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ABSTRACT. This paper contains a defense against anti-realism in mathematics in
the light both of incompleteness and of the fact that mathematics is a ‘cultural
artifact’. Anti-realism (here) is the view that theorems, say, of arithmetic cannot
be taken at face value to express true propositions about the system of numbers
but must be reconstrued to be about something else or about nothing at all.
A ‘bite-the-bullet” aspect of the defense is that, adopting new axioms, hitherto
independent, is not a matter of recoguizing truths which had previously been
unrecoghized, but of extending the domain of what is true.

l2d

What Does Godel’s Second Theorem Say?t

MicHAEL DETLEFSEN*

1. Introduction

The aim of this paper is to improve our understanding of the philo-
sophical application of Gédel's Second Theorem (hereinafter, G2). Most
specifically, it is to call attention to certain problems, heretofore largely
unnoticed, facing the application of generalized versions of G2. As Bernays
noted (cf. Hilbert-Bernays [1939], §85.1¢-5.2¢), Godel’s original proof of G?
wanted generalization of two types. One of these is ‘system generalization’,
the purpose of which is to secure the application of G2 to a broader class
of theories than is provided for by Gédel’s original proof. It consists in the
specification of a general set of expressive, logical and arithmetical proper-
ties the possession of which by a theory would guarantee the applicability
of G2 to it, at least with respect to consistency formulae constructed after
the manner of the consistency formula of Gédel’s original proof.

The other type of generalization—call it ‘expression generalization’—is
intended to extend the G2 phenomenon from the particular type of con-
sistency formulae that Gédel used to all formulae capable of expressing
consistency. The goal is to obtain a result that can be taken to show, of
any theory to which it applics, that ‘the formalized expression of it_s [the:
theory’s] consistency can not be derived within it so long as it is Consxste'nt
(cf. Hilbert and Bernays {1939], p. 324, brackets, emphasis and translation
mine).

Bernays pursued expression generalization by identifying a set of gen-
eral conditions (commonly referred to as the ‘Hilbert-Bernays Deriva.blhty
Conditions’) on ‘genuine’ consistency formulae for any of the theories to

T 1 would Tike Lo thank audiences al the Notre Dame Logic Seminar, the Logic Seminar
of Indiana University - Bloomington, the George Boolos Memorial Symposumli and‘the
Logic Colloguium of the University of Hlinois~Urbana/Champaign for useful discussions
of (shortened oral versions of) this paper. Among individuals, [ am grateful to AIn.c(lirew
Arana, George Boolos, Peter Cholak, Anthony Everett, Matthew Frank, Jacol? Hei len-
reich, Julia Knight, Tim McCarthy and Michael Stob for useful comments and discussion.
They are not, of course, responsible for any deficiencies that may remain.
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which G2 was to be applied.! The idea was that (i) any formula capable of
expressing the consistency of the theory would have to satisfy these condi-
tions, and that (ii} any formula satisfying them would be guaranteed to be
unprovable in the theory so long as it was consistent.

Satisfaction of (ii) is a matter that can be (and has been) settled by proof.
Satisfaction of (i), on the other hand, is not. It requires what we will refer
to as justification of the Derivability Conditions {DCs). By justification of
the DCs, we mean an acceptable argument showing that any formula Cony
capable of expressing the consistency of the system T must satisfy the DCs.
To justify the DCs is therefore to establish them as necessary conditions on
the ability of a formula to serve as an expression of consistency. Clearly,
this is something different from proving the DCs.

Our chief concern in this paper is the justification of the DCs. More
particularly, it is the justification of the so-called ‘Third Derivability Con-
dition’ (the ‘“Third Condition’, for short). More particularly still, it is one
particular justification of the Third Condition—a justification we will refer
to as the Reflevivity Defense.

We will argue that adopting the Reflexivity Defense has serious conse-
quences. More accurately, we will argue that, for suitable system general-
izations of G2, use of the Reflexivity Defense induces a Fourth Derivability
Coundition whose justification is fraught with difficulties. Our conclusion
is therefore that the Reflexivity Defense does not provide a satisfactory
Jjustification of the Third Condition.

This naturally raises the question of whether there are other plausible
Justifications of the Third Condition that avoid introduction of the prob-
lematic ‘Fourth’ condition just mentioned. We lack the space to argue this
matter properly here. We belicve, however, that the answer is ‘no’, that the
Reflexivity Defense is the most satisfying justification of the Third Condi-
tion that there is and that there is a high price to be paid for relinquishing
it.

2. Clarifications and Qualifications

In order to develop our argument, certain preliminary clarifications need
to be made and certain basic distinctions drawn. It is to these that we
now turn, beginuing with what we will refer to as the ‘proto-philosophical’
content of G2, or what G2 can be taken to ‘say’ for general purposes of
philosophical application.

This notion is one-half of a distinction between literal and interpreted
versions of G2. By literal versions we mean those which proceed by way of a
mathematically precise description of various components of a given arith-

! Somewhal more accuratcly, they are conditions placed on the formulae expressing
the notion of provability-  or derivability-in-T-—from which the consistency formulae are
to be defined.
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metization. These components include (i) the theory (referred to here as
the represented theory and designated throughout this paper by the letter
“T") whose syntax or metamathematics is to be represented by the arith-
metization, (il) the theory (referred to hiere as the representing theory, and
typically designated by the letter S’) in which the representation is to take
place, and (iii) various formulae used by the representing theory to repre-
sent metamathematical notions or concepts (e.g., the notion of consistency)
pertaining to the represented theory. The descriptions of and conditions on
these items play a central role in the proof of G2 and they form the main
components of what we are referring to as literal versions of G2.
The following illustrates what we mean by a literal version of G2.

Literal G2: Let Provr(z) be a formula of L¢ (= the language of T) that
satisfies the Derivability Conditions (i.e., DC1-DC3 below) and the
Diagonalization Lemma (i.c., DL below). And let Conr be the for-
mula Y (Provr(z) — =Provyp(neg(z))) of Lp (where ‘neg(z) is a
term of £ that represents the negation function). Then, i T is
consistent and its logic supports certain inferences and theorems (to
be identified later), p Cong.

DL: There is a sentence G of L such that b G — ~Provp (TG ™).

DC1: For every sentence A of Loy, if Fp A, then Fp Provp(T A7),

DC2: For all sentences A, B of L,
by Provp (VA — B — (Provp(T AT — Provr(" B7).

DC3: For cvery scntence A of Lo,
=y Provp (VA — Prove (" Provp(" A ).

Though illustrative of what we mean by a literal version of G2, Literal
G2 is nounctheless not entirely typical of what we have in mind. The reason
is that it fails adequately to mark a distinction that is vital to our argument:
namely the distinction between the represented and representing theories
of a given arithmetization.

Rather than allow the representing and represented theories to be dif-
ferent theorics, which is the general case, Literal G2 assumes that a single
theory (denoted by ‘T in the above statement) should play the role of both.
This does not threaten the accuracy or demonstrability of Literal G2 since
there clearly are monotheoretic versions of G2 (i.e., versions in which the
representing and represented theorics are the same theory).

For certain purposes, however, it is necessary to allow the represeuting
and represented theories to be distinet. Indeed, we consider this to be nec-
essary for what is perhaps the most important philosoplical application
of G2—namely, that to Hilbert’s Program. We are thercfore interested in
bitheoretic versions of G2; versions in which it is allowed that the repre-
senting and represented theories be different. We'll give a more careful
statement of the precise type of bitheoretic versiou of Literal G2 we're in-
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terested in a little later. For the moment we wish only to note that the
literal version of G2 that we will ultimately be interested in is different from
Literal G2.

This said, let us now say what we mean by ‘interpreted’ or ‘proto-
philosophical’ versions of G2. These differ from literal versions in that
they replace the formal conditions on the key representing formulae of
the representing theory (e.g., the conditions DC1-DC3 placed on the for-
mulae Provy(z) and Conr) by conditions that ‘interpret’ these in terms
of their importance to the proper representation of the metamathemati-
cal notions that the formulae involved are to represent (here, the notions
of provability-in-T' and consistency of T). Thus, a proto-philosophical or
interpreted version of G2—and the one we're particularly interested in—
is obtained by (i) taking DC1-DC3 as necessary conditions on the ad-
equacy of Provp(z) as an expression of the notion of provability-in-T'
and by (ii) taking the coustraint that Conr be defined as the formula
Vz(Provr(z) — = Provr(neg(z))) (or some similar formula) as a necessary
condition on the adequacy of Cony as a representation of Ts consistency,
given that Provr(z) adequately expresses the notion of provability-in-T'.

Combining these ‘interpretations’ of the conditions appealed to in Literal
G2, we arrive at the following proto-philosophical version of G2.

Phil G2: Let Provr(x) be a formula of L1 that expresses the notion of
provability-in-T', and let Cony be a formula of L7 that is con-
structed from Prove(z) in such a way that if Provr(x) expresses
the notion of provability-in-T', then Conp expresses tlhe notion of
T’s cousistency. Then, if T is consistent and its logic supports
certain inferences and theorems, frConyp.

The reader will recoguize Phil G2 as a somewhat more careful version
of the usual type of informal statement of G2 found in the logical and
philosophical literature, including the statement by Bernays quoted above.
Agaln, we call it a *proto-philosophical’ statement of G2 because, though it
does not itself constitute a philosophical application of G2, it is the type of
statement upon which such an application must be based. So, to illustrate,
while Phil G2 does not itself state that G2 refutes Hilbert’s Program, it is
nonetheless the type of statement to which such an evaluation of Hilbert’s
Program must nceds appeal. It is, in a word, what for philosophical pur-
poses we might regard G2 as ‘saying’.

Described thus, the notion of G2's proto-philosophical content is clearly
rclated to the notion of a ‘justification’ for the Derivability Conditions men-
tioned earlier. The Derivability Conditions are, most directly, conditions
on the choice of formulae to represeut the notion of provability-in-T'. A jus-
tification of a Derivability Condition will thercfore consist in an argument
establishing a necessary link between the given condition and the proper
represeutation of the notion of provability for the represented theory. Taken
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together, such arguments will constitute a larger argument establishing the

following,.

Pivotal Tmplication (PI): If Provy(z) expresses the notion of provability-
in-7T" in T, then Provr(z) satisfies DC1-DC3.

This larger argument will involve analyzing the notigns of provabili‘ty-in—

T and/or proper representation of provability-in-T in T to the point of

revealing that they require satisfaction of DC1-DC3. ‘ .

As mentioned above, our concern in this essay is with the justification
of the Third Condition. It follows that we arc concerned with the proper
represcutation of the key mctamathematical notions Gf proof and/ or prov-
ability and consistency. But what is the conception of representation that
figurcs here? ‘ -

We can begin by noting that it is not merely a semantical concep.tlon.
That is, it is not merely a conception according to which a formula achieves
its representational end when its semantical interpretation produces an ex-
tension, and perhaps also an intension, that ‘matches’ (modulo the relevgx?t
encoding/decoding) those of the notion it is supposed to repres_ent. It is
rather what I would call an ‘epistemic’ conception of representation—that
is, a conception according to which proper representation requires the rep-
reseuting cutity to ‘know’ or ‘grasp’ or ‘register’ various facts concerning
the notious it represents. On such a conception, and assuming that thP:
representing device is a theory (hence a device which ‘knows’ or ‘gr;}fps‘
or ‘registers’ a given fact by proving it), the adequacy of a formula 7 as
a representation of a set or a notion @ is determined by wh.at theorems
involving F the representing theory proves. The suceess or failure of F as
a representation of @ thus consists in something other than a pux:ely se-
mantical relationship between F and ®. It consists as well in a relationship
between the ‘facts’ concerning @ and the theorems involving F that the
representing theory can prove.

