

 CAS 701 Presentation

Ackermann's Function

 Qinglei Zhang, Nov. 20, 2008.

History

 The belief in the early 1900s: every computable function was
also primitive recursive

 A strict subset of the recursive functions: every primitive
recursive function is total recursive, but not all total recursive
functions are primitive recursive.

 Well known Counterexample: David Hibert(On the Infinite),
Gabriel Sudan, Wihelm Ackermann(1928)

Partial Recursive Functions

General Recursive Functions

Primitive Recursive Functions

Basic conceptions
 Recursive function theory: one way to

make formal and precise the intuitive,
informal, and imprecise notion of an
effective method.

 Church's thesis: every function that is
effectively computable in the intuitive

sense is computable in these formal ways.

Inductive Definition of Primitive
Recursive Functions

 The initial functions: The zero function,
the successor function, and all
projection functions.

 Functions which arise by composition
and primitive recursion from primitive
recursive functions.

 In the programming language: it has FOR-
loops as the only iterative control
structure.

Recursive Function
 Algorithms can be written in the form of

WHILE-Loop.
 Technically, add a construct operation

called minimization which does
something equivalent.
Unbounded search: If we say that g(x) is a function that
computes the least x such that f(x) = 0, then we know that g is
computable. We will say that g is produced from f by

minimization.

 Ackermann's Function
 Ackermann originally considered a function of three

variables A(m,n,p) =m np (Conway chained
arrow notation).

 Hyper operators: a variant of Ackermann function
For the successive operators beyond
exponentiation.
 hyper(a,n,b)= a↑ (n-2) b (knuth’s up-arrownotation)
 =ab(n-2).





Ackermann proved that A is computable and not a
primitive recursive function.

 Different Versions of
Ackermann’s function

 Van Heijenoort(1928)
 y+z for x=0,

 0 for x=1,z=0,
ack(x,y,z)= 1 for x=2,z=0,
 y for x>2, z=0,
 ack(x-1,y,ack(x,y,z-1) for x,z>0.

 Analysis: ack(0,y,z)=y+z;
 ack(1,y,z)=y×z;
 ack(2,y,z)=y^z;
 ack(3,y,z)=hyper(y,4,z+1).

Hyper operator

 Buck(1963): recursively define an infix triadic operator
 y+1 for x=0,

 2 for x=1, y=0,
ack-b(x,y)= 0 for x=2, y=0,
 1 for x>2, y=0,
 ack-b(x-1, ack-b(x,y-1)) for x,y>0.

 Analysis: ack-b(0,y)= hyper(2,0,y)=y+1; (Successor function)
 ack-b(1,y)= hyper(2,1,y)=2+y; (Summation)
 ack-b(2,y)= hyper (2,2,y)=2×y; (multiplication)
 ack-b(3,y)=hyper(2,3,y)=2^y; (exponentiation)
 ack-b(4,y)= hyper(2,4,y)=y2; (superpower, power towers)

 Rόsza Péter(1935), Raphael M. Robins(1948)


 b+1 for a=0,
ack-p(a,b)= ack-p(a-1,1) for a>0,b=0,
 ack(a-1, ack-p(a,b-1) for a,b>0.

 Analysis:
ack-p(0,b)=b+1;
ack-p(1,b)=2+(b+3)-3;
ack-p(2,b)=2×(b+3)-3;
ack-p(3,b)=2^ (b+3)-3=(2↑ (b+3))-3 =hyper(2,3,b+3)-3;
ack-p(4,b)=(2 ↑↑ (b+3))-3=hyper(2,4,b+3)-3;
ack-p(a,b)=hyper(2,a,b+3)-3.

Values of A(m,n) (Rόsza Péter version)

A(3,A(4,3))2265536
-3265536-365533134

12561291353

1197532

654321

543210

43210a\b

Computing the value of Ackermann function:

Example (Rόsza Péter version)
 A(4,3)=A(3,A(4,2))

 =A(3,A(3,A(4,1))) b decrease
 =A(3,A(3,A(4,0)))
 =A(3,A(3,A(3,1))) a decrease
 =…
 =A(3,A(3,A(3,13))
 =…
 =A(3, A(3, 65533))
 =…
 =A(3, 265536-3)
 =…
 =2265536

≈ 10 10 19727.78

Ackermann is total computable
functions
 A(0; y) = y + 1 (1)

A(x + 1; 0) = A(x; 1) (2)
A(x + 1; y + 1) = A(x;A(x + 1; y)) (3)

 Define the lexicographical order on
N×N as follows:

(x; y) > (x0; y0) iff x > x0 or (x = x0 and y > y0):

a well-ordering of order type ω2

 The clauses (2) and (3) lead to
lexicographically smaller arguments; this
cannot go on forever, so A must finally
halt.

Ackermann is not primitive
recursive

 Theorem: The Ackermann function dominates every
primitive recursive function in the sense that there is a k
such that
 f(x) < A(k, ∑ x),
Where f is a primitive function, ∑ x is the sum of all the components
of x.

Sketch of proof:
One can argue by induction on the buildup of f.
Deal with the atomic functions and then show that the
property is preserved during an application of composition
and primitive recursion.

 So in particular, A is not primitive recursive.

Applications
 Inverse Ackermann function (extremely slow-

growing function)
α(m,n)=min {i ≥ 1, A (i, [m/n]) ≥ log2n}

For all practical purposes: α(m,n) can be regarded
as being a constant, less than 5.
In the time complexity of some algorithm:
 Union-Find problem: O(α(m,n)+n)),

 Use as Benchmark: Compliers’ ability to optimize
recursion.

Reference
 Ackermann function:

http://en.wikipedia.org/wiki/Ackerman_function
 Hyper operator:

http://en.wikipedia.org/wiki/Hyper_operator
 Versions of Ackermann’s Function:

http://www.mrob.com/pub/math/ln-2deep.html
 A. Garrido. Primitive Recurison and μ-Recursivity. Journal of Numerical

Analysis, Industrial and Applied Mathematics (JNAIAM), vol.1,no.3,pp.273-280,
2006.

 B. Nordstrom. Primitive Recursive Functions. Models of Computation, Chalmers
and University of Goteborg, 2005.

 K. Sutner. Primitive and General Recursive Functions. Presentation, Carnegie
Mellon University, 2006.

 R.Seidel. Understanding the inverse Ackermann function. EWCG 2006, Delphi,
March 27–29, 2006.

http://en.wikipedia.org/wiki/Ackerman_function
http://en.wikipedia.org/wiki/Hyper_operator
http://www.mrob.com/pub/math/ln-2deep.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

