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Abstract. After a brief flirtation with logicism around 1917, David Hilbert proposed his
own program in the foundations of mathematics in 1920 and developed it, in concert with
collaborators such as Paul Bernays and Wilhelm Ackermann, throughout the 1920s. The two
technical pillars of the project were the development of axiomatic systems for ever stronger
and more comprehensive areas of mathematics, and finitistic proofs of consistency of these
systems. Early advances in these areas were made by Hilbert (and Bernays) in a series of
lecture courses at the University of Gottingen between 1917 and 1923, and notably in Ack-
ermann’s dissertation of 1924. The main innovation was the invention of-tadéculus, on

which Hilbert's axiom systems were based, and the development efghbstitution method

as a basis for consistency proofs. The paper traces the development of the “simultaneous
development of logic and mathematics” through ¢heotation and provides an analysis of
Ackermann’s consistency proofs for primitive recursive arithmetic and for the first compre-
hensive mathematical system, the latter using the substitution method. It is striking that these
proofs use transfinite induction not dissimilar to that used in Gentzen’s later consistency
proof as well as non-primitive recursive definitions, and that these methods were accepted
as finitistic at the time.

1. Introduction

Hilbert first presented his philosophical ideas based on the axiomatic method
and consistency proofs in the years 1904 and 1905, following his exchange
with Frege on the nature of axiomatic systems and the publication of Rus-
sell's Paradox. In the text of Hilbert's address to the International Congress
of Mathematicians in Heidelberg, we read:

Arithmetic is often considered to be part of logic, and the traditional
fundamental logical notions are usually presupposed when it is a questi-
on of establishing a foundation of arithmetic. If we observe attentively,
however, we realize that in the traditional exposition of the laws of logic
certain fundamental arithmetic notions are already used, for example,
the notion of set and, to some extent, also that of number. Thus we
find ourselves turning in a circle, and that is why a partly simultaneous
development of the laws of logic and arithmetic is required if paradoxes
are to be avoided.

When Hilbert returned to his foundational work with full force in 1917, he
seems at first to have been impressed with Russell’s and Whitehead’s work in
Principia MathematicaWhitehead and Russell, 1910, 1913), which—they
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thought—succeeded in developing large parts of mathematics without using
sets? Sieg (1999) has argued that, in fact, Hilbert was a logicist for a brief
period around the time of his paper “Axiomatic Thought” (Hilbert, 1918a).

By 1920, however, Hilbert returned to his earlier conviction that a reduction

of mathematics to logic is not likely to succeed. Instead, he takes Zermelo’s
axiomatic set theory as a suitable framework for developing mathematics. In
his course on “Problems of mathematical logic” (Hilbert, 1920b), he localizes
the failure of Russell’s logicism in its inability to provide the existence results
necessary for analysis (e.g., existence of least upper bounds for bounded sets
of reals):

The axiomatic method used by Zermelo is unimpeachable and indis-
pensable. The question whether the axioms include a contradiction,
however, remains open. Furthermore the question poses itself if and in
how far this axiom system can be deduced from logic. [... T]he attempt
to reduce set theory to logic seems promising because sets, which are
the objects of Zermelo’s axiomatics, are closely related to the predicates
of logic. Specifically, sets can be reduced to predicates.

This idea is the starting point for Frege's, Russell's, and Weyl's
investigations into the foundations of mathematics.

The logicist project runs into a difficulty when, given a second-order predicate
Sto which a set of sets is reduced, we want to know that there is a predicate
to which the union of the sets reduces. This predicate wouldBgP(x) &
S(P))—x is in the union of the sets i if there is a seP of which x is a
member and which is a member &f

We have to ask ourselves what “there is a predi€¥tes supposed to
mean. In axiomatic set theory “there is” always refers to a basic domain
B. In logic we could also think of the predicates comprising a domain,
rather, this domain of predicates cannot be seen as something given at
the outset, but the predicates must be formed through logical operations,
and the rules of construction determine the domain of predicates only
afterwards.

From this we see that in the rules for the logical construction of
predicates reference to the domain of predicates cannot be allowed. For
otherwise airculus vitiosusvould result?

Here Hilbert is echoing the predicativist worries of Poincaré and Weyl.
Hilbert, however, rejects Weyl's answer to the problem, viz., restricting
mathematics to predicatively acceptable constructions and inferences, as un-
acceptable in that it amounts to “a return to the prohibition policies of
Kronecker.” Russell’s proposed solution, on the other hand, amounts to giving
up the aim of reduction to logic:

Russell starts with the idea that it suffices to replace the predicate needed
for the definition of the union set by one that is extensionally equivalent,
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and which is not open to the same objections. He is unable, however,
to exhibit such a predicate, but sees it as obvious that such a predicate
exists. It is in this sense that he postulates the “axiom of reducibility,”
which states approximately the following: “For each predicate, which is
formed by referring (once or multiple times) to the domain of predicates,
there is an extensionally equivalent predicate, which does not make such
reference.

With this, however, Russell returns from constructive logic to the
axiomatic standpoint. [...]

The aim of reducing set theory, and with it the usual methods of
analysis, to logic, has not been achieved today and maybe cannot be
achieved at alt.

With this, Hilbert rejects the logicist position as failed. At the same time, he
rejects the restrictive positions of Brower, Weyl, and Kronecker. The axio-
matic method provides a framework which can accommodate the positive
contributions of Brouwer and Weyl, without destroying mathematics through
a Kroneckerian “politics of prohibitions.” For Hilbert, the unfettered progress
of mathematics, and science in general, is a prime concern. This is a position
that Hilbert had already stressed in his lectures before the 1900 and 1904
International Congresses of Mathematics, and which is again of paramount
importance for him with the conversion of Weyl to Brouwer’s intuitionism.

Naturally, the greater freedom comes with a price attached: the axiomatic
method, in contrast to a foundation based on logical principles alone, does
not itself guarantee consistency. Thus, a proof of consistency is needed.

2. Early Consistency Proofs

Ever since his work on geometry in the 1890s, Hilbert had an interest in
consistency proofs. The approaches he used prior to the foundational pro-
gram of the 1920s were almost always relative consistency proofs. Various
axiomatic systems, from geometry to physics, were shown to be consistent
by giving arithmetical (in a broad sense, including arithmetic of the reals) in-
terpretations for these systems, with one exception—a prototype of a finitistic
consistency proof for a weak arithmetical system in Hilbert (1905). This was
Hilbert's first attempt at a “direct” consistency proof for arithmetic, i.e., one
not based on a reduction to another system. Hilbert had posed the question of
whether there is such a proof for arithmetic as the second of his famous list
of problems (Hilbert, 1900).

When Hilbert once again started working on foundational issues following
the war, the first order of business was a formulation of logic. This was ac-
complished in collaboration with Bernays between 1917 and 1920 (see Sieg,
1999 and Zach, 1999), included the establishment of meta-theoretical results
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like completeness, decidability, and consistency for propositional logic in
1917/18, and was followed by ever more nuanced axiom systems for propo-
sitional and predicate logic. This first work in purely logical axiomatics was
soon extended to include mathematics. Here Hilbert followed his own pro-
posal, made first in 1905t0 develop mathematics and logic simultaneously.
The extent of this simultaneous development is nowhere clearer than in the
notes to Hilbert’s lecture course @rundlagen der Mathemati&f 1921/22
(Hilbert, 1922a, 1922b), where tlgeoperator is first used as both a logical
notion, representing the quantifiers, and an arithmetical notion, representing
induction in the form of the least number principle. Hilbert realized then that
a consistency proof for all of mathematics is a difficult undertaking, best
attempted in stages:

Considering the great variety of connectives and interdependencies ex-
hibited by arithmetic, it is obvious from the start that we will the not be
able to solve the problem of proving consistency in one fell swoop. We
will instead first consider the simplest connectives, and then proceed to
ever higher operations and inference methods, whereby consistency has
to be established for each extension of the system of signs and inference
rules, so that these extensions do not endanger the consistency [result]
established in the preceding stage.

Another important aspect is that, following our plan for the complete
formalization of arithmetic, we have to develop the proper mathematical
formalism in connection with the formalism of the logical operati-
ons, so that—as | have expressed it—a simultaneous construction of
mathematics and logic is carried dut.

Hilbert thus envisaged his foundational project as a stepwise “simultaneous
development of logic and mathematics,” in which axiomatic systems for lo-
gic, arithmetic, analysis, and finally set theory would be developed. Each
stage would require a proof of consistency before the next stage is develo-
ped. Hilbert had rather clear ideas, once the basic tools both of proof and of
formalization were in place, of what the stages should be. In an addendum to
a lecture course ohogische Grundlagen der Mathemattught by Hilbert

and Bernays in 1922-23 (Hilbert and Bernays, 1923a, 1923b), he outlined
them:

Outline. Stage Il was elementary calculation, axioms 1-16.
Stage IIl. Now elementary number theory
Schema for definition of functions by recursion and modus ponens
by adding the schema of induction to our inference schema
even if this coincides in substance with the results of intuitively obtained
number theory, we are now dealing with formulas, e.¢,b = b+ a.
Stage llll. Transfinite inferences and parts of analysis
Stage V. Higher-order variables and set theory. Axiom of choice.
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Stage VI. Numbers of the 2nd number class, full transfinite inducti-
on. Higher types. Continuum problem, transfinite induction for numbers
in the 2nd number class.

Stage VII. (1) Replacement of infinitely many definitional schemata
by one axiom. (2) Analysis and set theory. At level 4, again the full
theorem of the least upper bound.

Stage VIII. Formalization of well orderingy.

2.1. THE PROPOSITIONAL CALCULUS AND THE CALCULUS OF
ELEMENTARY COMPUTATION

The proof of consistency of propositional logic (Step 1) had been achieved in
1917-18. Already in the lectures from the Winter term 1917/18, Hilbert and
Bernays had proved that the propositional calculus is consistent. This was
done first by providing an arithmetical interpretation, where they stressed
that only finitely many numbers had to be used as “values” (0 and 1). The
proof is essentially a modern proof of the soundness of propositional logic: A
truth value semantics is introduced by associating which each formula of the
propositional calculus a truth function mapping tuples of 0 and 1 (the values
of the propositional variables) to 0 or 1 (the truth value of the formula under
the corresponding valuation). A formula is calledrrectif it corresponds

to a truth function which always takes the value 0. It is then showed that
the axioms are correct, and that substitution and modus ponens preserve cor-
rectness. So every formula derivable in the propositional calculus is correct.
SinceA andA cannot both be correct, they cannot both be derivable, and so
the propositional calculus is consistént.

It was very important for Hilbert that the model for the propositional cal-
culus thus provided by0,1} was finite, since then its existence, and the
admissibility of the consistency proof was beyond question. This lead him
to consider the consistency proof for the propositional calculus to be the
prime example for a consistency prdoy exhibitionin his 1921/22 lectu-
res on the foundations of mathematics. The consistency problem in the form
of a demand for a consistency proof for an axiomatic system which neither
proceeds by exhibiting a model, nor by reducing consistency of the system to
the consistency of another, but by providing a metamathematical proof that
no derivation of a contradiction is possible, is first formulated in lectures in
the Summer term of 1920. Here we find a first formulation of an arithmetical
system and a proof of consistency. The system consists of the axioms

1 =1
(a=b) — (a+1=b+1)
(a+1=b+1) — (a=Db)
(a=b) — ((@a=c) — (b=0)).
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The notes contain a proof that these four axioms, together with modus ponens,
do not allow the derivation of the formula

a+l1l=1

The proof itself is not too interesting, and | will not reproduce it H€r&he
system considered is quite weak. It does not even contain all of propositional
logic: negation only appears as inequality4(), and only formulas with at
most two ' signs are derivable. In fact, not even= a is derivable. It

is here, nevertheless, that we find the first statement of the most important
ingredient of Hilbert's project, namely, of proof theory:

Thus we are led to make the proofs themselves the object of our inve-
stigation; we are urged towardpaoof theory which operates with the
proofs themselves as objects.

For the way of thinking of ordinary number theory the numbers are
then objectively exhibitable, and the proofs about the numbers already
belong to the area of thought. In our study, the proof itself is something
which can be exhibited, and by thinking about the proof we arrive at the
solution of our problem.

Just as the physicist examines his apparatus, the astronomer his
position, just as the philosopher engages in critique of reason, so the ma-
thematician needs his proof theory, in order to secure each mathematical
theorem by proof critiqué!

This project is developed in earnest in two more lecture courses in 1921—
22 and 1922-23. These lectures are important in two respects. First, it is here
that the axiomatic systems whose consistency are to be proven are develo-
ped. This is of particular interest for an understanding of the relationship of
Hilbert to Russell’s project in th@rincipia and the influence of Russell's
work both on Hilbert’s philosophy and on the development of axiomatic sy-
stems for mathematidg.Although Hilbert was initially taken with Russell’s
project, he soon became critical of Russell's approach, in particular of his
use of the axiom of reducibility. Instead of taking the systerRhcipia as
the adequate formalization of mathematics, the consistency of which was to
be shown, Hilbert proposed a new system which would allow the “simulta-
neous development of logic and mathematics”—as opposed to a development
of mathematicsout of logic. The cornerstone of this development is the
g-calculus. The second major contribution of the 1921/22 and 1922/23 lec-
tures are the consistency proofs themselves, including the-s@stitution
method, which were the direct precursors to Ackermann’s dissertation of
1924.

In contrast to the first systems of 1920, in 1921/22 Hilbert uses a system
based on full propositional logic with axioms for equality, i.e., the elementary
calculus of free variable®®
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l. Logical axioms

a) Axioms of consequence
H)A—-B—A
2)(A—A—B)—A—B

3y (A—-—B—C)—-B—-A—-C
4)(B—-C)—(A—-B)—A—-C

b) Axioms of negation
55 A—A—B
6)(A—B)— (A—B)—B

II. Arithmetical axioms
a) Axioms of equality
Na=a

8)a=b— Aa— Ab

b) Axioms of number
9)a+1#0
10)d(a+1) =a

The final presentation of the system of Stage Il is given in Hilbert and
Bernays (1923b, 17, 19):

1 A—B—A 2. (A—A—B)—A—B

3 A-B—-C)—(B—-A—-C) 4 (B—-C)—(A—B)—A—-C

5. A& B—A 6. A& B—B

7. A—B—A&B 8. A— AVB

9. B— AVB 10. (A—>C)—>(B—>C)—>A\/B—>C
11 A—A—-B 12 (A—B)—(A—B)—B

13. a=a 14. a=b— A(a) — A(b)

15. a+1+#0 16 o(a+1l)=a

Here, ‘+ 1’ is a unary function symbol. In Hilbert's systems, Latin letters
are variables; in particulag, b, c, ..., are individual variables ard, B,

C, ..., are formula variables. The rules of inference are modus ponens and

substitution for individual and formula variables.