The notion of representation with which we are concerned is tllgrefore
not one that is focused exclusively on the semantical interpretation (under
an assumed interpretation of the language of the representing theory) of
representing formulae. It is also one which distinguishes between the rep-
resentation, of sets, on the oue hand, and the representation of concepts or
notions, ou the other.

According to this distinction, a set ® is represented by a formgla Flx)
in a theory T ouly if, for cach ¢ that qualifies as a possible candidate f(_)r
membership in @, T proves F(e) (where ‘e’ is a recognized name for e in
the language of T)2 just in case ¢ is an element of .

2 To give an exact (and compelling) account of what it should'mean to say that a given
term is a ‘recognized’ name for something in a given language is no easy matter. Smc‘e,
however, the difficulties involved in doing so do not affect the project of this paper in
any Sp(:n"inl way, we will not give such an account here.
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Adequate ‘intensional’ (or ‘intensionally adequate’) representation of a
property, concept, or notion ® by a formula F(z) in a theory T seems
to require something more than mere adequate representation of the set
that is ®’s extension. It might, for example, require as well that T prove
certain features of the ‘logic’ of ® with respect to F(z). Or it might make
use of a type of meta-condition requiring that certain facts concerning ®’s
representation by F(z) themselves be registered as theorems of T.3 This
latter type of coustraint figures centrally in the so-called Reflexivity Defense
of the Third Condition.

Generally speaking, intensional representation conceives of a theory not
merely as a set of theorems but as a set of theorems given by a certain
concept or property. It therefore requires fidelity not only to the extension
of the theory but also to the concept of provability by which it is given. For
the most part, it is this intensional conception of theory with which we are
concerned in this paper.?

The above remarks also suggest another distinction that is important
for our discussion. This is the distinction between what we will refer to
as the representing theory and the represented theory of a representational
scheme. For a given metamathematical property or set ®, the theory to
whose metamathematics @ pertains (the represented theory) need not be
the same as the theory in which its representation is given (the representing
theory). We want to consider what happens to the DCs and their Jjustifica-
tion when one makes systematic allowance for such a distinction between
representing and represented theories.

There are two reasons why this is important to our discussion. The first
is that it points up an element of unclarity in the usual ‘monotheoretic’
formulations of G2 (e.g., that referred to above as ‘Literal G2).5 In such
formulations, some of the references to T' are references to it in its capac-
ity as representing theory while others are references to it in its capacity as
represented theory. The justification of the Derivability Conditions requires
a clear demarcation of these roles. A justifiable constraint on the represent-
ing theory of a representational scheme can not generally be expected to be
a justifiable constraint on the represented theory of that scheme, and vice
versa. The justification of representational constraints therefore generally
requires a distinction between the representing and represented theories of
a representational scheme. In addition, we will argue, observance of the

3 This type of constraint would hold if the notion of representation were ‘internalist’
in a certain sense—that is, if, in order to represent a given notion N, a representing
formula R would not only have to register correctly the extension and certain features
of the internal logic of N, but also have to ‘see’ itself as doing so.

1 The intensional vs. extensional terminology was introduced in I'eferman [1960]. See
Feferman [1982] and {1989] for developments of the analysis begun there.

5 By a ‘monotheoretic’ staicment of G2, we mean a statement of it in which the rep-
resenting and represented theorics are the same theory.
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representing/represented distinction can itself le.ad to ‘the introduction' of
substantive additions to the usual conditions on intensional representation
that figure in the proof of G2. S
The second reason the representing vs. represented theory d15t111.ct19n is
important for our purposes is that, as indicated above, certa{n applxcatlf)lls
of G2 require that we allow the two to be different. The pari.ucular a;)phce?:
tion we have in mind is the application of G2 to tl%e evaluation of Hilbert’s
Progran. It requires that we allow the repre§entmg~ theory to becomg as
weak as (some codification of) finitary reasoning while, aﬁ the same t?nei
allowing the represented theory to be as strong as the stronge§t clagblca
theory that possesses the type of instrumental virtues for which Hilbert
senerally prized classical mathematics (e.g., various S}{stems of set tlle.er;v'),
?f the G2 phenomenon were to hold only for some env1ronmep?s containing
finitary reasoning, and not for all of them, it would not be legltxmat.e to take
it as refuting Hilbert’s Programn because it would not then 'be an invariant
feature of all (proper) representational environments. Ju.stlﬁca.tlons qf the
DCs must therefore be valid not only in the monotheoretic setting but also
in the appropriate bitheoretic settings. . ‘
We close this section with a final clarification. It concerns a certain rei-
ativization that seems to be built into the notion of representz}ti(zn, and
which we must therefore expect to be reflected in any ‘justif.icatl.on of the
DCs as representational constraints. This relativization consists in Flle falct
that what can and should count towards accuracy of representatlouv will
generally be determined by the purpose or set of purposes for which a
given represeutation is wanted. Talk of the justification of th_e DCs there-
fore presupposes a (set of) representational purposc(s) that is (are) to be
achieved through their institution. It is not to be expected tha_t a.ll such
purposes will call for the same constraints or even that they. will 1.11(:h%de
some decisive conunon core of them. To give definition to our investigation
of the justification of the DCs, therefore, we must identify a set of purposes
with respect to which representational adequacy is to be judged. For ‘Flle
sake of concreteness, we will take this purpose to be that of evaluating
Hilbert’s Program. At the same time, however, it should be noted that the
argument given here is adaptable to a variety of other purposes as well.

3. The Reflexivity Defense of the Third Condition.

P-G. Odifreddi states the idea behind the Reflexivity Defense of the Third
Condition as follows.

The first condition [DC1] was external to T', saying that any.si_ngle.provable
formula can be recognized to be provable by T. This ... Co}lfilthHA [1.-e., DC3|
is internal to T, and says that T is aware of the first condition: znszdg T we
know that if a formula is provable then we can prove this fact. (Odifreddi
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1989}, p. 169, brackets and emphasis mine)®
)

In order to obtain a suitably clear and general statement of this defense,
we must determine which references to T are essentially references to it in its
role as represented theory (of the given arithmetization or representational
scheme) and which are references to it in its role as representing theory. To
this end, we offer the following restatement of Odifreddi’s claim.

(RD-I): The first condition [DC1] is external to T, saying that any single

formula provable in T can be recognized by T to be provable in 7.

his ... condition [i.e., DC3] is internal to T, and says that T is

aware of the first condition: inside T we know that if a formula is
provable in T then we can prove this fact in 7.7

Of the nine references to T in the above, the first, third, fifth, sixth,
seventh, and ninth scem clearly to be references to T' in its capacity as
representing theory. Equally clearly, the second, fourth, and eighth are
references to T in its capacity as represented theory.

Designating the representing theory of an arithmetization by ‘S’ and the
correspouding represented theory by “T’, we can thus rewrite the above
statement as follows.

(RD-II): The first condition is external to S, saying that any single formula
provable in T can be recognized by S to be provable in 7. The
third condition is internal to S, and says that S is aware of the first
condition: inside S we know that if a formula is provable in T then
we can prove this fact in S.

A (the only?) plausible reading of Odifreddi yields this as the generalized
(i.e., bithcoretic) thesis of the Reflexivity Defense. We are left to our own

devices to discover the deeper reasoning that is supposed to support such
a view.

There seem to be two different directions in which to seek such support.
On one of these—what we will refer to as the ‘logical’ variant—the Third
Condition expresses a feature of the internal logic of the notion of repre-
sentation. It maintains, that is, that in order for a formula Flz) of the

8 Others also suggest Lhis defense. See, for example, Smorynski [1977], p. 829, and
Prawitz [1981], p. 261. It is nol clear from the statements in Smornyski and Prawitz,
however, whether they think of DC3 as a precept of the ‘logic’ of the concept of repre-
sentation or as stemming from some other source. Odifreddi’s statement is, of course,
somewhat inaccurate. What T is ‘aware of® when DC3 is satisfied is not DC1, but each
of the several instances of DC1.

7 This (and later reformulations) preserves the possible ‘overstatement’ of Odifreddi’s
original monotheoretic formulation. DC3 does not, say that T knows that every formula
provable in 1" is such that its provability-in-T" is provable in T. Rather, it makes only
the more “ocal’ claim that 7' knows of any formula of T that if it is provable in T, then
T can prove this fact.
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language of a theory S to represent a set or notion @ of the metamathet-
matics of T in S, it must not only be the case that, for all e, e € ‘I? onbf if
s Fle) but also that S ‘sees’ this as holding. I'n o?her words, S’s abll.xty
to represent & by F(z) requires not only a coordmat\xoln of faﬁs concerning
& with ‘beliefs’ (i.e., theorems) of S concerning F{z}; it requires as sf"ell an
‘awareness’ or ‘grasp’ or ‘registration’ of this coordination by S. Without
this latter, the thinking continues, S could not rightly be thought of as
having the capacity to use what it ‘believes’ (i.e.,‘can prov‘e) about .7-'(3:“)
to serve as a guide to facts concerning ®. And without this type O.f self-
reflective capacity on S’s part, the defense concludes, S could not rightly
be said to represent ® by F(x). o

On this account, then, representation is an inherently reflexive affair: in
order for agent a to represent ¢ by F(z), it is required npt only that the
instances of F(z) that o believes be ‘true’ of ®. It is requfred as well tha.tﬁ
« herself grasp or believe in (the instances of) this correlation, by means of
some coucept she has of herself as a believing agent. '

The other variant of the Reflexivity Defense—what we will call the ‘ev-
identiary’ variant—is based on the very different idea that in order fo? 't,he
First Coundition to play its proper role in S’s representation of provapxhty-
in-T by Provr(z), the several instances of that condition must F)e verfﬁable
by a certain type of evidence—evidence which, as it happ(?ns, is coc.lil.ﬁabl‘e
in $.% On this variant of the Reflexivity Defense, the Third Conqun is
not a consequence of the fact that S is the representing theory of the given
representational scheme. Rather, it is a consequence of c.hoosmg the fepre~
senting theory (S) to be a formalization of the type of ev1den.ce re:gamf:gl as
the proper standard for verification of the instances of the First Condition.
This is a very different thing,.

Of these two variants of the Reflexivity Defense, the logical variant seems
the more basic. We do not insist upon this, however, since our purposes do
not require it. We distinguish these two strains of thg Reflexivity Dgfense
only to give the reader an idea of its overall breadth and versatxlxty., to
inform her of the general fact that it signifies not a single justificatory }dp&
but a (small?) family of such and, finally, to distinguish the .Reﬂe.xwmy
Defense, as one broad strategic alternative regarding the justification of
the Third Condition, from a very different type of defense that we will now
briefly describe. .

