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1 A remarkable equation

At the previous turn of century it was generally believed, at least among
mathematicians, that for every equation like

xn + yn = zn, x, y, z > 0, n > 2

or
x4 + y4 + z4 = u4, x, y, z, u > 0

concerning integers, one would sooner or later find one of

1. a solution1, or

2. a proof that no solution exists2.

Since all formulas and proofs can be represented by strings of symbols, they
can be numbered according to some rule, and a function B can be defined
by

B(x) =

{
y if string no x is a proof ending with string no y

0 otherwise.

Therefore, also the second problem can be regarded as solving an equation,
so one has to do one of

1To the second equation, posed by Euler, a solution x = 2682 440, y = 15 365 639, z =
187 960, u = 20 615 673 was found in 1988.

2Fermat’s last theorem states the that the first equation has no solution. A proof of
this was obtained recently.
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1. find a solution to f(x) = y0, or

2. find a solution to B(x) = y1 where y1 is the number of the string
“f(x) 6= y0 for all x”.

Of course, one might have f = B. But what happens if one succeeds in
finding an y0 such that y1 = y0?

• Then the problems of finding a solution to B(x) = y0 and of finding
a proof that it has no solution are the same, so, unless contradictions
can occur in mathematics, neither will ever be found3.

It might seem paradoxical that we have nevertheless concluded that
the equation is unsolvable. The reason is that we have used a new
assumption which is not taken into account in the B-function. If
it were so, and if Bκ denotes that a set κ of new rules have been
incorporated, we would find ourselves in the same situation over and
over again.

• As a consequence, is impossible to prove that contradictions can never
occur, since, if it were possible, then a proof of the unprovable B(x) 6=
y0 would emerge.

Gödel found such an y0. His finding has stimulated a great number of more
or less philosophical dissertations on self-referential statements like a Kretan
saying “all Kretans are liars”. However, the present one is not more esoteric
than the following example.

Example Let z be the number of signs in the string

“This sentence contains ?? signs”.

Then z = 32, so the sentence

“This sentence contains 32 signs”,

makes a statement about itself. Of course, it is not because it says so that
it contains 32 signs, it is because anyone can count the number.

�

Gödel defined a substitution function by Sy(x, z) equal to the number of
the string that results whan one takes string no x and replaces, whenever

3It is still conceivable that, meanwhile, someone might come up with a proof that a
solution exists witout actually exhibiting one. This has to do with ω-consistency to be
treated below.
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possible, the symbol “y” with the number z written out with digits. If the
first string in the example has number p, then the second one has number
S??(p, z).

Now, let p be the number of

“B(x) 6= Sy(y, y) for all x”.

Suppose that p = 123, say.

• Then Sy(123, 123) is the number of

“B(x) 6= Sy(123, 123) for all x”,

so y0 = Sy(123, 123) serves as the desired y0.

2 The first incompleteness theorem

In order to convince oneself that the above is not merely a play with words,
one has to distinguish between mathematics and metamathematics. Solving
the equation B(x) = Sy(123, 123) belongs to mathematics, while the ques-
tion whether there is a proof ending with “B(x) 6= Sy(123, 123) for all x”
belongs to the latter. Gödel went one step further and and obtained a purely
metamathematical result.

2.1 The result

Suppose a proof were found that the equation B(x) = y0 has no solution.
Then the number of the string constituting the proof is a solution to the
equation, which counts as a proof that the equation has a solution. There-
fore,

• if mathematics is consistent, that is free of contradictions, then it is
impossible to prove that B(x) = y0 has no solution.

Next, if one could prove that the equation has some solution while at the
same time there are proofs of B(1) 6= y0, B(2) 6= y0, . . . for all integers, a
weaker form of inconsistency, called ω-inconsistence by Gödel, would occur.
On the other hand, we know that, if mathematics is consistent, then each
computation of B(n) would give B(n) 6= y0, so

• if mathematics is ω-consistent then it is impossible to prove that
B(x) = y0 has a solution.