Hilbert's idea for how a finitistic consistency proof should be carried out
is first presented in the 1921/22 lectutéshe idea is this: suppose a proof
of a contradiction is available. We may assume that the end formula of this
proof is 0# 0.

1.

Resolution into proof thread§irst, we observe that by duplicating part

of the proof and leaving out steps, we can transform the derivation to one
where each formula (except the end formula) is used exactly once as the
premise of an inference. Hence, the proof is in tree form.
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2. Elimination of variablesWe transform the proof so that it contains no

free variables. This is accomplished by proceeding backwards from the
end formula: The end formula contains no free variables. If a formula
is the conclusion of a substitution rule, the inference is removed. If a
formula is the conclusion of modus ponens it is of the form

2 A—DB
%/
where®’ results from®B by substituting termsfignctionals in Hilbert's
terminology) for free variables. If these variables also occ@t,iwe sub-
stitute the same terms for them. Variablelinvhich do not occur i3

are replaced with 0. This yields a formul not containing variable®
The inference is replaced by

A A — B
%/

. Reduction of functional9.he remaining derivation contains a number of

terms which now have to be reduced to numerical terms (i.e., standard
numerals of the forn{...(0+ 1) +---) + 1). In this case, this is done
easily by rewriting innermost subterms of the fod(®) by 0 andd(n+1)

by n. In later stages, the set of terms is extended by function symbols
introduced by recursion, and the reduction of functionals there proceeds
by calculating the function for given numerical arguments according to
the recursive definition. This will be discussed in the next section.

In order to establish the consistency of the axiom system, Hilbert suggests,

we have to find a decidable property of formulksrikret feststellbare Eigen-
schaf) so that every formula in a derivation which has been transformed using
the above steps has the property, and the formeda0acks it. The property

Hilbert proposes to use torrectnessThis, however, is not to be understood

as truth in a model: The formulas still occurring in the derivation after the
transformation are all Boolean combinations of equations between numerals.
An equation between numerals= m is correctif n andm are equal, and the

negation of an equality is correct of andn are not equal.

If we call a formula which does not contain variables or functionals
other than numerals arxplicit [i.e., numerical] formuld, then we can
express the result obtained thus: Every provable explicit formula is end
formula of a proof all the formulas of which are explicit formulas.

This would have to hold in particular of the formulaA0, if it
were provable. The required proof of consistency is thus completed if
we show that there can be no proof of the formula which consists of
only explicit formulas.
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To see that this is impossible it suffices to find a concretely deter-
minable konkret feststellbdrproperty, which first of all holds of all
explicit formulas which result from an axiom by substitution, which fur-
thermore transfers from premises to end formula in an inference, which
however does not apply to the formula40.16

Hilbert now defines the notion of a (conjunctive) normal form and gives a
procedure to transform a formula into such a normal form. He then provides
the wanted property:

With the help of the notion of a normal form we are now in a position
to exhibit a property which distinguishes the formulgz® from the
provable explicit formulas.

We divide the explicit formulas intocbrrect’ and “incorrect” The
explicit atomic formulas are equations witlumeralson either side [of
the equality symbol]. We call such aguation correctif the numerals
on either sideoincide otherwise we call iincorrect We call aninequa-
lity with numerals on either sidmrrectif the two numerals ardifferent
otherwise we call ithcorrect

In the normal form of an arbitrary explicit formula, each disjunct has
the form of an equation or an inequality with numerals on either side.

We now call ageneral explicit formula corredf in the correspon-
ding normal form each disjunction which occurs as a conjunct (or which
constitutes the normal form) contains a correct equation or a correct
inequality. Otherwise we call the formuilacorrect [...]

According to this definition, the question of whether an explicit for-
mula is correct or incorrect isoncretely decidablen every case. Thus
the “tertium non datur” holds here.%’.

This use in the 1921/22 lectures of the conjunctive normal form of a proposi-
tional formula to define correctness of Boolean combinations of equalities
between numerals goes back to the 1917/18 lecture Hotwebere trans-
formation into conjunctive normal form and testing whether each conjunct
contains bothA andA was proposed as a test for propositional validity. Simi-
larly, here a formula isorrectif each conjunct in its conjunctive normal form
contains a correct equation or a correct inequafity) the 1922/23 lectures,
the definition involving conjunctive normal forms is replaced by the usual in-
ductive definition of propositional truth and falsehood by truth tables (Hilbert
and Bernays 1923a, 21). Armed with the definition of correct formula, Hilbert
can prove that the derivation resulting from a proof by transforming it accor-
ding to (1)—(3) above contains only correct formulas. Singé@is plainly

not correct, there can be no proof of40 in the system consisting of axioms
(1)-(10). The proof is a standard induction on the length of the derivation: the
formulas resulting from the axioms by elimination of variables and reduction
of functionals are all correct, and modus ponens preserves correéiness.
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2.2. HLEMENTARY NUMBER THEORY WITH RECURSION AND
INDUCTION RULE

The system of stage Il consists of the basic system of the elementary calculus
of free variables and the successor function, extended by the schema of de-
fining functions by primitive recursion and the induction réiteA primitive
recursive definition is a pair of axioms of the form

(I)(O,bl,...,bn) = Cl(bl,...,bn)
d(a+1,by,...,by) = b(a,d(a),bs,...,by)

where the terma(by,...,b,) contains only the variableb, ..., b,, and
b(a,c,by,...,by) contains only the variables, c, b, ..., by. Neither con-
tains the function symbdl or any function symbols which have not yet been
defined.

The introduction of primitive recursive definitions and the induction rule
serves, first of all, the purpose of increasing the expressive power of the sy-
stem. Surely any decent axiom system for arithmetic must provide the means
of expressing basic number-theoretic states of affairs, and this includes addi-
tion, subtraction, multiplication, division, greatest common divisor, etc. The
general schema of primitive recursion is already mentioned in the Kneser
notes for 1921-22 (Hilbert, 1922a, Heft I, 29), and is discussed in some
detail in the notes for the lectures of the following year (Hilbert and Bernays,
1923a, 26-30).

It may be interesting to note that in the 1922/23 lectures, there are no
axioms for addition or multiplication given before the general schema for
recursive definition. This suggests a change in emphasis during 1922, when
Hilbert realized the importance of primitive recursion as an arithmetical con-
cept formation. He later continued to develop the notion, hoping to capture
all number theoretic functions using an extended notion of primitive recursion
and to solve the continuum problem with it. This can be seen from the attempt
at a proof of the continuum hypothesis in (1926jand Ackermann’s paper
on “Hilbert’s construction of the reals” (1928b), which deals with hierarchies
of recursive functions. The general outlook in this regard is also markedly
different from Skolem’s 1923, which is usually credited with the definition of
primitive recursive arithmetié?

Hilbert would be remiss if he would not include induction in his arithmeti-
cal axiom systems. As he already indicates in the 1921/22 lectures, however,
the induction principle cannot be formulated as an axiom without the help of
quantifiers.

We are still completely missing the axiom of complete induction. One
might think it would be

{Z(a) = (Aa) = A(a+1))} — {A(1) — (Z(b) — A(b))}



The Practice of Finitism 11

Thatis notit, for take = 1. The hypothesis must hold fall a. We have,
however, no means to bring tladl into the hypothesis. Our formalism
does not yet suffice to write down the axiom of induction.

But as a schema we can: We extend our methods of proof by the
following schema.

R(1) R(a) — R(a+1)
Z(a) — R(a)

Now it makes sense to ask whether this schema can lead to a
contradictior?*

The induction schema is thus necessary in the formulation of the elemen-
tary calculus only because quantifiers are not yet available. Subsequently,
induction will be subsumed in theecalculus.

The consistency proof for stage Il is extended to cover also the induction
schema and primitive recursive definitions. Both are only sketched: Step (3),
reduction of functionals, is extended to cover terms containing primitive re-
cursive functions by recursively computing the value of the innermost term
containing only numerals. Both in the 1921/22 and the 1922/23 sets of notes
by Kneser, roughly a paragraph is devoted to these cases (the official sets of
notes for both lectures do not contain the respective passages):

How do we proceed for recursions? Suppogesa occurs. Either{is]

0, then we replace it by. Or [it is of the form]¢$ (3 + 1): [replace it with]
b(3,0(3)). Claim: These substitutions eventually come to an end, if we
replace innermost occurrences fAt.

The claim is not proved, and there is no argument that the process termina-
tes even for terms containing several different, nested primitive recursively
defined function symbols.

For the induction schema, Hilbert hints at how the consistency proof must
be extended. Combining elimination of variables and reduction of functionals
we are to proceed upwards in the proof as before until we arrive at an instance
of the induction schema:

A1) R — K@+1)
Z(3) — R (3)

By copying the proof ending in the right premise, substituting numerals 1,
.., n (where3 = ny+ 1) for a and applying the appropriate substitutions to
the other variables itk we obtain a proof oZ(3) — £'(3) without the last
application of the induction schema.
With the introduction of the-calculus, the induction rule is of only minor
importance, and its consistency is never proved in detail until Hilbert and
Bernays (1934, 298-99).
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2.3. THE €-CALCULUS AND THE AXIOMATIZATION OF MATHEMATICS

In the spirit of the “simultaneous development of logic and mathematics,”
Hilbert takes the next step in the axiomatization of arithmetic by employing a
principle taken from Zermelo’s axiomatization of set theory: the axiom of
choice. Hilbert and Bernays dealt in detail with quantifiers in lectures in
1917-18 and 1920, but they do not directly play a significant role in the
axiom systems Hilbert develops for mathematics. Rather, the first- and higher-
order calculi for which consistency proofs are proposed, are based instead on
choice functions. The first presentation of these ideas can be found in the
1921/22 lecture notes by Helmut Kneser (the official notes do not contain
these passages). The motivation is that in order to deal with analysis, one has
to allow definitions of functions which are not finitary. These concept for-
mations, necessary for the development of mathematics free from intuitionist
restrictions, include definition of functions from undecidable properties, by
unbounded search, and choice:

Not finitely (recursively) defined is, e.gh(a) = 0O if there is ab so that
a®+ab’+ 7 is prime, and= 1 otherwise. But only with these numbers
and functions the real mathematical interest begins, since the solvability
in finitely many steps is not foreseeable. We have the conviction, that
such questions, e.g., the valuej@h), are solvable, i.e., th@i(a) is also
finitely definable. We cannot wait on this, however, we must allow such
definitions for otherwise we would restrict the free practice of science.
We also need the concept of a function of functiéhs.

The concepts which Hilbert apparently takes to be fundamental for this pro-
ject are the principle of the excluded middle and the axiom of choice, in the
form of second-order functiortsanda. The axioms for these functions are

1.1(f) =0— (Z(a) — f(a) = 1)
2.1(f) 20— z(a(f))

3.1(f)#£0— f(a(f))#1
4.1(f)£0—-1(f)=1

The intended interpretation is(f) = 0 if f is always 1 and= 1 if one can
choose am(f) so thatf(a(f)) # 1.

The introduction oft anda allows Hilbert to replace universal and exi-
stential quantifiers, and also provides the basis for proofs of the axiom of
induction and the least upper bound principle. Furthermore, Hilbert claims,
the consistency of the resulting system can be seen in the same way used to
establish the consistency of stage Il (primitive recursive arithmetic). From a
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proof of a numerical formula usings anda'’s, these terms can be elimina-
ted by finding numerical substitutions which turn the resulting formulas into
correct numerical formulas.

These proofs are sketched in the last part of the 1921/22 lecture notes by
Kneser (Hilbert, 19228’ In particular, the consistency proof contains the
entire idea of théilbertsche Ansatzheg-substitution method:

First we show that we can eliminate all variables, since here also only
free variables occur. We look for the innermasanda. Below these
there are only finitely defined [primitive recursive] functiagns)’. Some
of these functions can be substituted foin the axioms in the course
of the proof. 11(¢) =0— (Z(a) — ¢(a) = 1), wherea is a functional.
If this is not used, we set alti(¢) andt($) equal to zero. Otherwise
we reducen and$(a) and check whetheZ(a) — ¢(a) = 1 is correct
everywhere it occurs. If it is correct, we sgp] = 0, a[¢p] = 0. If it is
incorrect, i.e., ifa =3, §(3) # 1, we lett(¢) = 1, a(p) = 3. After this
replacement, the proof remains a proof. The formulas which take the
place of the axioms are correct.

(The idea is: if a proof is given, we can extract an argument from it
for which ¢ = 1.) In this way we eliminate theanda and applications
of [axioms] (1)—(4) and obtain a proof of£ 1 from -V and correct
formulas, i.e., from |-V,

1(f,b)=0 — {Z(a)— f(a,b) =1}
1(f,0) £0 — Z(f(a,b))

1(f,b) #£0 — f(a(f,b),b)#£1
1(f,b) 0 — 1(f,b) =1%8

Although not formulated as precisely as subsequent presentations, all the in-
gredients of Hilbert's-substitution method are here. The only changes that
are made en route to the final presentation of Hilbert's sketch of the case for
oneg and Ackermann’s are mostly notational. In (Hilbert, 1923), a talk given
in September 1922, the two functiomsand a are merged to one function
(also denoted), which in addition provides thieastwitness fort(f(a)) # 1.
There the function is also applied directly to formulas. In fattA(a) is the
primary notion, denoting the least witnes$or which A(a) is false;T(f) is
defined ag,(f(a) = 0). Interestingly enough, the sketch given there for the
substitution method is for thefunction for functions, not formulas, just as it
was in the 1921/22 lectures.

The most elaborate discussion of thealculus can be found in Hil-
bert's and Bernays’s course of 1922—-23. Here, again, the motivation for the
e-function is Zermelo’s axiom of choice:

What are we missing?
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1. As far as logic is concerned: we have had the propositional calculus
extended by free variables, i.e., variables for which arbitrary func-
tionals may be substituted. Operating with “all” and “there is” is still
missing.

2. We have added the induction schema, but without consistency proof
and also only on a provisional basis, with the intention of removing
it.

3. So far only the arithmetical axioms which refer to whole numbers.
The above shortcomings prevent us from building up analysis (limit
concept, irrational number).

These 3 points already give us a plan and goals for the following.

We turn to (1). It is clear that a logic without “all'—“there is” would
be incomplete, | only recall how the application of these concepts and of
the so-called transfinite inferences has brought about major problems.
We have not yet addressed the question of the applicability of these
concepts to infinite totalities. Now we could proceed as we did with the
propositional calculus: Select and formalize a few simple [principles]
as axioms, from which all others follow. Then the consistency proof
would have to be carried out—according to our general program: with
the attitude that a proof is a figure given to us. Significant obstacles to the
consistency proof because of the bound variables. The deeper investiga-
tion, however, shows that the real core of the problem lies at a different
point, to which one usually only pays attention later, and which also has
only been noticed in the literature of lat®.

At the corresponding place in the Knedgitschrift, Hilbert continues:

[This core lies] in Zermelo'saxiom of choicel...] The objections [of
Brouwer and Weyl] are directed against the choice principle. But they
should likewise be directed against “all” and “there is,” which are based
on the same basic idea.

