvements are conceivable. Currently, we implementedfactorizationandlevel
cut.

By factorizationwe mean to mark an open branchb � L1 � � � � �Lk � � � � �Ln (k � n)
as closed in presence of an open branchbL � L1 � � � � �Lk �L, provided thatLnδ � L for
some substitutionδ (and, of course, thatL andLn are labels of different nodes in case
k � n� 1). Note thatδ is not applied to the tableaux.

The motivation for factoring is to avoid unnecessary re-derivation of subproofs; fac-
torization and its relatives have been studied in the context of model elimination[Letz
et al., 1994]. What we call factorization was proposed in a similar way forSATCHMO
(called “complement splitting” in[Manthey and Bry, 1988]).

For thelevel cut improvement we keep track whether an inner node is “used” to
close the subtree below it. A nodeN is “used” in this sense if its label resolves away
at least one negative literal in the SLD-refutation of at least one extending clause in
the subtree belowN. We can take advantage of this informationafter a closed subtree
below nodeN is derived. Namely: ifN is not used, then the extension step yieldingN
was unnecessary to obtain the closed subtree belowN. As a consequence, we can think
of that extension step as if it were not carried out at all and “cut off” that level, i.e. we
delete all open brother nodes ofN. Of course, the cancelling effect is better the more
open sibling nodes are cut in this way, and the more root-mostthis occurs. The level
cut facility was also considered as “proof condensation” inthe HARP tableau prover
[Oppacher and Suen, 1988].

5.1 Practical Experiments

The proof procedure of the previous section is implemented in a prototypical way as an
interpreter in ECLiPSe Prolog. We ran several examples fromvarious problem domains,



and related our implementation to SATCHMO[Manthey and Bry, 1988] and OTTER.
The underlying hardware is a SUN 4 workstation for all provers.

The respective entries in Figure 2 are to be read as follows: Aproblem identifier
such as

�
��� �� � refers to its index in the TPTP problem library[Sutcliffeet al., 1994].
Columns 2 – 5 contain the entries for our Hyper tableaux prover (simply called “Hyper”
from now on). “L. Cut” means the level cut facility, which, asfactorization, can be
switched off (“-”) or on (“+”). For hyper tableaux, table entries such as e.g. “1�25”
and “25� 0” in

�
��� �� � mean that the refutation took 1�25 seconds, with 25 hyper
extension steps and 0 factorization steps. Blank entries mean that nothing changed with
respect to the more leftmost entries.

“Range Restriction”, which is mandatory for SATCHMO, meansthat the input
clause set is transformed into range restricted form5, whereas “Universal Variables”
means that range restriction is not used.

For SATCHMO (columns 6 and 7), the “basic” version uses an incomplete depth-
first search; the “level saturation” variant uses a fair strategy (this is described in[Man-
they and Bry, 1988]). The numbers given are the runtimes in seconds.

OTTER (column 8) was run in “auto” mode, where it analyzes theinput clause
set and determines inference rules and strategies by itself. In most examples, positive
hyper resolution was the inference rule chosen automatically, possibly augmented by
a completion-based equality handling. However, since we are mainly interested in the
relationship Hyper tableaux vs. hyper resolution, we had been unfair to OTTER in a
few cases and forced positive hyper resolution without a dedicated equality reasoning.
The entries give the runtimes in seconds (such as “0.1” for���� ��� �), and, in the sub-
sequent row (such as “5” for���� ��� �), the number of clauses kept in the refutation.
The values in parenthesis are the results where backward subsumption is switchedoff .
We are aware that this is again unfair to OTTER, but it supports a direct comparison
between the Hyper tableaux and hyper resolution calculi.

Let us comment on the results in Figure 2. We distinguish fourgroups, which are
horizontally separated by double lines; we proceed from topto bottom.

Propositional and Horn Problems.Since the calculi underlying the three provers are the
same, we can use such examples to evaluate the quality of implementation. As probably
is to be expected, OTTER (written in C) is about eight times asfast as Hyper (being an
interpreter written in Prolog). The good results for SATCHMO can be explained by a
better usage of the built-in term retrieval primitives (assert/retract).

Propositional and non-Horn Problems.For theunsatisfiableproblems (	
����� �) the
timing results for Hyper are close to that of OTTER without backward subsumption
(this is unlike to the previous group). We emphasize that theruntimes for Hyper arenot
normalized. SATCHMO performs well for the reason stated.

For thesatisfiable

��� �examples we can observe a real advantage of the tableaux
approach. Hyper (as well as SATCHMO) immediately stops as soon as one branch is

5 A clause isrange restrictediff every variable occurring in the head also occurs in the body;
every clause set can trivially be transformed into range restricted form, see[Manthey and Bry,
1988].