This alternative is what we call the Strength Defense. It sees the Third
Condition as a special case of a deeper coustraint—nainely, the S-provable

3 Here we are generally thinking of a bitheorotic formulation of the First Cond'!(.io'n amdf
not the monotheorctic formulation given in DC1. That is, we are generally thinking o
the following condition:

i . (T AT
Bi-DC1: For every sentence A of L, il +p A, then g Provp(T A1)
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¥;-completeness of 7.9 Moreover, it sees the j ustificatory idea behind this
condition as entirely difforent from that underlying (either variant of) the
Reflexivity Defense. Roughly, it is that S can not adequately represent T
unless it ‘sees’ certain crucial facts concerning what T proves. Specifically,
It can not hope to represent T adequately unless it not only sees of each
true X; formula of the language of S that T proves it, but also sees of each
Xy formula o of the language of S that if o, then T proves o.

To be interestingly different from the Reflexivity Defense, the Strength
Defense has to be taken as based upon a different conception of the relation-
ship between the First and Third Conditions than that which is assumed
by the Reflexivity Defense. In other words, it can’t be taken as the mere
requirement that S ‘sec’ the several instances of a reconceived version of
the First Condition which states that S proves (a formula expressing) ev-
ery true ¥, statement of informal arithmetic. The thought must rather be
that certain elements of T7s interior are so important to its identity that
any good representation of it must see those elements as belonging to it.
The challenge in defending such an idea, of course, is to say what it could
be about some elements of T”s interior that makes knowledge of their be-
longing to it more important to the representation of T than is the same
knowledge with respect to other clements of its interior (or, for that matter,
the parallel knowledge with respect to elements of Ts exterior).

We do not belicve that this challenge can be adequately met. Conse-
quently, we do not believe that the Strength Defense provides a successful
Justification for the Third Coundition. To argue for this belief, however, is
not our concern here. We mention the Strength Defense for two reasons
only. The first is to make clear to the reader that we are aware that there
are alternatives to the Reflexivity Defense and that the present essay can
not, by itself, be regarded as a conclusive general treatment of the justifi-
cation of the Third Condition. The second is to point out the existence of
bitheoretic treatments of G2 that do not require introduction of a formula
Prouvg(x) representing the notion of provability for the representing theory
of a representational scheme.!© This constitutes a major difference between
the Reflexivity and Strength Defenses and to put the present discussion in
Proper perspective, it is important to bear this difference in mind.

9 That is, the condition:

Bi-DC3+: For every ¥} sentence o of Ls, ks a — Provr(Fa ).

This is accurate, of course, only for theories of the type we take S to be—namely,
theories containing an existential quantifier and capable of expressing a genuine notion
of provability. For theories with no existential quantifier (e.g., the usual formulations of
PRA), hence no genuine notion of provability, a different condition is needed.

1% On the Strength Defense, a sufficient set of conditions for (a bitheoretic form of)
G2 would be Bi-DC1, Bi-DC2 and Bi-DC3#. Notice that, in contrast to the conditions
coming from the Reflexivity Defense, no formula Provs(z) representing the notion of
provability-in-S appears anywhere in these conditions.
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The difference becomes apparent when we consider the secon@ clause‘ of
the Reflexivity Defense; the clause which says (as in RD-II) ‘[t}he At}.nrd
condition is internal to S, and says that S is aware of the first condition:
inside S we know that if a formula is provable in T then we can prove
this fact in S’. This is the clause in the Reflexivity Defense th.at requires
introduction of a formula ‘Provg(z)’ expressing (S’s concgptxon of)‘t.he
notion of provability-in-S. It mandates a reflection by S on its own afblhty
to detect and register the fundamental facts concerning the extension of
the notion of provability-in-T. .

The Reflexivity Defense thus suggests the following bitheoretic general-
izations of DC1 and DC3.

Bi-DC1: For every sentence A of Ly, if =pA, then kg Provr(TA7).
Bi-DC3: For every sentcuce A of Lo,

Fs Provp(" A7) — Provs(" Provp("AT) .
The antecedent of Bi-DC3 (i.c., the formula ‘Provr(".A7)’) should express
the antecedent of Bi-DC1 (i.e., the metatheoretic statement ‘}-.T A) al}d its
consequent should express the consequent of Bi-DC1. Since this latter is the
metatheoretic statement ‘+g Provp(7.47), it follows that the consequent
of the Third Condition should be a formula ‘Provs(F Provp(F A7),
where ‘Provs(z)’ expresses ‘tg’.

Gencrally speaking, we will use the letters ‘S’ and ‘T to stand for sets
of sentences—sets of sentences which form the extensions of theories. If‘or
convenience sake, however, we will generally speak of S and T as ‘theonesi
rather than ‘extensions of theories’. Also, in order to capture the type ?t
relationship between S and T that we are generally interested in, we will
assume that the language of S is a sublanguage of the language of T and
that S is a subtheory of T (*S € T7, in our notation).!! We will argue
that the conditions required for production of the G2 phenomenon i_n tl}ls
type of bitheorctic setting differ significantly from those required for its
production in the monotheoretic setting. .

To this end, we will now consider what happens to G2 and its proof
when, as per the dictates of the Reflexivity Defense, the forms of the First
and Third Conditions used are those given in Bi-DC1 and Bi-DC3.

4. Effects of the Reflexivity Defense on the Proof of G2
To secure a proof of a bitheoretic version of G2 (Bi-G2) under the Rgﬂexiv—
ity Defeuse of the Third Condition, we need not only Bi-DC1 and Bi-DC3,
but also the following bithcorcetic modifications of the DL and DC2.
Bi-DL: There is a sentence G of Lg such that 5 G < —Provp(7G 7).

Bi-DC2: For all sentences A, B of Lp,
Fs Provr (" A—B N — (Provp(" A" — Provr(TB7)).

' We do not, however, assume that all proofs of S are proofs of T'.
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In‘ addi'tion, we need a Fourth Condition that assures S ‘access’ to the
relationship (viz., § C T') which, in the hypothesis of our bitheoretic version
of G2, we assume to exist between S and 7. Specifically, we need
Bi-DC4: For all sentences A of Ls, s Provs(TA)— Provp(T A7),

With Bi-DL and Bi-DC1-Bi-DC4 at our disposal, we can prove the core
lemma needed for the proof of (a bitheoretic version of) G2—namely

Bi-G2 Lemma: Let § C T and let Provp(z) and Provg (z) be formulae of
‘CS that satisfy Bi-DGC1-Bi-DC4 and Bi-DL. In addition, let Cony
be the formula Va(Provy(z) — —Provr(neg(z))) of L5. Then. if
the logic of S supports certain inferences and theorems (made clear
in the proof below), -g Conp — G.

Proof (description of how to build a proof in S of ‘Cony — @)

(1) Fs =G — -G . Logic of §
(2) Fg G — P:rou—,(‘ G (1), Bi-DL, logic of S
(3) Fs Provy (! G Bi-DC3
— Provs(" Provp(7G 1)1
4) s -G — Provg (" Provy(1°G ) ) (2), (3), logic of S
(5) Fs -G — Provr (T Provp (g™ ) (4), Bi-DC4
(6) s G o =Prouy(rg) Bi-DL
(7) ks Provp(rg « = Provp(Fg1) M (6), SCT,Bi-DC1
(8) Fs Provp(r ~Provy (TG N)es =G ) {7), Provp-—
contraposition
9) ks Provp(T==Provr (TG — =GN (8), Provp-s
simplification
(10) F¢ P‘I‘O'IJT('_—ﬁPrUvT(‘_g_') )] (9), Bi-DC2

— Proyp(©=g™)
(11) k¢ Provy (" Provp(TgT) )
— P7'0’U7‘(’—ﬂg —')
(12) Fg -G — Provp(r-g 7
(13) kg -G — (Provp (g
& Provyp(M-G™))
(14) =5 (Provy(T¢ N&Provp(T=GT)) Def. of Conp, logic of S

(10}, Provp-——-intro.

(5), (11}, logic of S
(6), (12), logic of S

— =Conyp
(15) ~s G — =Cony (13), (14), logic of S
(16) ks Conp — G (15), logic of S O

Bi-G2 Lemma together with

Bi-G1.1: Let Sbea cousistent theory such that S C T, and let Provyp(z)

and G be formulae of L which satisfy Bi-DL and Bi-DC1. Then s
g.

then yields the following generalized “literal’ version of G2

Bi-G2: Let $ € T and let Provr(z) and Prouvs(z) be formulae of Ls
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that together satisfy Bi-DC1-Bi-DC4 and the Bi-DL. In addition,
let Cony be the formula Va(Provp(z) — ~Provr(neg(z))) of Ls.
Then, if S is consistent and the logic of S supports certain inferences
and theorems, ttg Cony.

These are the basic results with which we will be concerned. Before
passing to our main argument, however, we'd like to call attention to a
certain feature of the proof of Bi-G2 Lemma—specifically, the segment
composed of lines (3})-(5). What we would like to note is that it is in lines
(3)-(5) that Bi-DC3 and Bi-DC4 do their work. In effect, they take us from
an application of Bi-DC3 to what is essentially an S-theoretic version of
DC3, namely

Bi-DC3A: For every sentence A of L,

Fs Provp(TA™) — Prove(T Provy(FAD .,
It is Bi-DC3A that is critical to the proof of Bi-G2 Lemma. Bi-DC3 (i.e.,
the version of the Third Condition yiclded by the Reflexivity Defense) thus
gains its effect in the proof of Bi-G2 Lemma by being supplemented by a
condition {viz., Bi-DC4) that allows it to be extended to Bi-DC3A.

We point this out to guard against a possible misunderstanding of our
employment of Bi-DC3. We use Bi-DC3 rather than Bi-DC3A as our vari-
ant of the Third Condition because our interest is in the Reflexivity De-
fense. Given Bi-DC1 as the form in which we have the First Condition, it is
Bi-DC3 rather than Bi-DC3A that is justified by the Reflexivity Defense.
Hence, if vur proof of Bi-G2 is to fit the Reflexivity Defense, it must derive
Bi-DC3A from Bi-DC3; that is, it must see Bi-DC3 rather than Bi-DC3A
as the basic forin of the Third Derivability Condition. This despite the fact
that it is Bi-DC3A rather than Bi-DC3 that is crucial to the proof of Bi-G2.
The Reflexivity Defense is therefore what necessitates the detour through
Bi-DC3 and the extra condition Bi-DC4 in order to obtain Bi-DCSA. As
we will sce, the use of this extra condition is not without consequence.

5. The Reflexivity Defense and
the Proto-philosophical Content of G2.

Bi-G2 is thus the bitheoretic form of G2 provided by the Reflexivity De-
fense. Our question now is what proto-philosophical content Bi-G2 should
be seen as sustaining? In particular, we would like to know whether it can
plausibly be regarded as sustaining the following:

Bi-Phil G2: Let S € T and let Provp(z) be a formula of L5 that expresses
the notion of provability-in-T in S and Conr a formula of Ls that is
constructed from Provy(z) in such a way that if Provr(z) expresses
the notion of provability-in-T in S, then Conr expresses the notion
of T7s counsistency in S. Then, if S is consistent, and the logic of S
supports certain inferences and theorems, fsConr.