We want to extend the axiom of choice. To each proposition with a
variableA(a) we assign an object for which the proposition holds only
if is holds in general. So, a counterexample, if one exists.

€(A), an individual logical function. [...% satisfies thdransfinite
axiom

(16) A(eA) — Aa
e.g., Aameansais corrupt.gA is Aristides3°

Hilbert goes on to show how quantifiers can be replacee-teyms. The
corresponding definitional axioms are already included in Hilbert (1923), i.e.,
A(eA) = (a)A(a) andA(eA) = (Ja)A(a). Next, Hilbert outlines a derivation
of the induction axioms using treeaxioms. For this, it is necessary to require
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that the choice function takes the minimal value, which is expressed by the
additional axiom

eA#£0— A(O(EA)).
With this addition, Hilbert combined thie function of (Hilbert, 1922c) and
thep function of (1923) with thes function. Bothk (“k” for Kleinstes least)
andp had been introduced there as functions of functions giving the least va-
lue for which the function differs from 0. In Hilbert (1923, 161-162), Hilbert
indicates that the axiom of induction can be derived usinguthection, and
credits this to Dedekind (1888).

The third issue Hilbert addresses is that of dealing with real numbers, and
extending the calculus to analysis. A first step can be carried out at stage IV by
considering a real number as a function defining an infinite binary expansion.
A sequence of reals can then be given by a function with two arguments.
Already in Hilbert (1923) we find a sketch of the proof of the least upper
bound principle for such a sequence of reals, usingtthanction:

_J0 if(a)A(a)

TA(a) =

(2 {1 otherwise

The general case of sets of reals needs function variables and second-order
andrt These are briefly introduced agA with the axioms

AgtA — Af
()Af — TAF=0

(HAf — mAf=1

The last two lectures transcribed in Hilbert and Bernays (1923a) are devoted
to a sketch of the substitution method (see section 3.4). The proof is adapted
from Hilbert (1923), replacing f with €A, also deals witht, and covers the
induction axiom in its form for the-calculus. During the last lecture, Bernays
also extends the proof to second-order

If we have aunction variable
Ags Af — AT

[-..] Suppose only occurs witil (e.g.,f0=0, f fO=0). How will we
eliminate the function variables? We simply repldaeby c. This does

not apply toboundvariables. For those we take some fixed function, e.qg.,
o and carry out the reduction with it. Then we are left with, &2,—

2A¢. This, when reduced, is either correct or incorrect. In the latter case,
¢ is incorrect. Then we substitutie everywhere foe;2(f. Then we

end up withldp — . That is certainly correct, sin@¢ is incorrect>!

The last development regarding thealculus before Ackermann’s disserta-
tion is the switch to the dual notation. In both Hilbert (1923) and Hilbert and
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Bernays (1923akA denotes a counterexample #ywhereas at least from
Ackermann’s dissertation onwardsA denotes a witness. Correspondingly,
Ackermann uses the dual axiofifa) — A(gsA(a)). Although it is relative-

ly clear that the supplement to the 1922/23 lectures (Hilbert and Bernays,
1923a)—24 sheets in Hilbert's hand—are Hilbert’s notes based on which
he and partly Bernays presented the 1922/23 lectures, parts of it seem to
have been altered or written after the conclusion of the course. Sheets 12—
14 contain a sketch of the proof of the axiom of induction from the standard,
duale axioms; the same proof for the original axioms can be found on sheets
8-11.

This concludes the development of mathematical systems using- the
calculus and consistency proofs for them presented by Hilbert himself.
We now turn to the more advanced and detailed treatment in Wilhelm
Ackermann’s (1924a) dissertation.

3. Ackermann’s Dissertation

Wilhelm Ackermann was born in 1896 in Westphalia. He studied mathe-
matics, physics, and philosophy in Gottingen between 1914 and 1924, and
served the army in World War | from 1915-1919. He completed his studies
in 1924 with a dissertation, written under Hilbert, entitled “Begriindung des
‘tertium non datur’ mittels der Hilbertschen Theorie der Widerspruchsfrei-
heit” (Ackermann, 1924b; 1924a). In 1927 he decided for a career as a high
school teacher rather than a career in academia, but remained scientifically
active. His major contributions to logic include the function which carries his
name—an example of a recursive but not primitive recursive function (Ack-
ermann, 1928hb), the consistency proof for arithmetic using-thabstitution
method (Ackermann, 1940), and his work on the decision problem (Acker-
mann, 1928a; 1954). He served as co-author, with Hilbert, of the influential
logic textbookGrundziige der theoretischen Lodlkilbert and Ackermann,
1928). He died in 19632

Ackermann’s 1924 dissertation is of particular interest since it is the first
non-trivial example of what Hilbert considered to be a finitistic consistency
proof. Von Neumann'’s paper of 1927, the only other major contribution to
proof theory in the 1920s, does not entirely fit into the tradition of the Hilbert
school, and we have no evidence of the extent of Hilbert’s involvement in its
writing. Later consistency proofs, in particular those by Gentzen and Kalmar,
were written after Godel's incompleteness results were already well-known
and their implications understood by proof theorists. Ackermann’s work, on
the other hand, arose entirely out of Hilbert's research project, and there
is ample evidence that Hilbert was aware of the range and details of the
proof. Hilbert was Ackermann’s dissertation advisor, approved the thesis,
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was editor ofMathematische Annalewhere the thesis was published, and
corresponded with Ackermann on corrections and extensions of the result.
Ackermann was also in close contact with Paul Bernays, Hilbert's assistant
and close collaborator in foundational matters. Ackermann spent the first half
of 1925 in Cambridge, supported by a fellowship from the International Ed-
ucation Board (founded by John D. Rockefeller, Jr., in 1923). In his letter of
recommendation for Ackermann, Hilbert writes:
In his thesis “Foundation of the ‘tertium non datur’ using Hilbert’s the-
ory of consistency,” Ackermann has shown in the most general case that
the use of the words “all” and “there is,” of the “tertium non datur,” is
free from contradiction. The proof uses exclusively primitive and finite
inference methods. Everything is demonstrated, as it were, directly on
the mathematical formalism.

Ackermann has here surmounted considerable mathematical diffi-
culties and solved a problem which is of first importance to the modern
efforts directed at providing a new foundation for mathematics.

Further testimony of Hilbert’s high esteem for Ackermann can be found in
the draft of a letter to Russell asking for a letter of support to the International
Education Board, where he writes that “Ackermann has taken my classes on
foundations of mathematics in recent semesters and is currently one of the
best masters of the theory which | have developed Hére.”

Ackermann’s work provides insight into two important issues relating to
Hilbert’s program as it concerns finitistic consistency proofs. First, it provides
historical insight into the aims and development of Hilbert's Program: The
first part of the program called for an axiomatization of mathematics. These
axiomatizations were then the objects of metamathematical investigations:
the aim was to find finitistic consistency proofs for them. Which areas of
mathematics were supposed to be covered by the consistency proofs, how
were they axiomatized, what is the strength of the systems so axiomatized?
We have already seen what Hilbert's roadmap for the project of axiomatiza-
tion was. Ackermann’s dissertation provides the earliest example of a formal
system stronger than Hilbert's elementary arithmetic, i.e., the weak theory
discussed in Section 2.1. The second aim, the metamathematical investigation
of the formal systems obtained, also poses historical questions: When did
Ackermann, and other collaborators of Hilbert (in particular, Bernays and von
Neumann) achieve the results they sought? Was Ackermann’s proof correct,
and if not, what parts of it can be made to work?

The other information we can extract from an analysis of Ackermann’s
work is what methods were used or presupposed in the consistency proofs
that were given, and thus, what methods were sanctioned by Hilbert himself
as falling under the finitist standpoint. Such an analysis of the methods used
are of a deeper, conceptual interest. There is a fundamental division between
Hilbert’s philosophical remarks on finitism on the one hand, and the professed
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goals of the program on the other. In these comments, rather little is said
about the concept formations and proof methods that a finitist, according to
Hilbert, is permitted to use. In fact, most of Hilbert's remarks deal with the
objects of finitism, and leave the finitistically admissible forms of definition
and proof to the side. These, however, are the questions at issue in contempo-
rary conceptual analyses of finitism. Hilbert’s relative silence on the matter
is responsible for the widespread—and largely correct—opinion that Hilbert
was too vague on the question of what constitutes finitism to unequivocally
define the notion, and therefore later commentators have had enough leeway
to disagree widely on the strength of the finitist standpoint while still claiming

to have explicated Hilbert's own concept.

3.1. SECOND-ORDER PRIMITIVE RECURSIVE ARITHMETIC

In Ackermann (1924a), the system of stage Il is extended by second-order
variables for functions. The schema of recursive definition is then extended
to include terms containing such variables. In the following outline, I shall
follow Ackermann and adopt the notation of subscripting function symbols
and terms by variables to indicate that these variables do not occur freely but
rather as placeholders for functions. For instamngéf (a)) indicates that the
terma does not contain the variabéefree, but rather that the functioi(a)
appears as a functional argument, i.e., that the term is of thedOraenf (a)).

The schema of second-order primitive recursion is the following:

- =

05 (0,f(B1),€) = az (f(b1),0)
o (a+1,f(B),0) = b;(adg(a f(d),c), f(b)

To clarify the subscript notation, compare this with the schema of second-
order primitive recursion using-abstraction notation:

®(0,Ab.T(0),8) = a(A\b.T(0),T)

d(a+1,Ab.f(b),8) = b(a,d(aAd.f(d),e),\b.f(b))

Using this schema, it is possible to define the Ackermann function. This was
already pointed out in Hilbert (1926), although it was not until Ackermann
(1928b) that it was shown that the function so defined cannot be defined by
primitive recursion without function variables. Ackermann (1928b) defines
the function as follows. First it is observed that the iteration function

pc(a, f(c),b) = f(...f(f(b))...)
———
afs
can be defined by second-order primitive recursion:
pc(0, f(c),b) = b
pe(@+1,f(c),b) = f(pc(a f(c),b))
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Furthermore, we have two auxiliary functions

(1 ifa=b _f0 ifa#b
'(a’b)—{o ifazb 2nd )\(a’b)_{l if a=b

which are primitive recursive, as well as addition and multiplication. The term
a(a,b) is short fori(a,1) -1(a,0) - b+A(a,1); we then have

0 ifa=0
a(a,b)z{l ifa=1
b otherwise
The Ackermann function is defined by

$¢(0,b,c) = b+c
d(a+1,b,c) = pq(c,d(a,b,d),a(ab)).

In more suggestive terms,

$(0,b,c) = b+c
¢(1,b,c) = b-c
¢(a+1,b,C) = ¢(avb7¢(a7ba"'¢(a>bvb)"'))

ctimes

The system of second-order primitive recursive arithmetic 2PR&ed
in Ackermann (1924a) consists of axioms (1)—(15) of Hilbert and
Bernays (1923b, see Section 2), axiom (16) was replaced by

16.a#0—a=29(a)+1,

plus defining equations for both first- and second-order primitive recursive
functions. There is no induction rule (which is usually included in systems
of primitive recursive arithmetic), although the consistency proof given by
Ackermann can easily be extended to cover it.

3.2. THE CONSISTENCY PROOF FOR PRIMITIVE RECURSIVE
ARITHMETIC

Allowing primitive recursion axioms for functions which contain function
variables is a natural extension of the basic calculus of stages Ill and I, and
is necessary in order to be able to introduce sufficiently complex functions.
Hilbert seems to have thought that by extending primitive recursion in this
way, or at least by building an infinite hierarchy of levels of primitive recur-
sions using variables of higher types, he could accountifiothe number
theoretic functions, and hence for all real numbers (represented as decimal
expansions). In the spirit of the stage-by-stage development of systems of
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mathematics and consistency proofs, it is of course necessary to show the
consistency of the system of stage llll, which is the system presented by
Ackermann. As before, it makes perfect sense to first establish the consistency
for the fragment of stage Illl not containing the transfirgt@ndrt functions.
In Section 4 of his dissertation, Ackermann undertakes precisely this aim.
The proof is a direct extension of the consistency proof of stage lll, the
elementary calculus of free variables with basic arithmetical axioms and
primitive recursive definitions, i.e., PRA. This proof had already been pre-
sented in Hilbert’s lectures in 1921-22 and 1922-23. The idea here is the
same: put a given, purported proof o into tree form, eliminate variables,
and reduce functionals. The remaining figure consists entirely of correct for-
mulas, where correctness of a formula is a syntactically defined and easily
decidable property. The only complication for the case where function vari-
ables are also admitted is the reduction of functionals. It must be shown that
every functional, i.e., every term of the language, can be reduced to a numeral
on the basis of the defining recursion equations. For the original case, this
could be done by a relatively simple inductive proof. For the case of ZRRA
it is not so obvious.
Ackermann locates the difficulty in the following complication. Suppose
you have a functionapy(2,b(b)), whered is defined by

¢6(0,f(b)) = f(1)+f(2)
¢r(a+1,f(b)) = ¢n(a f(b)+f(a)-f(a+1)

Here, b(b) is a term which denotes a function, and so there is no way to
replace the variable with a numeral before evaluating the entire term. In
effect, the variabld is bound (in modern notation, the term might be more
suggestively writterp (2, Ab.b(b)).) In order to reduce this term, we apply the
recursion equations fdr twice and end up with a term like

b(L) + b(2) +b(0) - b(1) +b(1) - b(2).

The remaining’s might in turn containp, e.g.,b(b) might bed.(b,d(c)), in
which case the above expression would be

¢c(1,3(C)) +0c(2,3(C)) +c(0,3(C)) - 9c(1,3(C)) +de(1,3(C)) - 9c(2,8(C))-

By contrast, reducing a terf(3) wherey is defined by first-order primitive
recursion results in a term which does not contgijrbut only the function
symbols occurring on the right-hand side of the defining equationg)fét

To show that the reduction indeed comes to an end if innermost subterms
are reduced first, Ackermann proposes to assign indices to terms and show
that each reduction reduces this index. The indices are, essentially, ordinal
notations< w™’. Since this is probably the first proof using ordinal notations,
it may be of some interest to repeat and analyze it in some detail here. In
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my presentation, | stay close to Ackermann’s argument and only change the

notation for ranks, indices, and orders: Where Ackermann uses sequences

of natural numbers, | will use the more perspicuous ordinal notations. Note

again, however, that Ackermann does not explicitly use ordinal notations.
Suppose the primitive recursive functions are arranged in a linear order

according to the order of definition. We write< @ if ¢ occurs beforep

in the order of definition, i.e.lp cannot be used in the defining equations

for ¢. Suppose further that we are given a specific terrmihe notion of

subordinatioris defined as follows: an occurrence of a function syngdalt

is subordinate to an occurrencedofif ¢ is the outermost function symbol of

a subterms, the occurrence df is in s, and the subterm af with outermost

function symbokE contains a bound variablein whose scope the occurrence

of ¢ is (this includes the case whdséhappens to be bound Hyitself).3¢ In

other wordst is of the form

(bl E( b)) )

Therank rk(t,¢) of anoccurrenceof a function symbob with respect ta is
defined as follows: If there is no occurrencalof- ¢ which is subordinate to
¢ in t, thenrk(t,¢) = 1. Otherwise,

rk(t,¢) = max{rk(t,) : ¢ > ¢ is subordinate tg } + 1.