Hyper Tableaux SATCHMO OTTER
Domain Restriction Universal Variables Dom. Restr. Auto
+L. Cut -L. Cut +L. Cut -L. Cut

Problem +Factor -Factor +Factor -Factor Basic Lev.Sat.������� � ���� 0�8 0�1 0�1 0�4�0�4�
26� 0 111�111�������� � �� �� 21 1�5 0�9 2�8�2�8�

101� 0 471�471�������� � �� �� 123 6�4 3�0 15�2�15�2�
226� 0 1081�1081�������� � ���
 0�4 0�1 0�2 0�2�0�2�

Pigeonh. 4in3 49� 0 49�49�������� � ���� 3�5 2�0 3�9 1�3�3�6�
Pigeonh. 5in4 261� 0 187�187�������� � ���� 218 36 81 15�314�
Pigeonh. 6in5 1631� 0 952�952������ �� � ���� 0�4 0�1 0�1 17�28�
(satisfiable) 9� 0 1538�1537������ �� � �� �� 4�1 0�5 0�4 	 0�5h
(satisfiable) 19� 0�
��� �� � 1�25 0�35 	 0�5h 	 0�5h 0�1�0�1�
(Group Th.) 25� 0 11� 0 5�5��
�� ��� � 156 58 	 0�5h 	 0�5h 0�3�0�4�
(Group Th.) 179� 0 92� 0 42�42��
�� �
� � 	 0�5h 	 0�5h 	 0�5h 	 0�5h 10�7�5�
(Group Th.) 92� 0 2122�2122�������� � 0�9 13�2 0�8 11�5 1�9 2230 3�6�3�7�
(NonObv) 57� 6 507� 0 53� 6 503� 0 70�70��
����� � 131 	 0�5h 13 215 	 0�5h 	 0�5h 1�0�1�0�
(Progr.Verif.) 490� 0 89� 0 183�183��
��� ��� 31 61 11 14 	 0�5h 	 0�5h 3�4�3�1�
(Pelletier55) 226� 1 359� 0 104� 1 117� 0 546�546��
����� � 286 	 0�5h 3�7 1837 	 0�5h 	 0�5h 2�0�2�9�
(Lion+Unic.) 628� 35 104� 13 4957� 0 255�242��
���
� � 151 405 0�6 0�8 16 	 0�5h 0�3�0�3�
(Knights+Kn.) 124� 0 159� 0 31� 3 48� 0 43�43��
���
� � 9�9 0�2 0�1 	 0�5h 0�1�0�1�
(Knights+Kn.) 60� 0 16� 0 16�16��
����� � 672 2321 3�1 14 7�8 	 0�5h 1�1�
(Knights+Kn.) 173� 4 605� 0 67� 3 329� 0 131�131��
����� � 10�4 10�9 0�8 0�9 0�1 	 0�5h 19�27�
(Knights+Kn.) 68� 14 82� 0 33� 9 43� 0 203�212��
��
�� � 2�8 2�3 1�8 1�4 7�5 720 50�	 0�5h�
(Salt+Must.) 105� 10 119� 0 100� 10 114� 0 518
Steamroller 2�1 0�9 1�4 52 0�7�1�
(SATCHMO) 46� 0 28� 0 68�68�
Steamroller* 12�3 51�0 5�5 22 1�4 	 0�5h 1�1�

113� 1 590� 0 71� 1 320� 0 146�146�
Fig. 2. Runtime results for our hyper tableau prover, SATCHMO and OTTER.



finished and reports the model. OTTER will not recognize the satisfiability that early
and continues building hyper resolvents.

First-Order Horn Problems.The results in columns 2 and 3 (“domain restriction”)
vs. columns 4 and 5 (“universal variables”) demonstrate thesuperiority of the univer-
sal variables approach within Hyper tableaux. For the stated examples, it prevents the
prover from enumerating instances of the reflexivity axiomX � X; instead it extends
with X � X in the first step, and then subsumes all possibly upcoming instances of it.

The Hyper prover in the domain restriction setting is comparable to SATCHMO.
The superiority of Hyper to SATCHMO in this case might be our weight-bounded enu-
meration of literals. The rationale for this strategy is theassumption that if a refutation
is within the possibilities of our prover at all, then it willbe discovered at a shallow
term level. This is because as the weight bound gets too heavy, far too many terms will
be generated in purifying substitutions and the prover getslost.

The success of OTTER compared to Hyper (cf.���� ��� �) can be explained by
using a more clever weighting function.