50 DETLEFSEN

We believe that Bi-Phil G2 is what is commonly regarded as the proto-
philosophical content of Bi-G2. We will argue that it can not plausibly
be so regarded—at least not if the Jjustification used for Bi-DC3 is the
Reflexivity Defense. The reason is that the Reflexivity Defense does not
seem to promote a plausible form of Pivotal Implication to support the
inference from Bi-G2 to Bi-Phil G2.

Wihat fori of Pivotal Implication (PI) does the Reflexivity Defense pro-
vide? It is possible to distinguish at least five different elements involved
in such a PI. What is perhaps the core element is:

(Element 1): If there is a formula Prour(z) of Lg, that expresses the notion
of provability-in-T in S, there is a formula Provs(z) of Ls such that
Provg(z) expresscs the notion of provability-in-S (i.e., the notion of
provability—in~the—representing—theory) in §.

Element 1 represents what we think is a common belief concerning the

capacities of the representing theories that figure in our discussion: namely,

that if they are capable of representing the notion of provability for the
represented theory then they are capable of representing their own notion

of provability. This is one of two key elements of the Reflexivity Defense of
Bi-DC3. The other is:

(Element 2): For any formulac Provr(z) and Provs(z) of Lg, if Provr{zx)
expresses the notion of provability-in-7 in S and Provs(z) expresses
the notion of provability-in-S in S, then Provs(z) and Provr(z)
satisfy Bi-DC3.

In addition to these elements, we can assume that the Reflexivity Defense

of Bi-DC3 is augmented by a defense of Bi-DC1 and Bi-DC2 that implies
that:

(Element 3): For every formula Provp(z) of L, if Provy(z) expresses the
notion of provability-in-T in S, then Provr(z) satisfies Bi-DC1 and
Bi-DC2.

A defense of Bi-DC1 is indeed presupposed by the Reflexivity Defense. A
defense of Bi-DC2 is not, but we will suppose for the sake of argument that
there is such a defense and that it can be added to the Reflexivity Defense
to form a defense of the larger set of conditions needed for the proof of
Bi-G2 Lemma.

This leaves Bi-DC4 to consider. No Justification of it is implied either
by the Reflexivity Defense proper or by a defense of Bi-DC1 and Bi-DC2.
It requires a justification of its own, one which says that if S is a subtheory
of T, then S should be able to ‘sec’ this with respect to its expressions of
S and T. In other words, it should be the case that

(Element 4): For S and T such that S C T, if Provs(z) and Provr(z)
are formulae of L that express the notions of provability-in-S and
provability-in-T', respectively, then Provg (z) and Prour(z) together
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satisfy Bi-DC4.

Taken together, Elements 1-4 are the chief ingr.edients 9f our answer to
the question regarding the form of Pivotal Imphcat.xon that 1§ to be provided
by the Reflexivity Defense. Oue less central question _rema.mts. _

"It concerns the Bi-DL and its justification. So long as it is plau§1ble to
think that a formula representing the notion of provability—in.-T will be a
formula of one free variable, and so long as it is assumed that S isa frggmc_ant
of arithmetic in which the numeralization, substitution and d‘xagonalxz.atxon
functions are representable, it will be plausible to maintain the Bi-DL.
These are all constraints that we arc willing to grant the advocate of the
Reflexivity Defeuse. Hence, we are willing to grant that

(Element 5): For any formula Provr(z) of Lg, if Provr(z) expresses the
notion of provability-in-T" in S, then Provp(z) satisfies Bi-DL.

The above five elements thus constitute the {(expanded form of) Pivotal
o - , )
Implication sponsored by the Reflexivity Defense. For convenience'’s sake
we now condense these five elements into the following two principles:

(Bi-PIAL): For S and T such that S € T and formulae ProvT.(x) .and
Provs(z) of L that express (in S) the notions of provability-in-7'
and provability-in-S, respectively, Provy(z) and Provg(z) together
satisfy Bi-DC1-Bi-DC4 and the Bi-DL.

(Bi-PIA2): If there is a formula Provy(z) of Ls that expresses the notion
of provability-in-T" in S, then there is a formula ‘Provs(z) of Lg
that expresses the notion of provability-in-S in S.12

We effect this condensation to highlight two importantly different type.s
of conditions that figure in Elements 1-5. The one type, embodied in Bi-
PIA1L, identifies Bi-DL and Bi-DC1-Bi-DC4 as necessary conditions on the
ability of formulac to express the notions of provability-in-T and provability-
in-S. It comes from items 2-5 of the clements enumerated above. The other
type, embodied in Bi-PIA2 takes S’s ability to represent T as sufficient for
its ability to represent itsclf.

We will not mount an independent challenge to either the first or second
types of conditions in isolation.'® Rather, we question their joinF plausibil-
ity. In addition we would note that both seem to be necessary in order to
secure Bi-PPhil G2 as an entailment of Bi-G2. Specifically, Bi-PIA1, taken
by itself, is not enough to securc the connection. Taken together with

'2 We understand Bi-PIA2 to assume that the represented theory T is recursively ax-
iomatizable. This is in keeping with the idea in Hilbert's Program that the repr(’esgnted
theory be treated as a formal object. This is not to deny, of course, thgt Hilbert’s ideas
might be extended to a larger class of represented theories along such lines, say, as those
described in Schiitte {1960} and [1977).

13 We believe that both conditions can be challenged, however. In particular, we believe
that neither Bi-DC3 nor Bi-DCA is plausible.
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Bi-G2, it entails only the very different proto-philosophical claim!

(Bi-Phil G2A): Let S C T and let Provr(z) and Provs(z) be formulae of
Ly that express in S the notions of provability-in-T" and provability-
in-S, respectively. Finally, let Cony be a formula of L constructed
from Provr(z) in such a way that if Provp(z) expresses the notion
of provability-in-T in S, then Cony expresses the notion of T’s con-
sistency in S. Then, if S is consistent, and the logic of S supports
certain inferences and theorems, sConry.

If, therefore, Bi-Phil G2 is to be defended as the proto-philosophical reading
of Bi-G2 under the Reflexivity Defense, then both Bi-PIA1 and Bi-PIA2
must be defended. :

Bi-PIA2, moreover, requires a defense of a different type from that of
Bi-PIAL. The reason is that it is a different type of condition. Instead
of linking the ability of formulae to express the notions of provability-in-
T and provability-in-S to their satisfaction of the Derivability Conditions,
as Bi-PIA1 docs, Bi-PIA2 links the ability of S to express the notion of
provability-in-T to its ability to express the notion of provability-in-S. As
we will presently see, such a linkage scems dubious.

Before developing this argument further, however, we want to say a
little about our identification of Elements 1 and 2 as the core elements of
the Reflexivity Defense. The reader may wonder why, instead of Elements
1 and 2, we did not take the following single claim as the core element of
the Reflexivity Defense.

(Element 1A): For every formula Provy(z) of Lg, if Provr(z) expresses
the notion of provability-in-T in S, there is a formula Provg (z)of Ls
such that Provg(z) expresses the notion of provability-in-S (i.e., the
notion of provability-in-the-representing theory) in S and Provs(z)
and Provr(z) together satisfy Bi-DC3.

Element 1A is implied by Elements 1-2, but it does not in turn imply
them. We mention this because certain of our criticisms of Bi-PIA1 and
Bi-PIA2 apply directly only to the conjunction of Elements 1 and 2 and
not to Element 1A. The question thus arises: Why take Elements 1 and 2
rather than Element 1A as constituting the core of the Reflexivity Defense?

The answer derives from our view of the structure of the Reflexivity
Defense. We see it as saying that (i) if there is a formula Provr(z) that ex-
presses the notion of provability-in-T in S, then there is a formula Provs(z)
that expresses the notion of provability-in-S in S, and that (ii) any pair

14 There is actually more that's required. One needs a premise to the effect that if Conp
is a formula of Lg constructed from Provr{z) in such a way that if Provy(z) expresses
the notion of provability-in-T', then Conr expresses the notion of T”s consistency, where
Conr is the formula Ya(Provr(z) — = Provr(neg(z))), or some formula that is S-
equivalent to it. Having noted this, however, we will, for simplicity’s sake, suppress
mention of this condition in the proto-philosophical statements of G2.
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of such formulae-—that is, any pair of formulae expressing provability-in-7'
and provability-in-S respectively—will satisfy Bi-DC3. In other words, we
see the Reflexivity Defense as saying that Bi-DC3 expresses a condition on
the proper representation of provability-in-T' and provability-in-S by any
formulae of Lg. We therefore take the following claim to follow from the
Reflexivity Defense.

(Element 11): For cvery formula Provr(z) of Ls, if Provy(z) expresses
the notion of provability-in-T in S, there is a formula Provs(z) of
Ls such that Provg(z) and Provyp(z) together satisfy Bi-DC3.

In particular, and unlike the defender of Element 1A, we see this as fol-

lowing from Elements 1 and 2 and, so, from the ability of Provs(z) and

Prour(z) to scrve as genuine expressions of provability-in-S and provabi-

lity-in-T'.

One who takes Element 1A to be the core element of the Reflexivity
Defense would have to scc its structurc in a different way. She would
have to reason thusly: for every Provy(x) that expresses the notion of
provability-in-T in S, there is a Provs(z) which both expresses the notion
of provability-in-$ in S and which has the unrelated auxiliary property
that, when taken together with Provp(x), it satisfies Bi-DC3. Seen this
way, Bi-DC3 would be a purely coutingent product of certain formulae that
express the notion of provability-in-S. It would not be taken as a necessary
condition on the ability of a pair of formulae to express provability-in-7'
and provability-in-S, respectively.

We don’t find this a plausible interpretation of the Reflexivity Defense—
or any other defense of Bi-DC3, for that matter. Accordingly, we will not
consider it further. We mention it only to explain to the reader why we take
Elements 1 and 2 rather than Element 1A as the core of the Reflexivity
Defense. This done, we now turn our attention to Bi-PIA1 and Bi-PIA2,
where we will argue that they are jointly implausible.

Our arguments are of three types. All are intended to call Bi-PIA2
to question given the conditions on proper representation laid down in
Bi-PIAL. In the first argument the condition featured is Bi-DC1. In the
second and third arguments, the focal condition is Bi-DC4—the ‘extra’
condition made necessary by the generalization of the Reflexivity Defense
to bitheoretic settings. The arguments are strategically related.

The first accepts the general idca—suggested by the use of Bi-DC1 in Bi-
PIAl-—that proper representation of a set o in S requires the enumeration
in S of 0. Tt then observes the lack of any verified, general connection

5 For the reader who tmay nol be familiar with the terminology, a set of n-tuples of
numbers 0 is said Lo be weekly represented in S by the formula 7(Z1,...,%n) just in case
for every n-tuple of numbers (ky, ..., kn), (ki,....kn) € 0 il 5 T(k1, ..., kn), Where
ki is a canonical terin in S for k;. 0 is weakly representable in S just in case there is
some formula that weakly represents it in S. Enumeration is just weak representation
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between S’s ability to enumerate a recursively axiomatizable theory T and
its ability to enumerate itself if its arithmetic type (i.e., its place in the
arithmetic hierarchy) is different from T7s. Given that there are legitimate
questions concerning the formalizability of finitary reasoning (i.e., its exact
codification into a recursively axiomatizable theory), this serves at least
to raise questions concerning the joint general plausibility of Bi-PIA1 and
Bi-PIA2 for cases of .S assumed to contain finitary reasoning.

