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◮ LA is the first-order language for arithmetic {0, 1, +,×, <}.

◮ Peano Arithmetic (PA) is the LA-theory consisting of
axioms for the non-negative part of discretely ordered rings
and the induction axiom

∀z̄
[

ϕ(0, z̄) ∧ ∀x
(

ϕ(x , z̄) → ϕ(x + 1, z̄)
)

→ ∀xϕ(x , z̄)
]

.

for each LA-formula ϕ(x , z̄).
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Aim

Understand structures of the form

(M, I )

where M |= PA and I is cut of M.

M︷ ︷

I︷ ︷

◮ How complicated is Th(M, I ) in relation to Th(M)?

◮ How does Aut(M, I ) sit inside Aut(M)?

◮ Is (M, I ) easier to study than (I , SSyI (M)) where

SSyI (M) = {X ∩ I : X ⊆ M is definable with parameters}?
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via a Gödel numbering.
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if two elements satisfy the same formulas,
then there is an automorphism bringing one to the other.



Arithmetic saturation

Definition
A model M of PA is recursively saturated if

every recursive type over M is realized in M.

Fact
Countable recursively saturated models of PA are ω-homogeneous.

Definition
A model M of PA is arithmetically saturated if

it is recursively saturated and (N, SSyN(M)) |= ACA0.
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Fix a countable arithmetically saturated model M of PA.

Definition
A cut of M is elementary if it is an elementary substructure of M.
We write I ≺e M for ‘I is an elementary cut of M.’

Definition
An elementary interval is a nonempty set of the form

[[a, b]] = {I ≺e M : a ∈ I < b}

where a, b ∈ M.

Fact
The elementary intervals generate a topology

on the collection of all elementary cuts.
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Topological background

Fix a countable arithmetically saturated model M of PA.

Definition
A cut of M is elementary if it is an elementary substructure of M.
We write I ≺e M for ‘I is an elementary cut of M.’

Definition
An elementary interval is a nonempty set of the form

[[a, b]] = {I ≺e M : a ∈ I < b}

where a, b ∈ M.

Fact
The space of elementary cuts is homeomorphic to the Cantor set.
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Genericity

Definition
A subset of a topological space is comeagre if

it contains a countable intersection of dense open sets.

Definition
An elementary cut is generic if

it is contained in any comeagre set of elementary cuts
that is closed under the automorphisms of M.
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A property is ‘generic’ if
it is satisfied by a ‘large’ number of cuts.
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A generic cut satisfies
all ‘generic’ properties.
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Pregeneric intervals

Theorem
Let c ∈ M and [[a, b]] be an elementary interval. Then
there is an elementary subinterval [[r , s]] of [[a, b]] such that

for every elementary subinterval [[u, v ]] of [[r , s]]
there is an elementary subinterval [[r ′, s ′]] of [[u, v ]]

such that (M, r , s, c) ∼= (M, r ′, s ′, c).

This subinterval [[r , s]] is said to be pregeneric over c .

Proof.
A tree argument.
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Generic cuts

Take an enumeration (cn)n∈N of M.
Starting with an arbitrary elementary interval [[a0, b0]],

construct a sequence [[a0, b0]] ⊇ [[a1, b1]] ⊇ [[a2, b2]] ⊇ · · ·
such that [[an+1, bn+1]] is pregeneric over cn for all n ∈ N.

Then there is a unique elementary cut in
⋂

n∈N
[[an, bn]].

Theorem
The cuts constructed in this way are exactly the generic cuts.

Proof.
Back-and-forth.
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Generic cuts under automorphisms

Proposition

(M, I1) ∼= (M, I2) for all generic cuts I1, I2 in M.

Theorem
If I is a generic cut of M and c , d ∈ I such that

tp(c) = tp(d),

then
(M, I , c) ∼= (M, I , d).
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Description of truth

Theorem
Let I be a generic cut of M.
Then for all c , d ∈ M,

(M, I , c) ∼= (M, I , d)

if and only if

◮ tp(c) = tp(d), and

◮ for every LA-formula ϕ(x , z),

{x ∈ I : M |= ϕ(x , c)} has an upper bound in I

m

{x ∈ I : M |= ϕ(x , d)} has an upper bound in I .
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elimination?
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Conclusion

What we did

◮ Picked out a more tractable (M, I )
for each countable arithmetically saturated model M.

◮ Obtained some information about
the automorphisms of this (M, I ).

◮ Understood more about the fine structure of
countable arithmetically saturated models.

What next?
Let I be a generic cut.

◮ What is special about (I , SSyI (M)) and Th(M, I )?

◮ How does Aut(M, I ) sit inside Aut(M)?

◮ Investigate the existential closure properties of (M, I ).
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