The rankr(t,¢) of a termt with respect to a function symbdglis the maxi-
mum of the ranks of occurrencesfr g > ¢ in t. (If neitherd nory > ¢
occur int, that means(t,¢) = 0.

Ackermann now goes on to define the indices and orderings on these
indices; the proof proceeds by induction on these orderings. The indices cor-
respond to ordinal notations in modern terminology, and the orderings are
order-isomorphic to well-orderings of typg”’. Ackermann does of course
not use ordinals to define these indices; he stresses that he is only dealing
with finite sequences of numbers, on which an elaborate order is imposed.
Rather than appeal to the well-orderednesso8f, he gives a more direct
argument that by repeatedly proceeding to indices which are smaller in the
imposed order one eventually has to reach the index which consists of all 0.
To appreciate the flavor of Ackermann’s definitions, consider the following
quote where he defines the rank and index of a term:

Each of the functionals out of which the given functional is constructed
has a definite rank with respect to the last, the next-to-last, etc., until the
first recursive function. Each such combination of ranks is characterized
by [a sequence ofjp ordered numbers. We now want to order all these
finitely many rank combinations. Taking two different rank combinations,
we write the corresponding numbers on top of one another, i.e, first the
rank with respect to the last, then those with respect to the next-to-last
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function, etc. At some point the numbers are different for the first time.
We now call that rank combination higher which has the greater number
at this point. In this manner we order all the finitely many rank combi-
nations occurring in the given functional. For each rank combination we
then write down how many functionals of that kind occur in the given
functional. We will call the totality of these numbers the index of the
functional®’

We assign to a subtermof t a sequence of ranks dfy, ..., Yo with
respect tos, whereyp < --- < Y, are all function symbols occurring it
This is theorder [Rangkombinatiojof s:

0(5) = <I’(5,llJn), R I'(5,llJ0)>

In modern notation, we may think of this as an ordinal notation corresponding
to an ordinake w®, specifically,0(s) corresponds to

W' (s, Pn) 4+ 0-1 (s, Y1) - +r (s, Yo)

Now consider the set of all distinct subtermstaidf a given ordem which
are not numerals. Theegree dt,o0) of o in t is the cardinality of that set.
Theindex j(t) of tis the sequence of degrees ordered in the same way as the

orders, i.e.,
j(t) =(o:d(s,0))

whereo ranges over all orders of subtermstofn modern notation, this can
be seen as an ordinal notation corresponding to an ordinal of the form

S &°-d(t,0)

where the sum again ranges over the ordeo$ subterms of, andd'is the
ordinal corresponding to the orderObviously, this is an ordinat w™”.

Suppose a ternma not containinge or Tt is given. Lets be an innermost
constant subterm which is not a numeral, we may assume it is of the form
®p(31,---,3n,u1,...,um) Wherey; is a term with at least one variable bound
by ¢ and which doesn’t contain a constant subterm. We have two cases:

(1) s does not contain bound variables, i.en= 0. The order ofs is a
sequence with 1 in thk-th place, and 0 everywhere else (where= ),
which corresponds too. Evaluating the terns by recursion results in a
term s’ in which only function symbols of lower index occur. Hence, the
first non-zero component of the ordersbis further to the right than(in the
corresponding ordinal, the highest exponent in the ordef sfless than),
and soo(s’) < o(s). Furthermore, since no variable which is bound tan
occur ins’ (since no such variable occurs s, replacings by s’ in t does
not result in new occurrences of function symbols which are subordinate to
any other. Thus the number of subterms in the té¢rmwhich results from
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such a replacement with orderso(s) remains the same, while the number
of subterms of orden(s) is reduced by 1. Hencg(t') < j(t).

(2) s does contain bound variables. For simplicity, assume that there is
one numeral argument and one functional argument,d.&,of the form
dp(3,¢(b)). In this case, all function symbols occurringiii) are subordinate
to ¢, or otherwise:(b) would contain a constant subteAhThus, the rank of
¢(b) in t with respect ta; is less that the rank afwith respect ta;.

We reduce the subtersto a subterms’ by applying the recursios! does
not contain the function symbgl. We want to show that replacirgby s’ in
t lowers the index of.

First, note that when substituting a teefor b in ¢(b), the order of the
resultingc(a) with respect top is the maximum of the orders afb) and
a, since none of the occurrences of function symbols icontain bound
variables whose scope begins outsidenpfind so none of these variables
are subordinate to any function symbolsib).

Now we prove the claim by induction gnSuppose the defining equation
for ¢ is

¢5(0, f(b)) = ap(f(b))
do(a+1,f(b)) = bo(¢c(a f(c)),a, f(b)).

If 3 =0, thens’ = ap(c(b)). At a place wheref(b) is an argument to a
function, f(b) is replaced byc(d), andd is not in the scope of any
(sincea doesn't containp). For instanceqy(f (b)) = 2+ Yy (3, f(d)). Such
a replacement cannot raise theank of s’ above that of(b). The termc
might also be used in places where it is not a functional argument, e.g.,
if ap(f(b)) = f(W(f(2))). By a simple induction on the nesting éfs in
ap(f(b)) it can be seen that thierank of s’ is the same as that ofb): For
¢(d) whered does not contain, thed-rank ofc(d) equals that of(b) by the
note above and the fact theatloes not contain. If o does contain a nested
then by induction hypothesis and the first casepimnk is the same as that
of ¢(b). By the note, again, the entire subterm has the spurank asc(b).

The case oby(3+ 1,¢(b)) is similar. Here, the first replacement is

bb(q)C(z? C(C))737 C(b))

Further recursion replaces:(3,¢(c)) by another term which, by induction
hypothesis, ha¢-rank less than or equal to thatdb). The same considera-
tions as in the base case show that the entire term alsogwaark no larger
thanc(b).

We have thus shown that eliminating the function sympbly recursion
from an innermost constant term reduces ¢hank of the term at least by
one and does not increase thgranks of any subterms for arjy> i.

In terms of ordinals, this shows that at least one subterm of areeas
reduced to a subterm of ordef < o, all newly introduced subterms have
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order< o, and the order of no old subterm increased. Thus, the index of the
entire term was reduced. (In the corresponding ordinal notations, the factor
w’-nchanged ta’ - (n—1)).

We started with a given constant function, which we characterized by
a determinate index. We replace@g(3, c(b)) within that functional by
another functional, where tiferank decreased and the rank with respect
to functions to the right ob [i.e., which come afteth in the order of
definition] did not increase. Now we apply the same operation to the
resulting functional. After finitely many steps we obtain a functional
which contains no function symbols at all, i.e., it is a numeral.

We have thus shown: a constant functional, which does not contain
€ andr, can be reduced to a numeral in finitely many st&ps.

3.3. ORDINALS, TRANSFINITE INDUCTION, AND FINITISM

It is quite remarkable that the earliest extensive and detailed technical con-
tribution to the finitist project would make use of transfinite induction in a
way not dissimilar to Gentzen'’s later proof by induction uggoThis bears
on a number of questions regarding Hilbert’s understanding of the strength
of finitism. In particular, it is often said that Gentzen’s proof is not finitist
because it uses transfinite induction. However, Ackermann’s original consis-
tency proof for 2PRA also uses transfinite induction, using an index system
which is essentially an ordinal notation system, just like Gentzen’s. If Ack-
ermann’s proof is finitistic, but Gentzen'’s is not, i.e., transfinite induction up
to w®” is finitistic but not up toey, then where—and why—should the line
be drawn? Furthermore, the consistency proof of 2PRAIn essence a—
putatively finitistic—explanation of how to compute second order primitive
recursive functions, and a proof that the computation procedure defined by
them always terminates. In other words, it is a finitistic proof that second
order primitive recursive functions are well definéd.

Ackermann was completely aware of the involvement of transfinite
induction in this case, but he sees in it no violation of the finitist standpoint:

The disassembling of functionals by reduction does not occur in the
sense that a finite ordinal is decreased each time an outermost function
symbol is eliminated. Rather, to each functional corresponds as it were
a transfinite ordinal number as its rank, and the theorem, that a constant
functional is reduced to a numeral after carrying out finitely many op-
erations, corresponds to the other [theorem], that if one descends from
a transfinite ordinal number to ever smaller ordinal numbers, one has
to reach zero after a finite number of steps. Now there is naturally no
mention of transfinite sets or ordinal numbers in our metamathemati-
cal investigations. It is however interesting, that the mentioned theorem
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about transfinite ordinals can be formulated so that there is nothing
transfinite about it any moré.

Without appealing to the well-orderedness of the corresponding ordinals, it
remains to argue finitistically that the finite sequences of numbers ordered in
the appropriate manner are also well-ordered. Ackermann does not attempt
this for the entire class of sequences of sequences of numbers needed in the
proof (corresponding ta*"), but only foru?.

Consider a transfinite ordinal number less thamw. Each such ordinal
number can be written in the formy- n 4+ m, wheren andm are finite
numbers. Hence such an ordinal can also be characterized by a pair of
finite numbers(n,m), where the order of these numbers is of course
significant. To the descent in the series of ordinals corresponds the fol-
lowing operation on the number pdi,m). Either the first numben
remains the same, then the numberis replaced by a smaller number
m’. Or the first numben is made smaller; then | can put an arbitrary
number in the second position, which can also be larger thah is

clear that one has to reach the number paiO) after finitely many
steps. For after at most+ 1 steps | reach a number pair, where the first
number is smaller than. Let (n’,m’) be that pair. After at most’ +1

steps | reach a number pair in which the first number is again smaller
thann’, etc. After finitely many steps one reaches the number(pai)

in this fashion, which corresponds to the ordinal number 0. In this form,
the mentioned theorem contains nothing transfinite whatsoever; only
considerations which are acceptable in metamathematics are used. The
same holds true if one does not use pairs but triples, quadruples, etc.
This idea is not only used in the following proof that the reduction of
functionals terminates, but will also be used again and again later on,
especially in the finiteness proof at the end of the wirk.

Over ten years later, in 1936, Ackermann discusses the application of
transfinite induction for consistency proofs in correspondence with Bernays.
Gentzen’s consistency proof had just been published (Gentzen, 1936), and
Gentzen asks, through Bernays,

whether you [Ackermann] think that the method of proving finiteness
[Endlichkeitsbewe]dy transfinite induction can be applied to the con-
sistency proof of your dissertation. | would like it very much, if that were
possiblet3
In his reply, Ackermann recalls his own use of transfinite ordinals in the 1924
dissertation.
| just realized now, as | am looking at my dissertation, that | operate with
transfinite ordinals in a similar fashion as GentZén.

A year and a half later, Ackermann mentions the transfinite induction used in
his dissertation again:
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| do not know, by the way, whether you are aware (I did at the time not
consider it as a transgression beyond the narrower finite standpoint), that
transfinite inferences are used in my dissertation. (Cf., e.g., the remarks
in the last paragraph on page 13 and the following paragraph of my
dissertationf®

These remarks may be puzzling, since they seem to suggest that Bernays
was not familiar with Ackermann’s work. This is clearly not the case.
Bernays corresponded with Ackerman extensively in the mid-20s about the
e-substitution method and the decision problem, and had clearly studied Ack-
ermann’s dissertation. Neither Bernays nor Hilbert are on record objecting to
the methods used in Ackermann’s dissertation. This strongly suggests that
Ackermann’s use of transfinite induction was considered acceptable from the
finitist standpoint in the mid-1920s.

3.4. THE &-SUBSTITUTION METHOD

As we have seen above, Hilbert had outlined an idea for a consistency proof
for systems involvinge-terms already in early 1922 (Hilbert, 1922a), and

a little more precisely in his talk of 1922 (Hilbert, 1923) and in the 1922—
23 lectures (Hilbert and Bernays, 1923a). Let us reviewAheatzin the
notation used in 1924: Suppose a proof involves only otegme,A(a) and
correspondingtitical formulas

A(t) — AleaA(@)),
i.e., substitution instances of the transfinite axiom
A(a) — A(eaA()).

We replacesaA(a) everywhere with 0, and transform the proof as before
by rewriting it in tree form (“dissolution into proof threads”), eliminating
free variables and evaluating numerical terms involving primitive recursive
functions. Then the critical formulas take the form

AGi) — A0),

wherej; is the numerical term to which reduces. A critical formula can
now only be false ifA(3;) is true andA(0) is false. If that is the case, repeat
the procedure, now substitutipgfor €5A(a). This yields a proof in which all
initial formulas are correct and reoterms occur.
If critical formulas of the second kind, i.e., substitution instances of the
induction axiom,
€aA(a) # 0 — A(deA(a)),

also appear in the proof, the witnesbkas to be replaced with the legsso
thatA(3') is true.
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The challenge was to extend this procedure to (a) cover more than one
e-term in the proof, (b) take care of nestederms, and lastly (c) extend it
to second-ordeg’s and terms involving them, i.&s2,(f(a)). This is what
Ackermann set out to do in the last part of his dissertation, and what he and
Hilbert thought he had accomplish&d.

The system for which Ackermann attempted to give a consistency proof
consisted of the system of second-order primitive recursive arithmetic (see
Section 3.1 above) together with the transfinite axidfs:

1. Al@) —AleA@) Aa(f(a)) — Aa((erAu(f (b)) (a)))

2. AleaA(R)) — TeA(a) = 0 Aa(e1An(f(b))(a)) — rAq(f(a)) =0
3. AleaA(a) — TeA(@) = Aa(etAp(f(b))(a)) — TirAa(f(a)) = 1
4. eaA(a) 7# 0 — A(3(gaA( )))

The intuitive interpretation o€ and 1, based on these axioms, is obvious:
€2 (a) is a witness forRl(a) if one exists, andi2((a) = 1 if A(a) is false

for all a, and= 0 otherwise. That functions are not necessary for the de-
velopment of mathematics in the axiom system. They do, however, serve a
function in the consistency proof, viz., to keep track of whether a value of 0
for €,2(a) is a “default value” (i.e., a trial substitution for whié(a) may or

may not be true) or an actual witness (a value for whi¢h) has been found

to be true).

| shall now attempt to give an outline of tkesubstitution procedure de-
fined by Ackermann. For simplicity, | will leave the case of second-order
e-terms (i.e., those involving;) to the side.

An e-expressionis an expression of the forrp2(a). An e-termis an
expression of the formna,2((a), wherea is the only free variable i®, and
similarly for ateterm. For the purposes of the discussion below, we will not
specifically refer tats unless necessary, and most definitions and operations
apply equally tce-terms andtterms. If a formulaA(a) or ane-termea2((a)
contains no variable-free subterms which are not numerals, we call them
canonical Canonical formulas angiterms are indicated by a tilde;2((a).