It only raises a question, though, and doesn’t settle anything. Our sec-
ond argument therefore seeks to go beyond this by locating a weakness
in Bi-PIAL and Bi-PIA2 that rests upon something more than the mere
uncertainty of the formalizability of finitary reasoning. It therefore grants
the formalizability of finitary reasoning as a strategic concession and goes
on to show that even if this is assumed there is ample room to doubt the
plausibility of Bi-PIA2 given the use (in Bi-PIA1) of Bi-DC4 as a necessary
condition on the proper representation of the notions of provability-in-S and
provability-in-T. The argument is that Bi-DC4 does not generally hold for
pairs of formulae expressing the notions or concepts of provability-in-S and
provability-in-T for S and T such that § C T. The conclusion is that
Bi-PIA1 and Bi-PIA2 can not both be generally maintained as conditions
governing the representation of concepts.

The third argument sceks to take the claim of the second argument
beyond the level of concept representation to the (more basic?) level of set
representation. It argues that Bi-DC4 does not generally hold for pairs of
recursively enumerable sets S and T such that § C T. If correct, it shows
that Bi-PIA1 and Bi-PIA2 can not be maintained as conditions governing
the representation of sets—even recursively enumerable sets—generally.

This, in outline, is our argument. We now proceed with the details.

First Argument

We begin by considering the case where T is a recursively axiomatizable
theory and S a subtheory of T, though not a recursively axiomatizable one.
The chief fact to be borne in mind here is that S’s having the ability to
enumerate ¥; or recursively enumerable sets (i.e., sets of the arithmetic
type that T is assumed to be) does not guarantee it the ability to enumer-
ate sets of other arithmetic types (e.g., sets of type £,, n > 1). If it is
granted that S’s overall ability to represent or express itself requires that it
enumerate itseif, !¢ it then follows that S’s ability to represent T does not

in the lelt-to-right direction. Hence, 7(zy1,...,2a) enumerates 0 in S just in case, for
every n-tuple of numbers (ky, ..., ka), (ki,...,kn) € 0 only if bg T(ki,...,kn). O is
enumerable in S just in case there is a formula that enumerates it in S.

16 The advocate of the inference from Bi-G2 to Bi-Phii G2 has to grant this; otherwise,
she loses her justification for Bi-DC1. The justification for Bi-DC1 is general. That is,
it assumes that for any sel or property ¢ and any formula ¢ of the language of S, ¢
represents @ in § only if iU enumerates @ in S.
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imply a similar ability on its part to represent itself. That being the case,
Bi-PIA2 would appear to be groundless ... at least insofar as there are
serious reasons for believing that S might be something other than a £; or
recursively enumerable theory. It is to a consideration of such reasons that
we 1ow turn.

Our reasous stem from a closer consideration of finitary reasoning and
of what can be regarded as its ‘internal’ structure—a structure which, it
seems, is suggested by a suitably refined understanding of the nature of
finitary reasoning, albeit one the likes of which one seldom finds mentioned
in the literature.!”

The structure arises from the fact that not all finitary evidence is on
the same epistemological footing. In particular, there is a type of finitary
evidence that functions as the ‘data’ of finitary thought and another type
that can be thought of as less basic. The former is expressed by those state-
ments that are decidable solely by means of finitary judgments concerning
particular finitary objects (or finite assemblages thereof). In the context
of a first-order arithmetic language, these are the statements expressed by
variable-free sentences—the statements making up the decidable fragment
of first-order arithmetic.

The latter is expressed by sentences containing variables; sentences which
serve not as judgments proper but as ‘judgment-schemata’ or ‘judgment-
forms’. These are devices which become genuine judgments or assertions
when, and, in Hilbert’s view, only when, numerals or other closed terms are
substituted for the variables that occur in them. Despite their schematic
status, these judgment-schemata were treated by Hilbert as capable of some
type of ‘acceptance’ (resp. ‘rejection’) by finitary reasoners; namely, that
which is constituted by a disposition to affirm each of their instances.

Just what might serve as the rational basis for such a disposition, how
a disposition to assert all instances of a schema might differ from a simple
brute capacity to assert them all, and how we might come to be in possession
of such a disposition are points on which Hilbert said nothing of significance.

This notwithstanding, the acceptability of a finitary schema should be
seen as depending upon its compatibility with the more basic propositions
of finitary thought—the so-called singular judgments or propositions. This
induces an internal epistemic structure among finitary judgments. In addi-
tion, finitary schemata might admit of an internal structuring that repre-
sents an ordering of relative acceptability among them. Such an ordering
could in part arise from strict differences in relative logical strength (ie.,
from the fact that one schema is strictly stronger than another). It could
also arisc from and reflect non-logically based differences——epistemic dif-
ferences between distinguishable types of evidence all of which count as

17 A partial exception is Sinorynski ({1988), pp. 38-40).
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finitary. There is nothing in the traditional formulations of finitism to pro-
hibit such differences. Indeed, they could result naturally from taking a
realistic approach to differences in the relative complexity of different fini-
tary objects. None of the usual formulations of finitism (nor any plausible
formulation of it) institutes homogeneity constraints so powerful as to pro-
hibit such differences.

To the extent that such a view of finitism is correct, finitary reasoning
could easily possess an internal epistemic structure that is not itself that of
a ¥, theory. Indeed, such an internal structure is suggested by the following
general condition on finitary provability: A is finitarily provable just in case
(1) A is an acceptable (i.e., finitarily knowable) singular proposition, (ii) .4
is a schema and it can be known finitarily that no instance of A is either
the denial of or is denicd by an acceptable singular proposition, and (iii) .4
is a schema and it can be known finitarily that A neither denies nor is the
denial of a finitary schema that occupies a place of greater elementariness
in the ordering of finitary schemata according to their relative plausibility.
Clauses (ii) and (iii) would appear to place a type of consistency constraint
on even the choice of finitary aziorns. Assuming that this could be part
of an intensionally correct description of the internal structure of finitary
reasoning, and assuming that the logic used to execute the consistency check
is subject to Church's theorewm, it would seem to follow that neither the
notion of axiom nor the notion of proof for finitary reasoning is necessarily
a recursive one. ’

The above notwithstanding, let us hasten to add that we do not know
of a way to demonstrate that the full set of finitarily acceptable statements
and schemata can not be formalized by some recursive set of formulae. The
fact that, modulo its epistemically most natural or basic description, the
structure of the finitarily acceptable propositions and proposition-schemata
is not evidently X, does not imply that there is no recursive axiomatization
of it. Our claim is therefore only that there is room to doubt that finitary
reasoning is adequately formalizable as a &y theory. To the extent that
this is correct, there is room to doubt that all cases of S in which we are
interested can safely be assumed to be £; theories. Furthermore, to the
extent that this is so and S’s ability to represent itself requires its ability to
enunerate itself, it is not clear that S should have the ability to represent
itsclf just because it has the ability to represent a £;-theory T. In other
words, it is not clear that Bi-PIA2 holds.

We realize that the above argument is somewhat vague and inconclu-
sive and that it is essentially an argument from what we don’t know. It
would be nice to have something more precise and conclusive to offer in its
place. In particular, it would be nice to have a way of judging the plausi-
bility of Bi-PIA2 regardless of what the exact arithmetic type of S might
turn out to be. To provide that, however, we would have to have either
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a better characterization of the ways in which a X, theory might achieve
¥, -completencss or a better description of the ways (if any) in which a Z,
theory might achieve self-enumeration without being ¥ -complete.

Such characterizations would, in turn, require a fuller specification of the
set of the conditions necessary for S’s representation of T (modulo some
specified foundational purpose) as well as an analysis linking these condi-
tions to S’s ability to enumerate itself. At present, however, neither of these
seems to be available. What we know is that ¥ extensions of Q enumerate
all ¥; sets and therefore enuinerate themselves. In addition, we know that
all &, -complete ¥, extensions of @ enumerate themselves. What we do not
know (or at least what I do not know)—either for n in general or for specific
cases of n---is a useful characterization (i.e., a characterization related to a
specification of conditions known to be necessary for the representation of
T by S) of which, if any, £, extensions of @ do not contain all ¥, truths
but do enumerate themselves. A significant problem is therefore to . ..
(Problem 1): Characterize those L, extensions of @ (if any) which enumer-

ate themselves but which are not themselves ¥,-complete.

Second Argument

We will now set the preceding argument aside and suppose that it is proper
to restrict both S and T to ¥, or recursively axiomatizable theories. We
thus cousider the following restriction of Bi-PIA2.

(Bi-PIA2*): For recursively axiomatizable S and T, if there is a formula
Provp(x) of Ls that expresses the notion of provability-in-T in S,
then there is a formula Provg(z) of Lg that expresses the notion of
provability-in-S in S.

Perhaps the first thing to notc in this connection is that Bi-G2 itself
requires no such restriction. Hence, strictly speaking, the restricted form
of Bi-Phil G2 obtainable from Bi-G2 via Bi-PIA2* can not be viewed as
giving the proto-philosophical content of the full Bi-G2 but only the proto-
philosophical content of a narrower theorem which results from restricting
the choice of S in Bi-G2 to recursively axiomatizable theories. This notwith-
standing, we will consider the plausibility of Bi-PIA2* and grant, for the
sake of argument, that it is the narrower theorem just mentioned that ought
to be our chicf concern.

We will thercfore consider Bi-PIA2* and its justification. Throughout
our discussion, however, it will be important to keep in mind a distinction
that was uoted earlier. This is the distinction between the representation
of concepts or notions, on the one hand, and the representation of sets, on
the other. As formulated, both Bi-PIA2* and Bi-PIA2 concern, at least on
their surfaces, the representation of concepts or notions and not (simply)
the representation of sets. We will argue that Bi-PIA2* is unjustified if, as
is asserted by Bi-PIA1, Bi-DC4 is taken to be a necessary condition on the
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adequate representation of the concepts of provability-in-S and provability-
in-T'. In other words, we will argue that Bi-DC4 does not appear to be a
legitimate constraint to place on the proper representation of the concepts
of provability-in-S and provability-in-T'.

Various examples can be used to illustrate this point. The following"

simple one suits our purposes well enough.

Let S and M be recursively axiomatizable theories in £g such that S C
M. Define T to be {7: 17 € M&r # v}, where v is a sentence of Lg that
is not a theorem of M. In addition, let Provg(z) be a formula of Ls that
expresses the notion of provability-in-S and Prowvas(z) be a formula of Lg
that expresses the notion of provability-in-M. Finally, let Provr(z) be the
formula Provy,(z)&z # n, where ‘n’ is the numeral in Ls for the godel
number u of the sentence v.

We claim that Provy(z) expresses the concept of provability-in-T ade-
quately; that is, it follows and reflects the definition of T in the way that
a formula expressing the concept of provability-in-T ought to. Further-
more, since SC M, the definition of T, which guarantees that M C T, also
guarantees that S C7T.

On the other hand, however, Bi-DC4 does not seem to hold for Provs(z)
and Provr{x). In particular, the instance ‘ Provg(n) — Provr(n)’ does not
seem to hold. The reasoning is as follows. If we assume, as above, that
Provs(x) is a formula of £ that expresses the notion of provability-in-S,
and we assume that the monotheoretic version of G2 holds for S (for Congs
defined in the usual way from Provg(z)), and we assume that the logic
of S preserves certain principles and inferences that we may assume it to
preserve, then we may conclude both that

(1) s ~Provs(n).
and that
(2) }_5 n=n.