First-Order non-Horn Problems.Hyper performs well on all examples. Notice that
in many cases SATCHMO fails to find a refutation, in particular if the complete level
saturation strategy is employed. When relating the timing results of OTTER to that of
Hyper, one should keep in mind that there is a factor of eight to be observed due to
the quality of implementation (cf. the first group). If normalized, the results for Hyper
would be better than that of OTTER in almost all cases. Furthermore, as was also argued
for in the previous group, OTTER seems to use a more clever weighting function. This
lets us speculate that Hyper can be improved significantly bylearning the weighting
function from OTTER.

In this problem group, the calculi underlying the three provers deviate significantly.
The effects mentioned in the previous group apply here as well, but in an even more
drastic way. For instance, the enumeration of ground instances ofX � X in ����� ���6

will happen in every branch (Hyper with domain restriction and SATCHMO). By enu-
merating the ground instances a higher local search space for the SLD-resolution in hy-
per extension steps results. This might be one of the keys to the success of the universal
variables. This claim is supported by almost all of the puzzle examples and������� �.
A counterexample is	
������, but here the set of ground instances is small (four
constants, no function symbols).

Next we discuss the merits offactorizationandlevel cut. For this, column 3 (resp.
5) has to be compared to column 2 (resp. 4). There are several examples where these
techniques turn out to be useful, with the most striking casebeing������� �. Here, a
seven place disjunctionmonday�X� � � � �� sunday�X� is present, which can be used for
extension steps at almost every time. Cutting off useless applications of this clause is
most effective in this case. Another example where this applies is “steamroller”. In the
“steamroller*” version (taken from[Lovelandet al., 1995]), a redundant clause

animal�X� � animal�Y� � quicker�X �Y� ;smaller�Y�X�
6 [Beckert and Hähnle, 1992] report on a proof of this problem in about 4 seconds, but their

prover has special inference rules for equality.



is added, which results in many useless case analyses. Our prover solves this by the level
cut facility; the SATCHMORE prover[Lovelandet al., 1995] solves this problem by a
relevance analysis (“quicker” is pure in the input clause set). It should be noted that the
other drastic example from[Lovelandet al., 1995] (Example 19) which demonstrates
the usefulness of the relevance analysis can also be solved in about 1 second with our
prover when the level cut is employed.

We switched the two flags individually in all four combinations, but did not report
on the results in Figure 2. Instead we summarize our observations that thelevel cutis
far superior to the factorization rule. All problems considered by us can be computed in
almost the same (quite often even in shorter time) if level cut is used alone.

To summarize our experiments, we think that the design of ourcalculus and proof
procedure results in a significant improvement of bottom-up, model-based theorem
proving.

6 Conclusion

We presented thehyper tableaucalculus, which combines ideas from resolution (sub-
sumption, universal variables) with analytic tableaux. Weobtained a completeness re-
sult which allows for a reasonable procedure without backtracking over the generated
tableaux. We demonstrated its practical usefulness using examples from various prob-
lem domains. We are aware that the calculus/proof procedurecan still be consider-
ably improved by lifting the ground terms generated in purifying substitutions to rigid
variables. Another interesting improvement is proposed by[Billon, 1996] within his
disconnection method. This is a proof confluent calculus, which extends the similar-
ity to resolution with respect to universally quantified even more. Translated into our
framework the idea is to avoid rigid variables by extending abranch not only with an
input clause but additionally by appropriate instances of the “other parent clauses”. If
the input clauses containp�x� �q�x� � and r � p� f �y�� and a tableau is constructed
which contains a branch withp�x� stemming from the disjunctive fact, an extension
with r � p� f �y�� is possible. But additionally the instancep�� f �y�� �q� f �y�� � of
p�x� �q�x� � has to be fanned belowp�x� before the extension withr � p� f �y�� is
carried out. We are currently adapting this idea to hyper tableaux and its implementa-
tion.

An intersting relation to SLO-resolution was pointed out byan anonymous ref-
eree. As it is introduced in[Rajasekar, 1989] SLO-resolution is a goal oriented cal-
culus for positive disjunctive programs which is presentedas an extension of SLD-
resolution. If all literal signs from the program clauses and from the goal clause are
complemented (which preserves satisfiability) our hyper tableaux calculus corresponds
to SLO-resolution. It is exactly the case for ground derivations, whereas in non-ground
cases our calculus is an extension of SLO-resolution. A detailed investigation of this
topic can be found in[Baumgartner and Furbach, 1996].

Finally it is worth mentioning, that this kind of model generation by tableau calculi
is very well suited for the construction of minimal models, and hence for non-monotonic
reasoning. In[Niemelä, 1996b; Niemelä, 1996a] a variant of hyper tableaux is used to



compute minimal model entailment of negated atoms and in[Bry and Yaha, 1996] a
formalization of SATCHMO is used to derive minimal models.
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