The main notion in Ackermann’s proof is that oftatal substitution S
(Gesamtersetzunglt is a mapping of canonical andteterms to numerals
and 0 or 1, respectively. When canoniegkerms in a proof are successively
replaced by their values under the mapping, a total substitution reduces the
proof to one not containing args. If Smapse,2l(a) to 3 and2( a)toi, then
we say thatd(a) receives &3,1) substitution undes and writeS(2((a)) =
(3:1)-

It is of course not enough to define a mapping from the canorical
terms occurring in the proofto numerals: The proof may contain, e.g.,
€a2l(a, ¢ (epB(b))). To reduce this to a numeral, we first need a valder
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the termeyB (b). Replacing,B (b) by 3, we obtairea2(a, ¢(3)). Suppose the
valued(3) is 3'. The total substitution then also has to specify a substitution
for ea24(a,3').

Given a total substitutio, a proof is reduced to agrfree proof as fol-
lows: First alle-free terms are evaluated. (Such terms contain only numerals
and primitive recursive functions; these are computed and the term replaced
by the numeral corresponding to the value of the term) Nowedgteso,

... be all the innermost (canonica) or Teterms in the proof, i.e., ait-

or Tterms which do not themselves contain nestear Teterms or con-
stant (variable-fee) subterms which are not numerals. The total substitution
specifies a numeral substitution for each of these. Replace egably its
corresponding numeral. Repeat the procedure until the only remaining terms
are numerals. We writg|s for the result of applying this procedure to the
expression (formula or term) Note that/¢|s is canonical.

Based on this reduction procedure, AckermanrJ defines a notion of subor-
dination of canonical formulas. Roughly, a formdib) is subordinate to
2((a) if in the process of reducing some formild;), ane-termepB(b) is
replaced by a numeral. For instanees b is subordinate t@ = ey(a = b).
Indeed, if?(a) is a = ep(a= b), then the reduction dll(3) = 3 = &x(3 = b)
would use a replacement for tagerm belonging taB (3 = b).*8

It is easy to see that this definition corresponds to the notion of subordi-
nation as defined in Hilbert and Bernays (1939). Ifeatlerme,B(b) occurs
in an expression (and is different from it), it is said tormstedin it. If an
€-expressiorey,B(a,b) occurs in an expression in the scopeegfthen it is
subordinateto that expression. Accordingly, we can define the degree of an
e-term and the rank of agrexpression as follows: Ae-term with no nested
g-subterms is of degree 1; otherwise its degree is the maximum of the degrees
of its nested-subtermst1. The rank of arg-expression with no subordinate
e-expressions is 1; otherwise it is the maximum of the ranks of its subordinate
e-expressions-1. If %5 (b) is subordinate t@((a) according to Ackermann’s
definition, thene,®B(b) is subordinate in the usual senseet@((a), and the
rank ofep®B(b) is less than that of,21(a).

The notion of degree corresponds to an ordering of canonical formulas
used for the reduction according to a total substitution in Ackermann’s pro-
cedural definition: First alé-terms of degree 1 (i.e., all innermasterms)
are replaced, resulting (after evaluation of primitive recursive functions) in
a partially reduced proof. The formulas corresponding to innergietms
now are reducts of-terms of degree 2 in the original proof. The canonical
formulas corresponding te-terms of degree 1 are called the formulas of
levell, the canonical formulas corresponding to the innerradstms in the
results of the first reduction step are the formulas of level 2, and so forth.

The consistency proof proceeds by constructing a sequéncs, ...
of total substitutions together with bookkeeping functioh&l(a), j) —
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{0,1},%° which eventually results in aolving substitutiopi.e., a total sub-
stitution which reduces the proof to one which contains only comdote
formulas. We begin with a total substitutid&® which assigng0,1) to all
canonical formulas, and sét(2((a),1) = 1 for all 2((a) for which S; assigns

a value. IfS is a solving substitution, the procedure terminates. Otherwise,
the next total substitutiof§ . 1 is obtained as follows: I§ is not a solving
substitution, at least one of the critical formulas in the proof reduces to an
incorrect formula. We have three cases:

1. Either ane-axiom 2(a) — A(ga2((a)) or a traxiom of the first kind
U(ea(a)) — T2A(a) = 0 reduces to a false formula of the fomﬁg,)
2[(0) or 2(0) — 1= 0, andS(2(a)) = (0,1). Pick one such(a) of
lowest level (i.e.g2((a) of lowest degree).

If 2(0) — 1 =0 is incorrect,2(0) must be correct; le§.1(2l(a)) =
(0,0). Otherwisell(;) — 24(0) is incorrect and henc#(3) must be cor-
rect; then letS;1((a)) = (3,0). In either case, sefi1(A(a),i+1) =
1.

For other formulasB b), S+1 (B(b)) = S,(%(b))wherej is the greatest
index < i such thatfi(B(b),j) = 1. §11(B(b)) = (0,1) if no suchj
exists (i.e.,’B(b) has never before received an example substitution).
Also, let f.+1(£B(b) i+ 1) = 1. For all canonical formulag(c), let

fia(€(c), ) = H(E(0).J) for j <i.

2. Case (1) does not apply, but at least one of the minimality axioms
€a2(a) # 0 — A(5(ea2(a)) reduces to a false formulp 0 — AG—1).
This is only possible i§(2((a)) = (3,0). Again, pick the one of lowest
level, and letS;1((a)) = (3 — 1,0) and fi;1((a),i + 1) = 1. Substi-
tutions for other formulas and bookkeeping functions are defined as in
case (1).

3. Neither case (1) nor (2) applies, but some instance of-akiom of
the form®A(a) — A(e,24(a)) or of atraxiom of the formRl(e,21(a)) —
Te2l(a) = 1, e.g.2l(a) — 2A(3)) or2A(3) — 0= 1, reduces to an incorrect
formula. We then havg§ (((a)) = (3,0) (since otherwise case (1) would
apply). In either casd?l(3))|s must be incorrect. Lejtbe the least index
whereS;(2((a)) = (3,0) andfi(%(a)), j) = 1. At the preceding total sub-
stitutionS;_1, §j(™A(a)) = (0,1) or §j_1(2A(a)) = (3+1,0), and[A(3)|s;_,
is correct.2(3) thus must reduce to different formulas uncgr; and
underS, which is only possible if a formula subordinate Zoreduces
differently underS;_; andS.
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For example, supposg(a) is really 2(a,&,B(a,b)). Then the corre-
spondinge-axiom would be

2A(a,epB(a b)) — A(ea(a,epB(a, b)), epB (e (a, £B(a, b)), b))

eadl(a) £a2(a)

An instance thereof would be
2A(a,epB(a,b) — A(e2(a, e,B(a, b)), epB (e22A(a, epB(a, b)), b)).

This formula, under a total substitution wi(2(a, epB(a,b))) = (3,0)
reduces to B B _ .
2A(a,epB(a,b) — A(3,eB (3, b))

The consequent of this conditional, i.8(3), can reduce to different for-
mulas unde§ andS; 3 only if 4% (3, b) receives different substitutions
under§ andS;_1, and3(a, b) is subordinate t@((a).

The next substitution is now defined as follows: Pick an innermost for-
mula subordinate t@(a) which changes substitutions, s&(b). For

all formulas¢(c) which are subordinate t%(b) as well asB(b) itself,

we setfi1(€(c),k) =1 for j <k <i+1andfi,1(¢(c),k) = 0 for all
other formulas. Fok < j we setfi1(€(c),n) = fi(&(c),k) for all &(c).

The next substitutio 1 is now given byS;1(€(c)) = S(<€(c)) for k
greatest such thdt, 1(€(c),k) = 1 or= (0,1) if no suchk exists.

Readers familiar with the substitution method defined in Ackermann (1940)
will note the following differences:

a. Ackermann (1940) uses the notion diype of ane-term and instead of

defining total substitutions in terms of numeral substitutions for canonical
e-terms, assigns a function of finite supportetdypes. This change is
merely a notational convenience, as these functional substitutions can
be recovered from the numeral substitutions for canorg¢akrms. For
example, ifSassigns the substitutions to the canonical terms on the left,
then a total substitution in the sense of Ackermann (1940) would assign
the functiong on the right to the type,2((a,b):

S@l(as) =3  9Eead(ab)() =35
SR(a33) =3,  9(ea2(a,0))(32) =37
S2A(a32)) =33  9(€aA(a,b))(33) = 33

. In case (2), dealing with the least number (induction) axiom, the next sub-

stitution is defined by reducing the substituted numgtay 1, whereas
in Ackermann (1940), we immediately proceed to the Igastich that
2((3) is correct. This makes the procedure converge more slowly, but also
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suggests that in certain cases (depending on which other critical formulas
occur in the proof), the solving substitution does not necessarily provide
example substitutions which are, in fact, least withesses.

c. The main difference in the method lies in case (3). Whereas in (1940), ex-
ample substitutions for ad-types of rank lower than that of the changed
€22 (a) are retained, and all others are reset to initial substitutions (func-
tions constant equal to 0), in (1924a), only the substitutions of some
e-terms actually subordinate 832((a) are retained, while others are not
reset to initial substitutions, but to substitutions defined at some previous
stage.

3.5. ASSESSMENT AND COMPLICATIONS

A detailed analysis of the method and of the termination proof given in the
last part of Ackermann’s dissertation has to wait for another occasion, if
only for lack of space. A preliminary assessment can, however, already be
made on the basis of the outline of the substitution process above. Modulo
some needed clarification in the definitions, the process is well-defined and
terminates at least for proofs containing only least-number axioms (critical
formulas corresponding to axiom (4)) of rank 1. The proof that the procedure
terminates (89 of Ackermann (1924a)) is opaque, especially in comparison
to the proof by transfinite induction for primitive recursive arithmetic. The
definition of a substitution method for second-ordeerms is insufficient,
and in hindsight it is clear that a correct termination proof for this part could
not have been given with the methods availaSle.

Leaving aside, for the time being, the issue of what aetsially proved
in Ackermann (1924a), the question remains of what balgevedto have
been proved at the time. The system, as given in (1924a), had two major
shortcomings: A footnote, added in proof, states:

[The formation ofe-terms] is restricted in that a function variakiiéa)
may not be substituted by a functiongla), in which a occurs in the
scope of args.>!

This applies in particular to the second-ordeaxioms
Aa(f(a)) — Aa(erAn(f(b))(a)).

If we view £:A,(f(b))(a) as the function “defined byA, and hence the-
axiom as thee-calculus analog of the comprehension axiom, this amounts
roughly to a restriction to arithmetic comprehension, and thus a predicative
system. This shortcoming, and the fact that the restriction turns the system
into a system of predicative mathematics was pointed out by von Neumann
(1927).
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A second lacuna was the omission of an axionme-@xtensionality for
second-ordeg-terms, i.e.,

(VE)(A(f) = B(f)) — erA(f) = &rB(f),

which corresponds to the axiom of chof%eBoth problems were the subject

of correspondence with Bernays in 19254 year later, Ackermann is still

trying to extend and correct the proof, now usatypes:
| am currently working again on thes-proof and am pushing hard to
finish it. 1 have already told you that the problem can be reduced to
one of number theory. To prove the number-theoretic theorem seems to
me, however, equally hard as the problem itself. | am now again taking
the approach, which | have tried several times previously, to extend the
definition of a ground type so that everwith free function variables
receive a substitution. This approach seems to me the most natural, and
the equality axiomsf ) (A(f) = B(f)) — efAf =¢&¢Bf would be treated
simultaneously. | am hopeful that the obstacles previously encountered
with this method can be avoided, if | use theformalism and use sub-
stitutions for thegs which may contaire, instead of functions defined
without €. | have, however, only thought through some simple special
cases?

In 1927, Ackermann developed a second proaf-efibstitution, using some

of von Neumann’s ideas (in particular, the notion of&type, Grundtyp.

The proof is unfortunately not preserved in its entirety, but references to it
can be found in the correspondence. On April 12, 1927, Bernays writes to
Ackermann:

Finally | have thought through your newer proof for consistency of the
€4's based on what you have written down for me before your departure,
and believe that | have seen the proof to be corfect.

Ackermann also refers to the proof in a letter to Hilbert from 1933:

As you may recall, | had at the time a second proof for the consis-
tency of thegy’s. | never published that proof, but communicated it to
Prof. Bernays orally, who then verified it. Prof. Bernays wrote to me
last year that the result does not seem to harmonize with the work of
Godel®®
Before Godel's results, however, the success otthabstitution method for
first-order systems is taken as established. In his address to the International
Congress of Mathematicians in 1928 (Hilbert, 1928b; Hilbert, 1929), Hilbert
writes that “the consistency proof of tleeaxiom for the natural numbers has
been accomplished by the works of Ackermann and von Neumann,” and goes
on to pose the extension of the proof to second-order systems as an open
problem. There seems no doubt in his mind that the solution is just around
the cornep’
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It might be worthwhile to mention at this point that at roughly the same
time a third attempt to find a satisfactory consistency proof was made. This at-
tempt was based not @asubstitution, but on Hilbert’s so-called unsuccessful
proof (verungliickter Bewejs

While working on theGrundlagenbuchl found myself motivated to re-
think Hilbert’'s second consistency proof for teexiom, the so-called
“unsuccessful” proof, and it now seems to me that it can be fixed after
all.>8

This proof bears a striking resemblance to the proof of thediteeorem in
(Hilbert and Bernays, 1939) and to a seven-page sketch in Bernays’'s hand
of a “consistency proof for the logical axiom of choice” found bound with
lecture notes to Hilbert's course on “Elements and principles of mathematics”
of 1910 This “unsuccessful” proof seems to me to be another important
contribution to the development of logic and thealculus, independent of

the substitution method. Note that Bernays'’s proof of Herbrand’s theorem in
Hilbert and Bernays (1939) is based on the (secantitieorem is the first
correct published proof of that important result.

The realization that the consistency proof even for first-oderwas
problematic came only with Godel's incompleteness results. In a letter dated
March 10, 1931, von Neumann presents an example that shows that in the
most recent version of Ackermann’s proof, the length of the substitution pro-
cess not only depends on the rank and degregtefms occurring in the
proof, but also on numerical values used as substitutions. He concludes:

| think that this answers the question, which we recently discussed when
going through Ackermann’s modified proof, namely whether an estimate
of the length of the correction process can be made uniformly and inde-
pendently of numerical substituends, in the negative. At this point the
proof of termination of the procedure (for the next higher degree, i.e., 3)
has a gafy°

There is no doubt that the discussion of the consistency proof was precip-
itated by Gddel's results, as both von Neumann and Bernays were aware of
these results, and at least von Neumann realized the implications for Hilbert’s
Program and the prospects of a finitistic consistency proof for arithmetic.
Bernays corresponded with Godel on the relevance of Gddel's result for
the viability of the project of consistency proofs just before and after von
Neumann’s counterexample located the difficulty in Ackermann’s proof. On
January 18, 1931, Bernays writes to Godel:

If one, as does von Neumann, assumes as certain that any finite consid-
eration can be formulated in the framework of Systml think, as you

do too, that this is not at all obvious—one arrives at the conclusion that
a finite proof of consistency d® is impossible.
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The puzzle, however, remained unresolved for Bernays even after von Neu-
mann’s example, as he writes to Godel just after the exchange with von
Neumann, on April 20, 1931:

The confusion here is probably connected to that about Ackermann’s
proof for the consistency of number theory (Syst&ywhich | have not
so far been able to clarify.