From (2) and the definition of Provp(z), it then follows that
(3) Fs ~Provp(n).

However, from (3) and the hypotlesis that

(4) Fs Provs(n) — Provyp(n),

it follows that

(5) Fs = Provs{(n).
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Assuming the consistency of S, then, the hypothesis in (4)—which is an
instance of Bi-DC4—can not be accepted.

It follows that if the standard for the representation of concepts artic-
ulated in Bi-PIA1 is accepted—specifically, that Bi-DC4 is accepted as a
necessary condition on the ability of Provs(z) and Provr{z) to express
the concepts of provability-in-S and provability-in-T—then Bi-PIA2* can
not generally be accepted as a condition on the adequate representation of
provability concepts.'® From this it follows in turn that the inference from
Bi-G2 to Bi-Phil G2 can not be accepted, and this means that Bi-G2 can
not rightly be regarded as ‘saying’ Bi-Phil G2.

It would appear, then, that there is a problem concerning the justification
of Bi-DC4. Specifically, if Provs and Provr are pre-arithmetic, informal
provability concepts that present the theorem-sets S and T respectively,®
then the following principle can not be used to justify it.

(Proto-Bi-DC4): If S and T are theories such that S € T, and Provg
and Provy are the concepts by which S and T (respectively) are
intensionally given, then if Provs(z) and Provp(z) are to represent,
respectively, Provg and Provy in S, Bi-DC4 must hold of Provs{z)
and Provr(z).

Nor can the more general standard of concept representation—a stan-
dard that applies to concepts generally, and not just to provability concepts
—that stands behind Proto-Bi-DC4 be accepted. According to this more
general standard, if the formulae F and G of a given representing theory
S are to represent the informal concepts Cr and Cg, whose extensions are
F and G, respectively, S must capture or express the subset relations that
obtain between F and G as theorems involving F and G. Somewhat more
precisely:

{Gen-Proto-Bi-DC4): If S and T are sets such that S € 7, and Cs and
Cr arc the concepts by which S and T are intensionally given, then,
if the formulae Cg(x) and Cpr(z) are to adequately represent or
express Cg and Cp in a theory 4, it must be the case that for every
n, Fg Cs(n) — Cp(n) (where “n’ is a term in the language of 8 that
is acknowledged to be a designator of u).

As the case constructed carlier shows, Gen-Proto-Bi-DC4 can not be

18 | have benefited from discussions of this and related matters (i.e., conditions properly

regarded as governing the representation of concepts) with George Boolos, Julia Knight,
Mike Stob and Peter Cholak.

19 [ calling Provs and Provy ‘pre-arithmetic’ provability concepts presenting S and
T, I inean only that they are the provability concepts of the theories S and T as they
(the theories and their provability concepts) are given prior to arithmetization. They are
therefore the concepts that the formulae Provs and Provp are supposed to represent in

S.
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accepted as a generally valid constraint on the representation of concepts.
The formulae Provs{z) and Provr(z) of that case are acceptable expres-
sions of the pre-arithmetic concepts of provability-in-S and provability-in-T
defined there, but they do not satisfy the appropriate instance of Gen-Proto-
Bi-DC4.

We conclude that it is not generally necessary that formulae expressing
or representing concepts in a given theory S should instance-wise capture
(as theorems of the representing theory) the subset relations that obtain
between the extensions of those concepts. There are, I believe, two basic
facts which account for this. The first is that for a formula F to serve as a
proper representation of a coneept C in a theory 6, what is necessary is that
the defining characteristics of C be registered in 8 as theorems concerning F.
The second is that not everything that may be known or proved about given
concepts (including facts regarding their extensions) by those ordinary users
of the concepts who grasp them is rightly regarded as a defining feature of
them.

Evidently, these arc points of some subtlety since the following reasoning
seems to be widely used without comment: (i) for many pairs of theories S,
T. it is possible, using the pre-arithmetic informal provability concepts by
which they arc presented, to prove (in the informal metamathematics of S
and T) that cvery theorem of the one is a theorem of the other; therefore,
(ii) for such pairs of theories, it is proper to take Bi-DC4 as a necessary
condition on the ability of the formulac Provs(z) and Provr(z) properly
to represent those pre-arithmetic provability concepts in S. If the argument
given above is correct, however, such an attitude is wrong; the inference
from (i) to (ii) can not be accepted without further justification.

There are, I believe, two principal strategies that one might pursue in
attempting to provide such justification. Each, however, appears to require
solutions to some fairly difficult problems.

The first strategy concedes that Gen-Proto-Bi-DC4 does not hold for
concepts generally and even that it does not hold for provability concepts
generally (i.e., it concedes that Proto-Bi-DC4 does not generally hold).
It sceks, nonetheless, to make a case for Proto-Bi-DC4 as a restricted
principle---one that holds for certain pairs of provability concepts. The
motivating idea behind this strategy is that there secm to be cases where
the subsumption of the extension of one concept by that of another is imme-
diatc from their definitions. In such cases, it may be reasonable to regard
knowledge of such subsuniption as partially constitutive of what is involved
in grasp of the concepts.

Perhaps the clearest case of this type is one where the axioms and rules
of inference in terms of which one of the provability concepts is defined are
themselves explicitly inchuded among the axioms and rules of inference in
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terms of which the other provability concept is defined.?® In such cases, it
may well be that sheer grasp (hence, sheer representation) of the provability
concepts involved necessitates knowledge (or instance-wise knowledge) of
the subsumption of the one concept’s extension by that of the other. The
problem, however, is that the statement, proof and applications of Bi-G2
are generally not restricted to such cases. This means that one advocating
the usual interpreted version of Gddel’s Second Thecrem (i.e., the Bi-Phil
(G2 reading of Bi-G2) must provide an argument that does not look to be
easy to provide; specifically, she must

(Problem 2): Explain, for the full range of theories S and T such that
S C T and the full range of provability concepts Provg and Provy
for which Bi-G2 can be proved, why a proper grasp of Provg and
Provy requires knowledge (or instance-wise knowledge) that SCT,
even though this is not generally required for grasp of concepts one
of whose extensions subsumes that of the other.

In other words, the advocate of the traditional interpretation of Bi-G2
must say what it is about the provability concepts in Bi-G2 that makes
knowledge (or instance-wise knowledge) of the subsumption relation that
exists between their extensions a necessary condition of their proper grasp.
I do not believe that a satisfactory solution to this problem can be given.
Hence, I do not believe that there is anything about Bi-G2's holding of a pair
of provability concepts Provs and Provr such that § C T that justifies
placing a condition like Bi-DC4 on formulae purporting to represent or
express Provg and Provy. What can be, and often is, true is that Bi-
DC4 is provable for formulac representing such pairs of provability concepts.
That Bi-DC4 may be provable, however, docs not imply that it is justifiable.
To prove Bi-DC4 does not show that it is a necessary condition on the
ability of formulae of the language of S to properly represent or express the
concepts Provs and Provr.

Third Argument

On the basis of the above argument, then, we claim that Bi-PIA2*—and,
hence, the usual interpretation of Bi-G2—can not be maintained when the
criteria for representing the concepts of provability-in-T' and provability-
in-S are taken to include satisfaction of Bi-DC4. This notwithstanding,
some might still argue that Bi-DC4 holds when Provs(z) and Provy(z) are
formulae that express the provability concepts which ‘naturally’ (or perhaps
‘canonically’) present the theorem-sets T and S. Tt is this possibility that
we will now consider.

The basic ideas behind this attempt to justify Bi-DC4 are that (i) con-

2 . . . . . e
20 As speciflic examples, consider the usual formal axiomatic definitions of the well known

systems of first-order arithimetic @ and PA.
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cepts are ways of presenting sets and that (ii) for any given set, though
there may be a variety of intensionally non-equivalent concepts by which it
can (in some sense) be presented, there is a single concept or a restricted
class of concepts that present it best. We will refer to this supposed optimal
presentation of a set as its ‘preferred’ or ‘canonical’ concept.

Given this idea of canonically presenting concepts for sets, the following
might be offered as a general principle justifying Bi-DC4.
(Gen-Proto-Bi-DC4A): Where S and T are sets, and C(S) and C(T') are

concepts that canonically present S and T, and S C T, it should
be the case that for any representing theory 6 and any formulae
Cs(z) and Cr(z) of the language of 8, if Cs(z) and Cr(z) ade-
quately represent C(S) and C(T') (respectively) in , then, for every
n, kg Cs(n) — Cr(n) (where ‘n’ is a term in the language of 6
acknowledged to be a designator of n).

Advocacy of Gen-Proto-Bi-DC4A, however, exacts a tribute; namely:
(1) to identify a set of general characteristics of concepts that are those
characteristics that are responsible for their being the canonical presenta-
tions of the sets they present; (2) to explain what it is about the general
characteristics identified that should make concepts possessing them the
‘preferred’ or ‘canonical’ ways of presenting the sets that they present; and
(3) to explain why it is that adequate representations of canonical con-
cepts ought always to capture any subset relations that exist between their
extensions.

None of these are casy tasks to manage. Indeed, they may not be man-
ageable at all. Adoption of Gen-Proto-Bi-DC4A as the justificatory prin-
ciple for Bi-DC4 is thercfore not to be taken lightly. It brings heavy re-
sponsibilitics with it. To sec the kind of difficultics it encounters, consider
the following example. Let S be the set of numbers x such that there is no
odd perfect number greater than x. And let T be the empty set of numbers
presented by whatever concept might be seen as the canonical concept pre-
senting it (c.g., the concept of being non-self-identical). For all we know,
no reasonable choice of representing theory 6 will decide the question of
whether there is an odd perfect number. At the same time, however, it
can safely be assumed that a reasonable choice of 8 will, for each n, prove
‘n- = n’, which we may assume to be (provably equivalent in 6 to) ‘~Cr(n)’.
If S is presented by the concept indicated above, then we may take Cs(n)
to be the formula ‘~3z(z > n & Odd(z) & Perfect (x))'.>! Hence, assum-
ing, as above, that € does not decide the question of whether there is an
odd perfect number, it follows that 8 can not prove ‘Cs(n) — Cr(n)’ for
any n.

21 Hare, of course, ‘Odd(e)” and ‘Perfect(x)” are short for longer, more complicated
formulac of first-order arithmetic.
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If, therefore, we were to accept Gen-Proto-Bi-DC4A as the justification
of Bi-DC4, we would be obliged also to accept either that (a) the concept
of being non-self-identical does not canonically present the empty set of
pumbers, or that (b) the formula ‘2 # 2’ does not express this concept
in 8, or that (¢) the concept of n’s being a number such that there is
no odd perfect number greater than n does not canonically present the
set which is, as a matter of fact, its extension, or that (d) the formula
‘=3z(x > n & Odd(z) & Perfect(x))’ does not express in § the concept of
n’s being a number such that there is no odd perfect number greater than n.
None of these alternatives scemns more attractive, however, than rejection
of Gen-Proto-Bi-DC4A.