The result is Gödel’s first incompleteness theorem; provided that mathe-
matics is ω-consistent, he exhibits a proposition that can be neither proved
nor disproved.
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2.2 Technical details

In formal mathematics one starts with axioms concerning natural numbers,
denoted by 0, $0, $$0, $$$0, . . . (the “$” sign denotes the next number), and
deduces cryptic formulas like

∀Add

((

∀a∀b∀c

((

Add(a, b, c) ⇔ Add(a, $b, $c)
)

∧Add(a, 0, a)

))

⇒ Add($$0, $$0, $$$$0)

)

(1)
and

¬∀Add

((

∀a∀b∀c

((

Add(a, b, c) ⇔ Add(a, $b, $c)
)

∧Add(a, 0, a)

))

⇒ Add($$0, $$0, $$$$$0)

)

.

(2)
A deduction starts with some axioms, which are given formulas, and rewrites
them according to given deduction rules. As far as I have understood, a
mathematical proof is only valid if it can be transformed into a formal
deduction by writing out every minute detail, and it is tacitly understood
that this can be done with our ordinary proofs.

In metamathematics one considers the above formulas as pure abra-
cadabra and studies what can be achieved with the manipulations, for in-
stance,

1. whether the axioms are consistent (with respect to the deduction
rules), that is, one can never deduce both a formula and the same
formula prepended with a “¬” sign, and

2. whether the axioms are complete, that is for any syntactically correct
formula, one can deduce either the formula or its negation.

When doing this, ordinary mathematics can be used. Gödel showed, with
ordinary induction, that there exists a formula, something like

∀Add

((

∀a∀b∀c

((

Add(a, b, c) ⇔ Add(a, $b, $c)
)

∧Add(a, 0, a)

))

⇒ Add(x, y, z)

)

,

(3)
such that if the relation x + y = z holds, then one can replace the x, y,
and z with a “0” prepended by the corresponding number of “$” signs, and
deduce the resulting formula while, if the relation does not hold, the formula
prepended with a “¬” sign is deducible. Formulas (1) and (2) are examples
of this for, respectively, 2 + 2 = 4 and 2 + 2 6= 5.
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• More generally, he showed, Thm V page 186 in [1], that for all re-
lations which, like x + y = z, can be defined recursively, there exist
corresponding formulas. This gives a link from metamathematics to
mathematics.

Since all formulas and deductions can be represented by strings of symbols,
they can be numbered, and functions can be defined according to

B(x) =

{
y if string no x is a deduction ending with string no y

0 otherwise.

and substitution functions4

Sby(x, z)

which takes string no x, replaces, whenever possible, the symbol in the
subscript with a “0” prepended with z “$” signs, and returns the number
of the resulting string. For instance, if formula (3) has number n, then the
formula with number

Sbx(Sby(Sbz(n, z), y), x)

is deducible if x+y = z while the formula prepended with a “¬” is deducible
if x + y 6= z.

Next he defined a relation Q between two nonnegative integers, x and y

by
Q(x, y) ⇔ B(x) 6= Sby(y, y).

It turns out to be recursive, so it has a corresponding formula

∀Q

((

∀a∀b
(

Q(a, b) ⇔ . . .
))

⇒ Q(x, y)

)

,

where the “. . .” symbolises a large amount of recursions reflecting what is
meant by Q. Let q be the number of this formula, p the number5 of

∀x formulaq,

4Gödel uses the notation

Sb

„

x
19

Z(z)

«

= Sby(x, z),

since variables x, y, . . . are numbered by the primes, 17, 19, . . . and Z(n) denotes the num-
ber of the string consisting of a “0” prepended by n successor signs.

5If Genx(y) denotes the number of the formula ∀xformulay, we can write p = Genx(q).
Gödel writes this p = 17 Gen q.
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and try to solve the following equation6:

B(x) = Sby(p, p). (4)

Since Sby(p, p) is the number of7

∀x∀Q

((

∀a∀b
(

Q(a, b) ⇔ . . .
))

⇒ Q(x, $ . . . . . . $
︸ ︷︷ ︸

p

times

0)

)

,

the following emerges:

1. Suppose Sby(p, p) were deducible. Then (4) would have a solution,
x = n, so Q(n, p) would be false, and, hence,

¬∀Q

((

∀a∀b
(

Q(a, b) ⇔ . . .
))

⇒ Q($ . . . $
︸ ︷︷ ︸

n

0, $ . . . $
︸ ︷︷ ︸

p

0)

)

deducible, while, on the other hand, the deduction of Sby(p, p) could
be continued into one of

∀Q

((

∀a∀b
(

Q(a, b) ⇔ . . .
))

⇒ Q($ . . . $
︸ ︷︷ ︸

n

0, $ . . . $
︸ ︷︷ ︸

p

0)

)

.