That proof—on which Hilbert has reported in his Hamburg talk on
the “foundations of mathemati&”[...]—I have repeatedly thought
through and found correct. On the basis of your results one must now
conclude that this proof cannot be formalized within Sysgermdeed,
this must hold even if one restricts the system whose consistency is
to be proved by leaving only addition and multiplication as recursive
definitions. On the other hand, | do not see which part of Ackermann’s
proof makes the formalization withip impossible, in particular if the
problem is so restrictef.

Godel's results thus led Bernays, and later Ackermann to reexamine the meth-
ods used in the consistency proofs. A completion of the project had to wait
until 1940, when Ackermann was able to carry through the termination proof
based on transfinite induction—following Gentzen (1936)-&n

4. Conclusion

With the preceding exposition and analysis of the development of axiomatiza-
tions of logic and mathematics and of Hilbert and Ackermann’s consistency
proofs | hope to have answered some open questions regarding the historical
development of Hilbert’s Program. Hilbertechnicalproject and its evolu-

tion is without doubt of tremendous importance to the history of logic and the
foundations of mathematics in the 20th century. Moreover, an understanding
of the technical developments can help to inform an understanding of the
history and prospects of thghilosophicalproject. The lessons drawn in the
discussion, in particular, of Ackermann’s use of transfinite induction, raise
more questions. The fact that transfinite induction in the form used by Acker-
mann was so readily accepted as finitist, not just by Ackermann himself, but
also by Hilbert and Bernays, leaves open two possibilities: either they were
simply wrong in taking the finitistic nature of Ackermann’s proof for granted
and the use of transfinite induction simply cannot be reconciled with the fini-
tist standpoint as characterized by Hilbert and Bernays in other writings, or
the common view of what Hilbert thought the finitist standpoint to consist in
must be revised. Specifically, it seems that the explanation of why transfinite
induction is acceptable stresses one aspect of finitism while downplaying
another: theobjectsof finitist reasoning are—finite and—intuitively given,
whereas the methods of proof were not required to have the epistemic strength
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that the finitist standpoint is usually thought to require (i.e., to guarantee, in
one sense or another, the intuitive evidence of the resulting theorems). Of
course, the question of whether Hilbert can make good on his claims that
finitistic reasoning affords this intuitive evidence of its theorems is one of
the main difficulties in a philosophical assessment of the project (see, e.g.,
Parsons, 1998).

| have already hinted at the implications of a study of the practice of
finitism for philosophical reconstructions of the finitist view (in note 40).
We are of course free to latch on to this or that aspect of Hilbert’s ideas
(finitude, intuitive evidence, or surveyability) and develop a philosophical
view around it. Such an approach can be very fruitful, and have important
and insightful results (as, e.g, the example of Tait’s (1981) work shows). The
question is to what extent such a view should be accepted as a reconstruction
of Hilbert’'s view as long as it makes the practice of the technical project come
out off base. Surely rational reconstruction is governed by something like a
principle of charity. Hilbert and his students, to the extent possible, should
be construed so that what they preached is reflected in their practice. This
requires, of course, that we know what the practice was. If nothing else, |
hope to have provided some of the necessary data for that.
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Tait for very valuable comments and discussions. My understanding ef the
substitution method in general and Ackermann’s proofs in particular owes a
great deal to conversations with and writings of Grigori Mints, Georg Moser,
and W. W. Tait. Any errors in my presentation are, of course, mine.

Notes

1 Hilbert (1905, 131). For a general discussion of Hilbert's views around 1905, see
Peckhaus (1990, Chapter 3).

2 Russell and Whitehead used classes througRoicipia, but thought that they could
be reduced to propositional functions. | am not able to assess here how accurate Hilbert's
reading of Russell is. In fact, Hilbert's knowledge and interpretatidArafcipia undoubtedly
was filtered through his student Heinrich Behmann, who wrote a dissertation on it (Behmann,
1918); see Mancosu (1999a) for a discussion of Behmann’s work. An in-depth discussion of
the development d®rincipia can be found in Grattan-Guinness (2000).

3 Die von ZERMELO benutze axiomatische Methode ist zwar unanfechtbar und unent-
behrlich. Es bleibt dabei doch die Frage offen, ob die aufgestellten Axiome nicht etwa einen
Widerspruch einschliessen. Ferner erhebt sich die Frage, ob und inwieweit sich das Axio-
mensystem aus der Logik ableiten lasst. [... D]er Versuch einer Zurlickfihrung auf die Logik
scheint besonders deshalb aussichtsvoll, weil zwischen Mengen, welche ja die Gegenstande
in ZERMELOs Axiomatik bilden, und den Pradikaten der Logik ein enger Zusammenhang
besteht. Namlich die Mengen lassen sich auf Pradikate zuriickfihren.

Diesen Gedanken habeREGE RUSSEL[L] und WEYL zum Ausgangspunkt genommen
bei ihren Untersuchungen tber die Grundlagen der Mathematik.“ (Hilbert 1920b, 27—-28).

4 Wir miissen uns namlich fragen, was es bedeuten soll: ,es gibt ein Pralikiat der
axiomatischen Mengentheorie bezieht sich das ,es gibt* immer auf den zugrunde gelegten
Bereich®. In der Logik kdnnen wir zwar auch die Préadikate zu einem Bereich zusammen-
gefasst denken; aber dieser Bereich der Pradikate kann hier nicht als etwas von vorneherein
Gegebenes betrachtet werden, sondern die Pradikate missen durch logische Operationen ge-
bildet werden, und durch die Regeln der Konstruktion bestimmt sich erst nachtréglich der
Pradikaten-Bereich.

Hiernach ist ersichtlich, dass bei den Regeln der logischen Konstruktion von Pradikaten
die Bezugnahme auf den Pradikaten-Bereich nicht zugelassen werden kann. Denn sonst ergabe
sich eincirculus vitiosus' (Hilbert 1920b, 31). Ivor Grattan-Guinness pointed out to me the
rather clear distinction between first- and second-order quantification that Hilbert is drawing
here.

5“RuUsSELL geht von dem Gedanken aus, dass es geniigt, das zur Definition der Ver-
einigungsmenge unbrauchbare Pradikat durch ein sachlich gleichbedeutendes zu ersetzen,
welches nicht dem gleichen Einwande unterliegt. Allerdings vermag er ein solches Pradikat
nicht anzugeben, aber er sieht es als ausgemacht an, dass ein solches existiert. In diesem Sinne
stellt er sein ,Axiom der Reduzierbarkeit" auf, welches ungeféahr folgendes besagt: ,Zu jedem
Pradikat, welches durch (ein- oder mehrmalige) Bezugnahme auf den Pradikatenbereich ge-
bildet ist, gibt es ein sachlich gleichbedeutendes Pradikat, welches keine solche Bezugnahme
aufweist.
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Hiermit kehrt abeirussEeLLvon der konstruktiven Logik zu dem axiomatischen Stand-
punkt zurtick. [...]

Das Ziel, die Mengenlehre und damit die gebrauchlichen Methoden der Analysis auf die
Logik zurtickzufuhren, ist heute nicht erreicht und ist vielleicht Giberhaupt nicht erreichbar.”
(Hilbert 1920b, 32-33).

6« .. zur Vermeidung von Paradoxien ist daher eine teilweise gleichzeitige Entwicklung
der Gesetze der Logik und der Arithmetik erforderlich.” (Hilbert 1905, 176). Hilbert's early
work in logic was influenced in particular by Schréder; see Peckhaus (1990) and Zach (1999).

7“In Anbetracht der grossen Mannigfaltigkeit von Verkniipfungen und Zusammenhangen,
welche die Arithmetik aufweist, ist es von vornherein ersichtlich, dass wir die Aufgabe des
Nachweises der Widerspruchslosigkeit nicht mit einem Schlage 16sen kénnen. Wir werden
vielmehr so vorgehen, dass wir zunéchst nur die einfachsten Verkniipfungen betrachten und
dann schrittweise immer hdéhere Operationen und Schlussweisen hinzunehmen, wobei dann
fur jede Erweiterung des Systems der Zeichen und der Uebergangsformeln einzeln der Nach-
weis zu erbringen ist, dass sie die auf der vorherigen Stufe festgestellte Widerspruchsfreiheit
nicht aufheben.

Ein weiterer wesentlicher Gesichtspunkt ist, dass wir, gemass unserem Plan der restlosen
Formalisierung der Arithmetik, den eigentlich mathematischen Formalismus im Zusammen-
hang mit dem Formalismus der logischen Operationen entwickeln missen, sodass—wie ich
es ausgedriickt habe—ein simultaner Aufbau von Mathematik und Logik ausgefuhrt wird.”,
(Hilbert 1922b, 8a—9a). The passage is not contained in Kneser’s notes (Hilbert, 1922a) to the
same course.

8 “Disposition. Stufe Il war elementares Rechnen Axiome 1-16

Stufe lll. Nun elementare Zahlentheorie
Schema fiir Def. von Funktionen durch Rekursion u. Schlussschema
indem wir zu unsrem Schlussschema noch das Induktionsschema hinzuziehen
Wenn auch inhaltlich das wesentlich mit den Ergebnissen der anschauliche gewonnenen
Zahlenth[eorie] tibereinstimmt, so doch jetzt Formeln aB.b=b+a.

Stufe llll. Transfinite Schlussweise u. teilweise Analysis

Stufe V. Hohere Variablen-Gattungen u. Mengenlehre. Auswahlaxiom

Stufe VI. Zahlen d[er] en Zahlkl[asse], Volle transfin[ite] Induktion. Hohere Typen.
Continuumsproblem, transfin[ite] Induktion fur Zahlen dg?'r?Zahlkl[asse].

Stufe VII. 1.) Ersetzung der vielen Definitionsschemata durch ein Axiom. 2.) Analysis
u[nd] Mengenlehre. Auf der'® Stufe nochmals der volle Satz von der oberen Grenze

Stufe VIII. Formalisierung der Wohlordnung. ” (Hilbert and Bernays, 192Bl)éanzung
sheet 1. The notes by Kneser (Hilbert and Bernays, 1923a) do not contain the list of systems
below. The version of the-calculus used in the addendum is the same as that used in Kneser’s
notes, and differs from the presentation in Ackermann (1924a), submitted February 20, 1924.

9 This proof can be found in both Hilbert (1918b) and Bernays (1918); see Zach (1999).

10 The proof can also be found in Hilbert (1922¢, 171-173); cf. Mancosu (1998, 208-210).

11 «somit sehen wir uns veranlasst, die Beweise als solche zum Gegenstand der Unter-
suchung zu machen; wir werden zu einer Art \Beweistheoriggedrangt, welche mit den
Beweisen selbst als Gegenstanden operiert.

Fur die Denkweise der gewohnlichen Zahlentheorie sind die Zahlen das gegenstandlich-
Aufweisbare, und die Beweise der Séatze Uber die Zahlen fallen schon in das gedankliche
Gebiet. Bei unserer Untersuchung ist der Beweis selbst etwas Aufweisbares, und durch das
Denken Uber den Beweis kommen wir zur Losung unseres Problems.

Wie der Physiker seinen Apparat, der Astronom seinen Standort untersucht, wie der
Philosoph Vernunft-Kritik Gbt, so braucht der Mathematiker diese Beweistheorie, um jeden
mathematischen Satz durch eine Beweis-Kiitik sicherstellen zu kénnen.” Hilbert (1920b, 39—



38 Richard Zach

40). Almost the same passage is found in Hilbert (1922¢, 169-170), cf. Mancosu (1998,
208).

12 For a detailed discussion of these influences, see Mancosu (1999a).

13 Hilbert (1922b, part 2, 3). Knesenditschrift of these lectures contains a different system
which does not include negation. Instead, numerical inequality is a primitive. This system is
also found in Hilbert's first talks on the subject in Copenhagen and Hamburg in Spring and
Summer of 1921. Hilbert (1923), a talk given in September 1922, and Kneser'’s notes to the
course of Winter Semester 1922—-23 (Hilbert and Bernays, 1923a) do contain the new system
with negation. This suggests that the developments of Hilbert's 1921-22 lectures were not
incorporated into the published version of Hilbert's Hamburg talk (1922c). Although (1922c)
was published in 1922, and a footnote to the title says “This communication is essentially the
content of the talks which | have given in the Spring of this year in Copenhagen [...] and
in the Summer in Hamburg [...],” it is clear that the year in question is 1921, when Hilbert
addressed the Mathematische Seminar of the University of Hamburg, July 25-27, 1921. A
report of the talks was published by Reidemeistetdhrbuch der Deutschen Mathematiker-
Vereinigung30, 2. Abt. (1921), 106. Hilbert and Bernays (1923b) also have separate axioms
for conjunction and disjunction, while in (1923) it is extended by quantifiers.

14 The relevant sections can be found at the end of Hilbert (1922b, part 2, 19-38).

15 The procedure whereby we pass fratrto 2 is simple in this case, provided we keep
track of which variables are substituted for below the inference. In general, the problem of
deciding whether a formula is a substitution instance of another, and to calculate the substitu-
tion which would make the latter syntactically identical to the former is knowmatshing
Although not computationally difficult, it is not entirely trivial either.

16 “Nennen wir eine Formel, in der keine Variablen und keine Funktionale ausser Zahl-
zeichen vorkommen, eineexplizite [numerische] Form&l so kénnen wir das gefundene
Ergebnis so aussprechen: Jede beweisbare explizite Formel ist Endformel eines Beweises,
dessen samtliche Formeln explizite Formeln sind.

Dieses misste insbesondere von der Formgéli0gelten, wenn sie beweisbar ware. Der
verlangte Nachweis der Widerspruchsfreiheit ist daher erbracht, wenn wir zeigen, dass es
keinen Beweis der Formel geben kann, der aus lauter expliziten Formeln besteht.

Um diese Unmdoglichkeit einzusehen, genlgt es, eine konkret feststellbare Eigenschaft zu
finden, die erstens allen den expliziten Formeln zukommt, welche durch Einsetzung aus einem
Axiom entstehen, die ferner bei einem Schluss sich von den Pramissen auf die Endformel
Ubertragt, die dagegen nicht auf die Formet 0 zutrifft.” (Hilbert 1922b, part 2, 27-28).