The prospects do not improve when we pass from the justification prob-
lem for Bi-DC4 to the justification problem for the type of variant of Bi-DC4
that is needed if Bi-G2 is to be used to evaluate Hilbert’s Program.

The variant we have in mind is one which interprets Bi-DC4 fnitarily.
Specifically, it is:

(Fin-Bi-DC4): For all m, n, k5 Prfs(m,n) — Prfp(f(m),n)).

Here m, n are supposed to be numerals (or other suitably canonical terms)
in Lg for m, n, respectively, and f is taken to be a term of Lg for which
there are means of ‘primitive recursive computation’ in S (i.e., means which
‘express’, in the language and proof-apparatus of S, the primitive recursive
computation of the function f, which is supposed to be the function ex-
pressed by f). This is the type of condition that Hilbert's finitism would
require in the place of the otherwise finitarily unintelligible Bi-DC4 with
its unbounded existential quantifiers in Provg(z) and Provyp(z).

The justification of Fin-Bi-DC4 requires a principle different from Gen-
Proto-Bi-DC4A. In particular, it calls for a principle in which reference
to the sets S and T is replaced by reference to the fields of relations and
the possible containment relationships that may exist between them. What
adoption of Fin-Bi-DC4 as a justifiable constraint on our choice of proof
expressions for S and T seems to commit us to is the idea that formulae
capable of expressing relations must capture the relations of inclusion that
exist among their various ficlds. One idea for a justifying principle for
Fin-Bi-DC4 is therefore the following:

(Proto-Fin-Bi-DC4-I): When C(R'(x1,...,%,)) and C(R*(x1, ..., X,))
are concepts that canonically present the relations R (x;, ..., x,) and
R%(x1,...,%,), respectively, and the j*" ficld (1<j<n)of R'isa
subset of the j*™ ficld of R%, then there is a primitive recursive

function f such that for any my, ..., my—y, my, my41,- .., my, if
. .
R(miy, ... my_y,my, myqq. ..., my,), then Rz(f(ml), oo f(myag), my,

f(my, ), ... £(m,)) and, for any formulae Cri(zy, .. .. 2,) and
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Cra(xy,...,,) of the language of 8 capable of representing
C(RY(x1,...,x,)) and C(R*(xy,...,x,)) in @, there are terms f and

My, ..., M1, My, Myg1, - .., M, of the language of # such that, for
any my, ..., my_p, My, Wy, .., d,,
Fo Cri(ma, ... my—1, My, Mypts ..o, My)

= Cre(flma),. ., flmir),my, f(mypa), -, f(ma)).*2

Proto-Fin-Bi-DC4-1 gencralizes Gen-Proto-Bi-DC4A by extending it
from single-field relations to many-field relations. It requires that formulae
taken to express relatious instance-wise capture subset relations that exist
between parallel fields of them. Specifically, it requires a primitive recur-
sive way of constructing, for R, a parallel relational ‘environment’ for any
field of R' that is coutained in the parallel ficld of R2. This amounts to a
kind of finitary ‘constructibility’ requircment—that any containment of a
field of R' i the parallel ficld of R? should be inducible through a primi-
tive recursive transformation of a relational environment that preserves the
contained field of R' as the parallel ficld of R%.

It is then further required that this ‘constructibility’ be part of what is
registered by any formulae of the representing theory capable of properly
representing R' and R2.

Seen this way, the justification of Fin-Bi-DCA4 (i.e., Proto-Fin-Bi-DC4-1)
is a composite of the following two principles:

(Finitary Constructibility): If C(R'(x1,...,%,)) and C(R*(xy,...,%,)) are
concepts that canonically present the relations R! (x1,...,%,) and
Rz(x|,...,x,,), respectively, and the j*" field (1 <j<n)of Rlisa
subset of the j*" field of R, then there should be a primitive recursive
function f such that, for any r, if R! (X0, Xj=1, L, X415 - - X ), then
RE(E(x1)s oy E(51)s T, £(%540), -0 F (%)),

and

(Constructibility Registration): If C(R'(x;,...,x,)) and C(R2(x1, X))
are concepts that canonically present the relations R (X1, Xn)
and R? (x1,...,%,), respectively, and there is a primitive recursive
function f such that for any r, if R! (1, o, Tj=1, L, Zj41 - - - Ty), then

RA(f(x1), .., £(x5-1), 1, £(x541)s---,f(xa)), then for any represen-

ting theory # and any formulae Cpi(z,...,z,) and Cga(z1,..., Tn)
of the language of #. if Cpi(xy, ..., z,)) and Cga(zy,...,2,)) prop-

erly represent C(R! (x1,...,%,)) and C(Rz(xl7 <., Xy)) in 8, there

22 Actually, Proto-Fin-Bi-DC4-T may not be as general as it ought to be. It only requires
capturing of subset relations beltween what we here call ‘parallel’ fields—that is, thejth
field of R! and the j'" field of R%. There is no evident reason, however, why capturing
containment relations between parallel ficlds of two relations ought to be more vital
to their proper representation than capturing containment relations between their non-
parallel fields.
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should be a primitive recursive term f of the language of 8 such
that for any my, ... my,my, my, ..., M,

Fo Cri(my, ... ,my—1, My, Mg, ...y M),

- CRZ (f(7nl)7 e f(‘mj—l)’7nj! f(m.i+1)a e 7f(mn))'

It is possible to show, however, that there are binary primitive recursive
relations p(x, y) and o(x, y) such that FC does not hold. A simple example
{one of many) which illustrates this is the following: let R!(x, y) be defined
as y=2x or y=2x+1 and let R*(x, y) be defined as x=y. The y such that
IxR'(x, y) form a subsct of the y such that 3xR*(x, y), since for k in the
left field of R', (k, 2k) and (k, 2k+1) are both in R', and both (2k, 2k) and
(2k+1, 2k+1) are in R?. Since, however, no primitive recursive function
(indecd, no function of any kind) maps k to both 2k and 2k+1, it follows
that FC is not satisfied for this choice of R' and R®.

It would scen, then, that FC is not generally an acceptable constraint to
placc on concepts that canonically represent relations. Either that, or there
are recursive (even primitive recursive) relationships that are simply not
adequately representable in any reasonable choice of representing theory. In
either case, we bclieve, we are left with no adequate justification of Fin-Bi-
DC4. In the former case, we arc forced to relinquish our current candidate
for a justificatory principle (viz., Proto-Fin-Bi-DC4-1); in the latter, we
are foreed to renounce something perhaps even more fundamental to the
justification of Fin-Bi-DC4—namely, the idea that all primitive recursive
relations are adequately representable for reasonable choices of S.

It might be replied that the counter-example offered above to FC (hence
to Proto-Fin-Bi-DC4-I) overlooks a feature of the particular relations——
proof relations—that are of direct concern to Fin-Bi-DC4; namely, that for
each value of their left ficlds there is a unique value for their right fields.
It might therefore be thought that a variant of FC reformulated so as to
reflect this fact would be an acceptable justificatory principle for Fin-Bi-
DC4. Such a variant would run as follows.

(Proto-Fin-Bi-DC4-II): For primitive recursive relations R (x, y) and R®(x,
y) such that (i) for every x there is a unique y such that Rl(x, v)
and a unique y such that £2(x, y), and (ii) the y such that 3xR' (x,
y) form a subset of the y such that 3xR2(x, y), there is a primitive
recursive function f such that for all m, n, if R'(m, n), then Rz(f(m),
u).
[have two responses to this. The first is to argue that Proto-Fin-Bi-DC4-
II does not hold. The second is to argue that even if it did, the envisioned
Justification of Fin-Bi-DC4 would still face grave difficultics.
The first argument begins with an appeal to Kleene’s Normal Form The-
orem to obtain the existence of a non-primitive recursive function with a
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primitive recursive graph.2® We let R! (x, y) be the graph of such a func-
tion 1y (x)=y. Since, defined in this way, R'(x, y) is the graph of a function,
the condition that for every x there is a unique y such that R'(x, y) is
guaranteed to be satisfied. We then let R%(x, y) be the graph of the iden-
tity function ry(x) = x. By this definition of R2(x, y), satisfaction of the
condition that for every x there is a unique y such that R* (x, y) is like-
wise guarantced. Given this way of defining R'(x, y) and R¥(x, y), we are
also clearly guaranteed that the y such that 3xR'(x, y) form a subset of
the y such that 3xR%(x, y). There can, however, be no primitive recursive
function f such that

(1) for all m, n, if R (m, n), then R2(f(m), n).

For suppose there were. Then, by (1) and the definition of R*(x, y) as the
identity relation, it would follow that

(2) for all m, n, if R'(m, n), then f (m)=n.

But by the logic of identity we would then have it that
(3) for all m, n, if f(m)=n, then R'(m, n) iff R!(m, f(m)).
By (2) and (3) it would thus follow that

(4) for all m, n, if R'(m, n), then R'(m, f(m)}),

and from (4) and the definition of R'(x, y) (as the graph of ri(x)) it would
follow further that

(5) for all m, n, if r;(m)=n, then r;(in)=f (m).

(5), however, implies that for all m, ry(m)=f (), and this contradicts the
original assumption that r((x) is a recursive but not primitive recursive
function. Hence, Proto-Fin-Bi-DC4-II does not generally hold.

The hoped-for justificatory principle for Fin-Bi-DC4—namely, prototyp-
ical condition Proto-Fin-Bi-DC4-1I-—is therefore unacceptable. Hence, the
currently envisioned justification of Fin-Bi-DC4 fails. This leaves the de-
fender of Fin-Bi-DC4 with a dilemma: either (a) maintain Fin-Bi-DC4, but
relinquish the more general prototypical principle Proto-Bi-DC4-II upon
which to base it, or (b) relinquish Fin-Bi-DC4 as an appropriate constraint
to place on the representation of the proof relations for S and T.

To grant (b), of course, is to admit our claim: namely, that the finitary
correlates of Bi-PIA1 and Bi-PIA2 can not both be maintained and that
a version of Bi-G2 modified so as to apply to the evaluation of Hilbert’s
Program can not thercfore rightly be interpreted as ‘saying’ that no formula
of S that expresses the finitary consistency of T is provable in $ (in cases

where S is a theory into which finitary reasoning may be embedded and
SCT).

23 Lam grateful 1o Stan Wainer for suggesting this type of application of Kleene’s Normal
Form Theorem.
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If, on the other hand, (a) is adopted, the defender of Fin-Bi-DC4 must
either (1) maintain that though Fin-Bi-DC4 is a legitimate condition to
place on the representation of the particular primitive recursive relations
that are the proof-relations for S and T, the parallel conditions for other
primitive recursive relations can not generally be maintained to be valid
conditions on their representation, or (2) hold that not all primitive re-
cursive relations are properly representable in S. Both (1) and (2) seem
unattractive.

Even without these problems, however, advocacy of Proto-Fin-Bi-DC4-
II as a justificatory principle for Fin-Bi-DC4 is problematic. The reason is
that the shift from Fin-Bi-DC4-I to Fin-Bi-DC4-11 seems arbitrary. Why
should it be more important for the proper representation of R! (x, y) and
R%(x, y) that their representing formulae capture subset relations between
their right fields when the values of their right fields are unique (with re-
spect to a given value of their left fields) than when they are not unique?
Why should uniqueness have (or be granted) this type of normative force
in the representation of relations? For that matter, why should it only be
subset relations between parallel fields that need be captured in order to
adequately represent relations? Why not require that subset relationships
between non-parallel fields of rclations be captured as well? But would any-
one seriously maintain that subset relations between any two fields, parallel
or not, of any two relations (of any arity whatsoever) must be instance-wise
registered by any formulae capable of representing those relations?