Therefore:

• Unless it is possible to deduce both a formula and its negation,
Sby(p, p) cannot be deduced and (4) has no solution.

6If formula no Sby(p, p) is interpreted as

B(x) 6= Sby(p, p) for all x,

then the equation amounts to finding a a proof of its own unsolvabability. However, in
metamathematics we have to go through the link established by Gödel’s Thm V.

7For the reader who wants to check with Gödel’s original work on page 188, we note
that Sby(p, p) = Genx(r) (17Gen r) where r = Sby(q, p) is the number of

∀Q

0

@

 

∀a∀b

„

Q(a, b) ⇔ . . .

«

!

⇒ Q(x, $ . . . $
| {z }

p

0)

1

A,

since it does not matter in which order we substitute a value for y and prepend ∀x, cf.
Gödel’s formula 13 and footnote 44 on page 187.
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2. Assuming consistency, we have just concluded that B(x) 6= Sby(p, p)
for all x. Consequently, all formulas

∀Q

((

∀a∀b
(

Q(a, b) ⇔ . . .
))

⇒ Q($ . . . $
︸ ︷︷ ︸

n

0, $ . . . $
︸ ︷︷ ︸

p

0)

)

, n = 0, 1, . . .

are deducible. If nevertheless

¬∀x∀Q

((

∀a∀b
(

Q(a, b) ⇔ . . .
))

⇒ Q(x, $ . . . $
︸ ︷︷ ︸

p

0)

)

,

that is the negation of formula no Sby(p, p), were deducible, then what
Gödel calls an ω-contradiction would occur, so

• if the axioms are ω-consistent, then the negation of formula no
Sby(p, p) cannot be deducible.

3 The second incompleteness theorem

3.1 The result

As noted earlier, we cannot prove that the axioms of mathematics are con-
sistent.

3.2 Technical details

As proved above, if the axioms are consistent, it is impossible to deduce
formula no Sby(p, p), namely

∀x∀Q

((

∀a∀b
(

Q(a, b) ⇔ . . .
))

⇒ Q(x, $ . . . $
︸ ︷︷ ︸

p

0)

)

.

For this part ω-consistency was not needed. On the other hand, the formula
“says” that it is not deducible. Therefore, if we add an axiom “saying” that
the original axioms are consistent, it might be deducible.

The new axiom is based on the following observation: If the axioms are
inconsistent, then all formulas can be proved, so consistency is the same
as: There exists a formula that cannot be proved, namely either f or ¬f .
Consider the relation

W (x, y) ⇔ B(x) 6= y and y is the number of a syntactically correct formula.
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It is recursive, so it corresponds to a formula

∀W

((

∀a∀b
(

W (a, b) ⇔ ◦ ◦ ◦
))

⇒ W (x, y)

)

.

Gödel undertook to deduce, in a fortcoming paper

∃y∀x∀W

((

∀a∀b
(

W (a, b) ⇔ ◦ ◦ ◦
))

⇒ W (x, y)

)

⇒

∀x∀Q

((

∀a∀b
(

Q(a, b) ⇔ . . .
))

⇒ Q(x, $ . . . $
︸ ︷︷ ︸

p

0)

)

,

which would prove that it is impossible to deduce

∃y∀x∀W

((

∀a∀b
(

W (a, b) ⇔ ◦ ◦ ◦
))

⇒ W (x, y)

)

,

which can is interpreted as the axioms being consistent. This was never
done, presumably because von Neumann, when hearing Gödel talk on his
first theorem, draw this conclusion. As I collect, a formal proof was made
much later by Turing in connection with Turing machines.

4 On ω-consistency

For obvious reasons, we can never observe an ω-contradiction. But, if the
axioms are consistent and we add the negation of formula Sby(p, p) to the
axioms, then the result will still be consistent, but not ω-consistent.
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