17 \wir teilen die expliziten Formeln inrjchtige* und ,falsché ein. Die expliziten Primfor-
meln sind Gleichungen, auf deren beiden Seiahlzeicherstehen. Eine solch&leichung
nennen wirichtig, wenn die beiderseits stehenden Zahlzeidieereinstimmenandernfalls
nennen wir sidalsch EineUngleichungauf deren beiden Seiten Zahlzeichen stehen, nennen
wir richtig, falls die beiden Zahlzeicharerschiedersind; sonst nen[n]en wir silsch

In der Normalform einer beliebigen expliziten Formel haben alle Disjunktionsglieder die
Gestalt von Gleichungen oder Ungleichungen, auf deren beiden Seiten Zahlzeichen stehen.

Wir nennen nun einallgemeine explizite Formel richtigwenn in der zugehérigen
Normalform jede als Konjunktionsglied auftretende (bezw. die ganze Normalform ausma-
chende) Disjunktion eine richtige Gleichung oder eine richtige Ungleichung als Glied enthélt.
Andernfalls nennen wir die Formélisch [...]

Nach der gegebenen Definition lasst sich die Frage, ob eine explizierte [sic] Formel richtig
oder falsch ist, in jed[e]m Fallkonkret entscheiderHier gilt also das ,tertium non datur*

[...T" (Hilbert 1922b, part 2, 33).
18 Hilbert (1918b, 149-150). See also Zach (1999, §2.3).
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19 A sketch of the consistency proof is found in the Knedéschrift to the 1921/22 lectures
(Hilbert, 1922a) in Heft Il, pp. 23-32 and in the official notes by Bernays (Hilbert 1922b,
part 2, 19-38). The earlier Knesbtfitschrift leaves out step (1), and instead of eliminat-
ing variables introduces the notion einsetzungsrichtigcorrectness under substitution, i.e.,
every substitution instance is correct). These problems were avoided in the official Bernays
typescript. The Kneser notes did contain a discussion of recursive definition and induction,
which is not included in the official notes; more about these in the next section.

20 |n the 1921-22 lectures, it is initially argued that the result of applying transformations
(2)—(3) results in groof of the same end formula (if substitutions are added to the initial
formulas). Specifically, it is suggested that the result of applying elimination of variables and
reduction of functionals to the axioms results in formulas which are substitution instances of
axioms. It was quickly realized that this is not the case. (When Bernays presented the proof in
the 1922-23 lectures on December 14, 1922, he comments that the result of the transformation
need not be a proof (Hilbert and Bernays 1923b, 21). The problem is the axiom of equality

a=b— (A(a) — A(b)).
TakingA(c) to bed(c) = ¢, a substitution instance would be
0+14+1=0— (8(0+1+1)=0+1+1—5(0)=0)

This reduces to

0+1+1=0—(0+1=0+1+1—-0=0)
which is not a substitution instance of the equality axiom. The consistency proof itself is not
affected by this, since the resulting formula is still correct (in Hilbert's technical sense of the
word). The official notes to the 1921-22 lectures contain a 2-page correction in Bernays'’s
hand (Hilbert 1922b, part 2, between pp. 26 and 27).

21 The induction rule is not used in (Ackermann, 1924a), since he deals with stage Il only
in passing and attempts a consistency proof for all of analysis. There, the induction rule is
superseded by agrbased induction axiom. For a consistency proof of stage Il alone, an
induction rule is needed, since an axiom cannot be formulated without quantifieg¥. (or
The induction rule was introduced for stage Il in the Kneser notes to the 1921-22 lectures
(Hilbert, 1922a, Heft Il, 32) and the 1922/23 lectures (Hilbert and Bernays, 1923b, 26). It is
not discussed in the official notes or the publications from the same period (Hilbert, 1922c;
1923).

22 See Tait (2002) for discussion.

23 The general tenor, outlook, and aims of Skolem’s work are sufficiently different from
that of Hilbert to suggest there was no influence either way. Skolem states in his concluding
remarks that he wrote the paper in 1919, after reading Russell and Whitelreadpia
MathematicaHowever, neither Hilbert nor Bernays’s papers contain an offprint or manuscript
of Skolem’s paper, nor correspondence. Skolem is not cited in any of Hilbert’s, Bernays'’s, or
Ackermann’s papers of the period, although the paper is referenced in (Hilbert and Bernays,
1934).

24 «Yns fehlt noch ganz das Ax[iom] der vollst[andigen] Induktion. Man kénnte meinen, es
wére

{Z(a) — (A@) — A(a+1))} — {A(1) — (Z(b) — A(b))}
Das ist es nicht; denn man setae- 1. Die Voraussetzung mul} fétle a gelten. Wir haben
aber noch gar kein Mittel, dale in die Voraussetzung zu bringen. Unser Formalismus reicht
noch nicht hin, das Ind.ax. aufzuschreiben.
Aber als Schema kénnen wir es: Wir erweitern unsere Beweismethoden durch das
nebenstehende Schema
R(1) R(@) — K(a+1)
Z(a) — R(a)
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Jetzt ist es vernilnftig, zu fragen, ob dies Schema zum Wspruch fuhren kann.” (Hilbert 1922a,
32).Z is the predicate expressing “is a natural number,” it disappears from later formulations
of the schema.

25“Wie ist es bei Rekursionen@(;) komme vor. Entweder 0, dann setzten widafiir.
Oderd(3+ 1): b(3,93). Beh[auptung]: Das Einsetzen kommt zu einem Abschluf3, wenn wir
zu innerst anfangen.” (Hilbert and Bernays 1923a, 29)

26 “Nicht endlich (durch Rek[ursion]) definiert ist z.B(a) = 0 wenn es eitb gibt, so daR
a® 4 ab® + 7 Primz[ahl] ist sonst 1. Aber erst bei solchen Zahlen und Funktionen beginnt
das eigentliche math[ematische] Interesse, weil dort die Lésbarkeit in endlich vielen Schritten
nicht vorauszusehen ist. Wir haben die Uberzeugung, daR solche Fragen wie nach dem Wert
¢(a) losbar, d.h. da®(a) doch endlich definierbar ist. Darauf kdnnen wir aber nicht warten:
wir missen solche Definitionen zulassen, sonst wirden wir den freien Betrieb der Wissen-
schaft einschranken. Auch den Begriff der Funktionenfunktion brauchen wir.” (Hilbert 1922a,
Heft Ill, 1-2).

27 A full proof is given by Ackermann (1924a).

28 «ps erstes zeigt man, dafld man alle Variablen fortschaffen kann, weil auch hier nur freie
Var[iable] vorkommen. Wir suchen die innersterund a. Unter diesen stehen nur endlich
definierte Funkt[ionend, ¢’...Unter diesen kénnen einige im Laufe des Beweised fiir
die Ax[iome] eingesetzt sein. 1(¢) =0 — (Z(a) — ¢pa = 1) wo a ein Funktional ist. Wenn
diesnicht benutzt wird, setze ich alle(¢p) undt(¢) gleich Null. Sonst reduziere ict und
¢(a) und sehe, o (a) — ¢(a) =1 in allen ... wo sie vorkommt, richtig ist. Ist die richtig, so
setze icht =0 a = 0. Ist sie falsch, d.h. is =3 ¢ (3 # 1, so setzen wit(¢) = 1, a($p) = 3.

Dabei bleibt der Beweis Beweis. Die an Stelle der Axiome gesetzten Formeln sind richtig.

Der Gedanke ist: wenn ein Beweis vorliegt, so kann ich aus ihm ein Argument finden fiir
das$ = 1 ist). So beseitigt man schrittweise di@nda und Anwendungen von 1 2 3 4 und
erhalt einen Beweis von# 1 aus |-V und richtigen Formeln d.h. aus |-V,

1(f,bp)=0 — {Z(a) — f(a,b) =1}
1(f,b)#£0 — Z(f(a,b))
1(f,b)#A0 — f(a(f,b),b)#1
1(f,b)£0 — 1(f,b)=1"

(Hilbert, 1922a), Heft Ill, 3—4. The lecture is dated February 23, 1922. Axioms |-V, found in
Hilbert (1922a, Heft 2, 21-22), correspond to the calculus of elementary computation:

I. 4 logische Axiome

1. A—(B—=A) 2. {A—-(A—B)} - (A—B)
3 {A-B-C}—-{B—-(A=-C)} 4 (B—-C)—{(A-B)—(A-C)}

[...]1l. 2 Axiome der math. Gleichheit
la=a 2.a=b—{A(@ — Ab)}
Ill. 2 Axiome der math. Ungleichheit
lLa#a—A 2.(a=b—-A) - {(a£b—A) — A}
IV. 3 [sic] Axiome UberZ

1 Z(1) 2. Z(a) > Z(a+1)
3 Z(a—{a#1l—2Z(a-1)} 4 Z(a)—a+l#1

V. 4 Axiome der Rechnung

1 (a+l)=a 2, 1
3 a+t(b+1)=(a+b)+1 4 a—(b+1)=(a—b)—1
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29 “\Was fehlt uns?

1. in logischer Hinsicht. Wir haben nur gehabt den Aussagenkalkil mit der Erweiterung auf
freie Variable d.h. solche fir die beliebige Funktionale eingesetzt werden konnten. Es
fehlt das Operieren mit ,alle und ,.es gibt".

2. Wir haben das Induktionsschema hinzugefiigt, ohne W[iderspruchs]-f[reiheits] Beweis
und auch nur provisorisch, also in der Absicht, es wegzuschaffen.

3. Bisher nur die arithmet[ischen] Axiome genau [?] die sich auf ganze Zahlen bezie-
hen. Und die obigen Méangel verhindern uns ja natlrlich die Analysis aufzubauen
(Grenzbegriff, Irrationalzahl).

Diese 3 Punkte liefern schon Disposition und Ziele fur das Folgende.

Wirwenden uns zu 1.) Es ist ja an sich klar, dass eine Logik ohne ,alle“—,es gibt* Stlick-
werk ware, ich erinnere wie gerade in der Anwendung dieser Begriffe, und den sogennanten
transfiniten Schlussweisen die Hauptschwierigkeiten entstanden. Die Frage der Anwendbar-
keit dieser Begriffe aufo Gesamtheiten haben wir noch nicht behandelt. Nun kénnten wir
so verfahren, wie wir es beim Aussagen-Kalkil gemacht haben: einige, mdglichst einfache
[Prinizipien] auszusuchen als Axiome zu formalisieren, aus denen sich [sic] dann alle lbri-
gen folgen. Dann misste der W-f Beweis gefuihrt werden—unserem allgem[einen] Programm
gemass: mit unserer Einstellung, dass Beweis eine vorliegende Figur ist. Fir den W-f Beweis
grosse Schwierigkeiten wegen der gebundenen Variabeln. Die tiefere Untersuchung zeigt aber,
dass der eigentliche Kern der Schwierigkeit an einer anderen Stelle liegt, auf die man gewdhn-
lich erst spéater Acht giebt und die auch in der Litteratur erst spater wahrgenommen worden
ist.”(Hilbert and Bernays 1923lErganzungsheets 2-3).

30 «[Dieser Kern liegt] beimAuswahlaxiormvon Zermelo. [...] Die Einwénde richten sich
gegen das Auswahlprinzip. Sie mif3ten sich aber ebenso gegen ,alle* und ,es gibt“ richten,
wobei derselbe Grundgedanke zugrunde liegt.

Wir wollen das Auswahlaxiom erweitern. Jeder Aussage mit einer Variaklanord-
nen wir ein Ding zu, fir das die Aussage nur dann gilt, wenn sie allgemein gilt. Also ein
Gegenbeispiel, wenn es existiert.

€(A), eine individuelle logische Funktion. [..€]genuge dentransfiniten Axiom

(16) A(eA) — Aa

z.B. Aa heil3e:a ist bestechlicheA ist Aristides.”(Hilbert and Bernays 1923a, 30-31). The
lecture is dated February 1, 1922, given by Hilbert. The corresponding part of Hilbert's notes
for that lecture in Hilbert and Bernays (1923b, Ergédnzung, sheet 4) contains page references
to Hilbert (1923, 152 and 156, paras. 4—6 and 17-19 of the English translation), and indicates
the changes made for the lecture, specifically, to repidmes.

31 “Wenn wir eineFunktionsvariabléhaben:

AcsAf — Af

(rtfallt fort)? € kommenur mit 2 vor (z.B. fO=0, ffO = 0). Wie werden wir die Funkti-
onsvariablen ausschalten? Sthdtsetzen wir einfacke. Auf die gebundenertrifft das nicht
zu. Fir diese nehmen wir probeweise eine bestimmte Funktiorda.Bad fihren damit die
Reduktion durch. Dann steht z.Bld — 2¢. Diese reduziert ist r[ichtig] oder flalsch]. Im
letzten Falle iU falsch. Dann setzen wir Uberdllfiir 42 f. Dann steh®(¢ — 2A. Das ist
sicherr[ichtig] dafl¢ flalsch] ist.” (Hilbert and Bernays 1923a, 38—39).

32 For a more detailed survey of Ackermann’s scientific contributions, see Hermes (1967).
A very informative discussion of Ackermann’s scientific correspondence can be found in
Ackermann (1983).

33 “In seiner Arbeit .Begrundung des ,Tertium non datur* mittels der Hilbertschen Theorie
der Widerspruchsfreiheit* hat Ackermann im allgemeinsten Falle gezeigt, dass der Gebrauch
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der Worte ,alle und ,es gibt“, des ,Tertium non datur* widerspruchsfrei ist. Der Beweis
erfolgt unter ausschliesslicher Benutzung primitiver und endlicher Schlussweisen. Es wird
alles an dem mathematischen Formalismus sozusagen direkt demonstriert.

Ackermann hat damit unter Ueberwindung erheblicher mathematischer Schwierigkeiten
ein Problem gelost, das bei den modernene auf eine Neubegriindung der Mathematik ge-
richteten Bestrebungen an erster Stelle steht.” Hilbert-Nachlaf3, Niedersachsische Staats- und
Universitatsbibliothek Géttingen, Cod. Ms. Hilbert 458, sheet 6, no date. The three-page letter
was evidently written in response to a request by the President of the International Education
Board, dated May 1, 1924.

34«Ich bemerke nur, dass Ackermann meine Vorlesungen uber die Grundlagen der Math-
[ematik] in den letzten Semestern gehdrt hat und augenblicklich einer der besten Herren der
Theorie ist, die ich hier entwickelt habebid., sheet 2. The draft is dated March 19, 1924, and
does not mention Russell by name. Sieg (1999), however, quotes a letter from Russell’s wife to
Hilbert dated May 20, 1924, which responds to an inquiry by Hilbert concerning Ackermann’s
stay in Cambridge. Later in the letter, Hilbert expresses his regret that the addressee still has
not been able to visit Goéttingen. Sieg documents Hilbert's effort in the preceding years to
effect a meeting in Goéttingen; it is therefore quite likely that the addressee was Russell.