Such questions seem to challenge our understanding of the appropriate
standards for representation. I therefore leave the reader with the following
problem(s).

(Problem 3): (i) Specify which relationships of containment among the vari-
ous fields of a given family of relations must be registered by formulae
capable of adequately representing those relations. (ii) Explain why
it is that adequate representation of these relations requires that it
be exactly these containment relationships and no others that need
to be registered.

It seems, then, that even for the representation of sets—as distinguished
from the representation of notions or concepts—there is no general reason
to accept Bi-PIA2* and Bi-PIA1 (resp. their finitary counterparts) if one
also accepts Bi-DC4 (resp. its finitary counterpart).

I would like to close this section with two disclaimers. The first is that I
do not deny that there are many pairs of recursively enumerable sets and/or
recursive (or primitive recursive) relations for which Bi-DC4 and /or Fin-Bi-
DC4 hold. My argument requires only that the holding of Bi-DC4 or Fin-Bi-
DC4 be distinguished from their being justified—that is, from their being
properly regarded as necessary conditions on the adequate represeniation of
S and T and/or their proof-relations. The difference is important since, as
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noted before, formulae can and do satisfy conditions that are not necessary
to their ability to represent the sets and/or relations they may represent.

Secondly, I do not deny that Bi-DC4 and/or Fin-Bi-DC4 may be proper
conditions to place on the representation of T and S in certain specific cases.
As mentioned earlier in connection with Problem 2, there are cases where
S C T holds because of some more thorough-going relationship of similarity
between S and T (e.g., when all proofs in S are proofs in T). In certain such
cases, a Bi-DC4-like condition may be justifiable. Similarly with certain
cases where Bi-G2 obtains not because § € T, but because of a relationship
between S and T that is more general than § C T (e.g., cases where, though
S is not a subtheory of T, there is nonetheless a ‘“translation’—one which
preserves such things as proof and/or theoremhood—from proofs and/or
theorems of S to proofs and/or theorems of T7).24

None of this, however, changes the fact that not all relationships between
S and T that permit a proof of Bi-G2 also permit a justification of the
conditions (viz. the particular Bi-DC4-like condition) that such proofs place
on the representation of the proof and/or provability relations of S and T.
We have argued this in the particular case of the relationship S C T.
But the same type of problem arises in the case of other relationships as
well. They all show a nced for a Bi-DC4-like condition at the level of
‘arithmetized’ metamathematics in order to obtain a proof of a Bi-G2-like
theorem; and they all run into problems similar to the ones mentioned
above when it comes to justifying this condition.

The following problem thercfore arises:

(Problem 4): (i) Characterize the full range of relationships between S and
T that both support a proof of a bitheoretic version of G2 and for
which there is a justification of the Bi-DC4-like condition used in
that proof. (ii) For cach different relationship between S and T
that supports a proof of a bitheoretic version of G2, give an exact
statement of the Bi-DC4-like condition that is needed and provide a
justification for it.

Ouly when Problem 4 is solved will we be in a position to determine what
are the justified interpretations of G2 (including its bitheoretic variants) and
to discern what it is that G2 truly ‘says’. I have tried to indicate in this
section, and throughout this paper generally, how far we are from having a
solution to this problem.

6. Discussion

It has been objected that the entire line of argumentation developed in
the preceding sections rests on a failure properly to reckon the logical form

24 Cases of this latter type require certain minor modifications of Bi-DC4 and/or Fin-
Bi-DC4.
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of Bi-G2.2® Specifically, it has been claimed that all that proof of Bi-
G2 requires is that Provyp(x) satisfy Bi-DC1 and Bi-DC2 and that there
exist some formula F(x) of Lg which, together with Provy {z), satisfies the
following conditions.
Bi-DC3*: For every sentence A of Lp,

ks Provr(T A7) —=F("Provr(TAT) )
Bi-DC4*: For every sentence A of Lg, g F(FAT)— Provp(T A7),

F(x) need not express provability-in-S in order to satisfy Bi-DC3* and
Bi-DC4*. It might, for example, be replaced by a formula Provp(z) that
expresses the notion of provability-in-T. There is therefore no need, the
reasoning continues, to introduce a formula Provs(z) that expresses the
notion of provability-in-S. From this it follows that there is also no need to
introduce the conditions Bi-DC3 and Bi-DC4 (or Bi-DC3* and Bi-DC4*).
One might just as well revert to the more nearly ‘monotheoretic!
Bi-DC37: For every sentence A of L,

Fs Provp(" A7) — Provr (" Provp(TAT) )
as the ‘instantiation’ of Bi-DC3* and to the tautologous
Bi-DC4t: For every sentence A of L7, b5 Provp (T AN — Provr(T A7)

as the ‘instantiation’ of Bi-DC4* 26

So long as F(z) satisfies Bi-DC3* and Bi-DC4*, the reasoning goes, it
does what it has to do; namely, provide a means of getting from (3) to
(5) in the proof of Bi-G2 Lemma. Ounce one realizes this, the argument
concludes, one sces that the entire argument of this paper is based upon
a false assumption—namely, that to prove a version of Bi-G2 in which
the conditions on the key metamathematical notions are all justified, one
must introduce a formula Prouvs(xr) whose task is to express the notion of
provability-in-S.

In reply to this objection, I have two related points to make. Before
giving them, however, T want to make it clear that I agree with the logical
claim that the objection makes—namely, that all that is needed for the
proof of (a variant of) Bi-G2 is the existence of an F(z) that satisfies Bi-
DC3* and Bi-DC4*. What I do not agree with is that this fact casts doubt
on the analysis and argument of this paper.

The ground of my disagreement is simple and, in the end, it boils down
to a point I have already made repeatedly: namely, that to obtain an
interpreted version of G2 from a literal version of G2, it is not enough

2% Warren Goldfarb and Matthew IFrank raised this objection during presentation of a
condensed oral version of this paper at the Boolos Symposium in April of 1998.

2% Bi-DCI, Bi-DC2 and Bi-DC37 suffice for the proof of Bi-G2 Lemma. Bi-DC3f is
not an entirely monotheorctic version of DC3 since it requires that ‘Provp(TA -

Provr (T Provr(T A ) be provable in S rather than T'. Bi-DC34 is the same condition
we referred to carlier as Bi-DC3A.
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simply to prove G2; one must also justify the conditions on the formulae
representing the key metamathematical notions that are used in the proof.
In this paper, I have concerned myself with one particular justification of
one particular such condition—namely, the Reflexivity Defense of the Third
Condition. My claim has been that this justification requires introduction
of a formula that expresses the notion of provability-in-S and that it does
so because of the relationship that it asserts to exist between the First and
Third Conditions.

This relationship does not obtain between Bi-DC3* and Bi-DC1. It is
therefore a characteristic intrinsic to the Reflexivity Defense that demands
replacement of Bi-DC3* and Bi-DC4* by Bi-DC3 and Bi-DC4.

It may be, however, that a broader, more radical critique of our argument
is intended in the suggestion that Bi-DC3* and Bi-DC4* be substituted for
Bi-DC3 and Bi-DC4. This is a critique which holds that the entire line of
thinking behind the Reflexivity Defense, and all other defenses of versions
of the Third and Fourth Conditions that are less general than Bi-DC3*
and Bi-DC4*, arc fundamentally misguided and that they all misrepresent
the logical form of G2. Ouly the version framed in terms of Bi-DC3* and
Bi-DC4*, the critique continues, attributes to G2 a properly general form.

In response to this, T would ask a question: ‘What is the justification of
the general condition whose two clauses are Bi-DC3* and Bi-DC4*?". Tt is,
after all, interpreted or proto-philosophical versions of G2, and not merely

literal versions, that we are interested in here. And while it may be agreed .

that one can obtain (i.e., prove) a literal version of G2 using only Bi-DC3*
and Bi-DC4*, it does not thereby follow that one can obtain an interpreted
version of G2 from it. To put it plainly, I do not believe that there is a
justification of Bi-DC3* and Bi-DC4*. The replacement of Provs(z) by
F(z) leaves one with a condition that is simply too ‘abstract’—or, better,
too indefinite in content—to admit of justification. Or perhaps I ought
rather to say that it leaves one with conditions that are too indefinite to
admit of basic or non-derivative justification. A justification of Bi-DC3*-
Bi-DC4* might be derived from soine more specific set of conditions such as
Bi-DC3 and Bi-DC4 or Bi-DC31 and Bi-DC4t. In such cases, however, it is
the justification of these more definite conditions and not the justification
of Bi-DC3* and Bi-DC4* that is ultimately at issue, and the analysis and
argument presented above then apply.?”

2T Justification of Bi-DC3* and Bi-DC4* by appeal to Bi-DC3 and Bi-DC4 would, of
cotirse, require introduction of a formula expressing provability-in-S, and the analysis
and argument given above would then apply. Justification of Bi-DC3* and Bi-DC4* by
appeal to Bi-DC31 and Bi-DC4f, on the other hand, would not seem to fit with the
thinking behind the Reflexivity Defense since Bi-DC3t lacks the requisite relationship to
Bi-DC1. The Reflexivity Defense requires that the formula making up the consequent of
the Third Condition express the property or concept in terms of which the consequent of
Bi-DC1 is stated. Justification of Bi-DC3* and Bi-DC4* via justification of Bi-DC3% and
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ABSTRACT. We counsider a seemingly popular justification (we call it the Re-
flexivity Defense) for the third derivability condition of the Hilbert-Bernays-Lob
generalization of Gédel’s Second Incompleteness Theorem (G2). We argue that
(i) in certain settings (roughly, those where the representing theory of an arith-
metization is allowed to be a proper subtheory of the represented theory), use of
the Reflexivity Defense to justify the third condition induces a fourth condition,
and that (ii) the justification of this fourth condition faces serious obstacles. We
conclude that, in the types of settings mentioned, the Reflexivity Defense does not
justify the usual ‘reading’ of G2-- namcly. that the consistency of the represented
theory is not provable in the representing theory.

Bi-DC41 is therefore justification outside the kbounds of the Reflexivity Defense, and so
Justification outside the scope of interest of this paper.



95597 Ni ‘sweq 840N
awe(q 340N jo Alsiaaiun
Aydosojiyd jo juswuedsq
Aydosojiyd

(Lyenepw) ussepaQ 1eeYIIN

:d31S3ND3Y SVH ¥3INOLSNI

91 :uonedso

0.Gd’ L YO #1I®D

undug

JAeg waiosy

puU029S §,[9PQD) SSOP JBUM :BRLL 3PV
[oBYDIN ‘ussjeed :ioyiny 3Dy
L.—-.¢ sobed

100Z :JesA/YyIuoN

¢ :anss|

6 :9WN|OA

eonewsyie eydosojiyd @iy jeusnop

T s

KIDAT[2(] IUSWNOO(] SWE(] dBON JO ANSIOATUN