35 See Section 4.3.3 for a discussion of primitive recursion.

36 Ackermann only requires thétbe bound by the occurrence f but this is not enough
for his proof.

37 «Jedes der Funktionale, aus denen sich unser vorliegendes Funktional aufbaut, hat einen
bestimmten Rang bezuglich der letzten, der vorletzten usw. bis ersten Rekursionsfunktion.
Jede derartige Rangkombination wird dunclyeordnete Zahlen gekennzeichnet. Alle die-
se endlich vielen verschiedenen Rangkombinationen, die bei unserem Funktional auftreten,
wollen wir nun ordnen. Bei zwei verschiedenen Rangkombinationen schreiben wir die ent-
sprechenden Zahlen untereinander, also zuerst den Rang bezlglich der letzten, dann der
vorletzten Funktion usw. An irgendeiner Stelle sind dann die untereinanderstehenden Zah-
len zuerst verschieden. Diejenige Rangkombination hei3t nun die hdhere, bei der an der
betreffenden Stelle die groRere Zahl steht. In dieser Weise ordnen wir alle die endlich vielen
verschiedenen Rangkombinationen, die bei dem vorliegeneden Funktional auftreten. Zu jeder
Rangkombination schreieben wir dann auf, wieviel Funktionale dieser Art in dem vorliegen-
den vorkommen. Die Gesamtheit dieser Zahlen wollen wir den Index des Funktionals nennen.”
(Ackermann 1924a, 15).

38 According to Ackermann’s definition of subordination, this would not be true. A subterm
of ¢(b) might contain a bound variable and thus not be a constant subterm, but the variable
could be bound by a function symbolfrother than the occurrence ¢funder consideration.

See note 36.

39 Ackermann (1924a, 18)

40 Tajt (1981) argues that finitism coincides with primitive recursive arithmetic, and that
therefore the Ackermann function is not finitistic. Tait does not present this as a historical
thesis, and his conceptual analysis remains unaffected by the piece of historical evidence
presented here. For further evidence (dating however mostly from after 1931) see Zach (1998,
85) and (2001a, Chapter 4), and Tait's response in (2002).

41«Der Abbau der Funktional durch Reduktion erfolgt nicht in dem Sinne, daR jedesmal
beim Herausschaffen eines auReren Funktionszeichens sich eine endliche Ordnungszahl, die
man einem Funktional als Rang zuordnen kann, erniedrigt, sondern jedem Funktional ent-
spricht gewissermaf3en eine transfinite Ordnungszahl als Rang, und der Satz, da man nach
Ausfuhrung von endlich vielen Operationen ein konstantes Funktional auf ein Zahlzeichen
reduziert hat, entspricht dem anderen, daf3, wenn man von einer transfiniten Ordnungszahl
zu immer kleineren Ordnungszahlen zuruickgeht, man nach endlich vielen Schritten zur Null
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kommen muR. Nun ist natiirlich bei unseren metamathematischen Uberlegungen von trans-
finiten Mengen und Ordnungszahlen keine Rede. Es ist aber interessant, dal3 der erwahnte
Satz Uber die transfiniten Ordnungszahlen sich in ein Gewand kleiden 1&Rt, in dem ihm vom
transfiniten gar nichts mehr anhaftet.” (Ackermann, 1924a, 13-14).

42 “Betrachten wir etwa eine transfinite Ordnungszahl, die s steht. Jede derartige
Ordungszahl last sich in der Form schreiban:n +m, wo n und m endliche Zahlen sind.

Man kann also eine derartige Ordnungszahl auch durch ein Paar endlicher Zahign
characterisieren, wobei es natirlich auf die Reihenfolge dieser Zahlen ankommt. Dem Zurtick-
gehen in der Reihe der Ordnungszahlen entspricht folgende Operation mit dem Zahlenpaar
(n,m). Entweder behalte ich die erste Zahbei; dann setzte ich an Stelle vereine kleinere
Zahlm'. Oder aber ich erniedrige die erste Zahidann darf ich an diese zweite Stelle eine
beliebige Zahl setzten, die also gréRer sein kanmalEs ist klar, da man so nach endlich
vielen Schritten zu dem Zahlenpg@t0) kommen muR3. Denn nach héchstens 1 Schritten
komme ich zu einem Zahlenpaar, bei dem die erste Zahl kleiner ist &s sei diegn’, m’).

Nach hochstens’ + 1 Schritten komme ich dann zu einem Zahlenpaar, bei dem die erste Zahl
wieder kleiner ist als’, usw. Nach endlich vielen Schritten kommt man so zum Zahlenpaar
(0,0), das der Ordnungszahl 0 entspricht. In dieser Form enthalt der genannte Satz durchaus
nicht Transfinites; es werden nur solche Uberlegungen benutzt, wie sie in der Metamathematik
zulassig sind. Analoges gilt, falls man nicht Paare endlicher Zahlen, sondern Tripel, Quadrupel
usw. benutzt. Dieser Gedanke wird nun nicht nur bei den folgenden Beweisen dafiir, da? man
mit der Reduktion der Funktionale zu Ende kommt, benutzt, sondern er wird auch spater
immer wieder angewandt, insbesondere bei dem Endlichkeitsbeweis am Schlul® der Arbeit.”
(Ackermann 1924a, 14).

43 “|Gentzen fragt,] ob Sie der Meinung sind, dass sich die Methode des Endlichkeitsbe-
weises durch transfinite Induktion auf den Wf-Beweis |hrer Dissertation anwenden lasse.
Ich wiirde es sehr begriissen, wenn das ginge.” Bernays to Ackermann, November 27, 1936,
Bernays Papers, ETH Zdrich Library, Hs 975.100.

44 «Mir fallt Ubrigens jetzt, wo ich gerade meine Dissertation zur Hand nehme, auf, dass
dort in ganz &hnlicher Weise mit transfiniten Ordnungszahlen operiert wird wie bei Gentzen.”
Ackermann to Bernays, December 5, 1936, Bernays Papers, ETH Zirich Library, Hs 975.101.

45¢Ich weiss Ubrigens nicht, ob Ihnen bekannt ist (ich hatte das seiner Zeit nicht als
Ueberschreitung des engeren finiten Standpunktes empfunden), dass in meiner Dissertation
transfinite Schliisse benutzt werden. (Vgl. z.B. die Bemerkungen letzter Abschnitt Seite 13
und im né&chstfolgenden Abschnitt meiner Dissertation.” Ackermann to Bernays, June 29,
1938, Bernays papers, ETH-Zirich, Hs 975.114. The passage Ackermann refers to is the one
quoted above.

46 Thee-substitution method was subsequently refined by von Neumann (1927) and Hilbert
and Bernays (1939). Ackermann (1940) gives a consistency proof for first-order arithmetic,
using ideas of Gentzen (1936); see also Tait (1965) and Mints (1994). Useful introductions to
thee-substitution method of Ackermann (1940) and to ¢hsotation in general can be found
in Moser (2000) and Leisenring (1969), respectively. See also Mints (1996) for an informative
discussion of the connection betweeterms and Skolem functions.

47 Ackermann (1924a, 8). Thefunctions were already present in (Hilbert, 1922a) as the
t-function and also occur in (Hilbert and Bernays, 1923a). They were dropped from later
presentations.

481t is not clear whether the definition is supposed to apply to the formulas with free
variables (i.e., ta = b anda = gy(a = b) in the example) or to the corresponding substi-
tution instances. The proof following the definition on p. 21 of (Ackermann, 1924a) suggests
the former, however, later in the procedure for defining a sequence of total substitutions it
is suggested that theexpressions corresponding to formulas subordina@(mj receive
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substitutions—but according to the definition of a total substitution ertgrms(ep(3 = b) in
the example) receive substitutions.

49 The bookkeeping functions are introduced here and are not used by Ackermann. The
basic idea is that that in case (3), substitutions for some formulas are discarded, and the next
substitution is given the “last” total substitution where the substitution for the formula was
not yet marked as discarded. Instead of explicit bookkeeping, Ackermann uses the notion of a
formula being “remembered” as having its value not discarded.

50 with the restriction on second-ordetterms imposed by Ackermann, and discussed be-
low, the system for which a consistency proof was claimed is essentially elementary analysis,
a predicative system. A consistency proof usingefseibstitution method for this system was
given by Mints et al. (1996). An epsilon-substitution method for the stronger, but still predica-
tive system of ramified analysis wim} comprehension rule has been given recently by Mints
and Tupailo (1999); methods for impredicative systems sudb afiave been developed by
Toshiyasu Arai and Grigori Mints (unpublished).

51 Ackermann (1924a, 9)

52 |f we code real numbers as number theoretic functions (e.g., as the characteristic function
of a set of rationals), a formula(f) with free f defines a real, i.eg;A(f), and a formula
A(f,g) with free function variabled, g defines a familyM(f) of sets of realsg € M(f) iff
A(f,g). ThenegA(f,qg) is a choice function foM(f). e-extensionality requires second-order
e-terms to be extensional in the sense tha((if, g) andB( f, g) define the same family of sets,
ggA(f,0) andegB(f, Q) are the same.

53 Ackermann to Bernays, June 25, 1925, Bernays Papers, ETH Zirich, Hs. 975.96.

54“Ich habe augenblicklich deas-Beweis wieder vorgenommen, und versuche mit aller
Gewalt da zum Abschluf® zu kommen. Daf sich das Problem auf ein zahlentheoretisches
reduzieren 1aRt, hatte ich Ihnen damals ja schon mitgeteilt. Den zahlentheoretischen Satz
allgemein zu beweisen scheint mir aber ebenso schwierig wie das ganze Problem. Ich ha-
be nun den schon mehrfach von mir versuchten Weg wieder eingeschlagen, den Begriff
des Grundtyps so zu erweitern, das auch dimit freien Funktionsvariablen eine Erset-
zung bekommen. Dieser Weg scheint ja auch der natirlichste, und die Gleichheitsaxiome
(f)(A(f) = B(f)) — esAf = &;Bf wiirden dann gleich mitbehandelt. Ich habe einige Hoff-
nung, daR die sich friher auf diesem Weg einstellenden Schwierigkeiten vermieden werden
kénnen, wenn ich degy-Formalismus benutze und statt ofméefinierte Funktionen, solche
zur Ersetzung fur dies nehme, die eire; enthalten kénnen. Ich habe mir aber erst ein-
fache Spezialfélle Uberlegt.” Ackermann to Bernays, March 31, 1926. ETH Zirich Library,
Hs 975.97. Although Ackermann’s mention of “ground types” precedes the publication of von
Neumann (1927), the latter paper was submitted for publication already on July 29, 1925.

55 “Letzthin habe ich mir lhren neueren Beweis der Widerspruchsfr[eiheit] fireglian
Hand dessen, was Sie mir vor Ihrer Abreise aufschrieben, genauer uberlegt und glaube diesen
Beweis als richtig eingesehen zu haben.” Bernays to Ackermann, April 12, 1927, in the pos-
session of Hans Richard Ackermann. Bernays continues to remark on specifics of the proof,
roughly, that when example substitutions fstypes are revised (the situation corresponding
to case (3) in Ackermann’s original proof), the substitutions for types of higher rank have to
be reset to the initial substitution. He gives an example that shows that if this is not done, the
procedure does not terminate. He also suggests that it would be more elegant to treat all types
of the same rank at the same time and gives an improved estimate for the number of steps
necessary. Note that the referencedgs” (as opposed t@;) suggest that the proof was only
for the first-order case. A brief sketch of the proof is also contained in a letter from Bernays
to Weyl, dated January 5, 1928 (ETH Zurich Library, Hs. 91.10a).

56 “\\ie Sie sich vielleicht erinnern, hatte ich damals einen 2. Beweis fiir die Widerspruchs-
freiheit dere,. Dieser Beweis ist von mir nie publiziert worden, sondern nur Herrn Prof.
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Bernays mundlich mitgeteilt worden, der sich auch damals von seiner Richtigkeit Uberzeugte.
Prof. Bernays schrieb mir nun im vergangenen Jahre, dal3 das Ergebnis ihm mit der Go6-
delschen Arbeit nicht zu harmonisieren scheine.” Ackermann to Hilbert, August 23, 1933,
Hilbert-Nachlaf3, Niedersachsische Staats- und Universitatsbibliothek, Cod. Ms. Hilbert 1.
Ackermann did not then locate the difficulty, and even a year and a half later (Ackermann to
Bernays, December 8, 1934, ETH Zirich Library, Hs 975.98) suggested a way that a finitistic
consistency proof of arithmetic could be found based on work of Herbrand and Bernays’s
drafts for the second volume G&frundlagen

57 “Problem I. The consistency proof of tiseaxiom for the function variablé. We have the
outline of a proof. Ackermann has already carried it out to the extent that the only remaining
task consists in the proof of an elementary finiteness theorem that is purely arithmetical.”
(Hilbert, 1929, 4), translated in Mancosu (1998, 229). The extensiaretdensionality is
Problem I11.

58 «Anlasslich der Arbeit fiir das Grundlagenbuch sah ich mich dazu angetrieben, den
zweiten Hilbertschen Wf.-Beweis fir dasAxiom, den sogenannten ,verungliickten Be-
weis, nochmals zu lberlegen, und es scheint mir jetzt, dass dieser sich doch richtig stellen
lasst.” Bernays to Ackermann, October 16, 1929, in the possession of Hans Richard Acker-
mann. Bernays continues with a detailed exposition of the proof, but concludes that the proof
probably cannot be extended to include induction, for wisislibstitution seems better suited.

59 The sketch bears the title “Wf.-Beweis fiir das logische Auswahl-Axiom”, and is inserted
in the front of Hilbert (1920a). A note in Hilbert’s hand says “Einlage in W.S. 1920.” However,
thee-Axiom used is the more recent versidb — AgaA; and not the original, duaezAa —

Ab. It thus seems likely that the sketch dates from after 1923. See Zach (2001b).

60«1ch glaube, dass damit die Frage, die wir bei der Durchsprechung des modifizierten
Ackermannschen Beweises zuletzt diskutierten, ob ndmlich eine Langen-Abschatzung fir
das Korrigier-Verfahren unabhéngig von der Grésse der Zahlen-Substituenden gleichmassig
moglich sei, verneinend beantwortet ist. An diesem Punkte ist dann der Nachweis des endli-
chen Abbrechens dieses Verfahrens (fur den nachsten Grad, d.h. 3) jedenfalls lickenhaft.” von
Neumann to Bernays, March 10, 1931, Bernays Papers, ETH Zurich Library, Hs. 975.3328.
Von Neumann'’s example can be found in Hilbert and Bernays (1939, 123).

61 Hilbert (1928a).

62 |n a letter dated May 3, 1931, Bernays suggests that the problem lies with certain types
of recursive definitions. The Bernays—Gddel correspondence will shortly be published in Vol-
ume IV of Gédel's collected works. For more on the reception of Godel’s results by Bernays
and von Neumann, see Dawson (1988) and Mancosu (1999b).
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