CAS 701 Presentation

Ackermann's Function

Qinglei Zhang, Nov. 20, 2008.

History

The belief in the early 1900s: every computable function was also primitive recursive

- A strict subset of the recursive functions: every primitive recursive function is total recursive, but not all total recursive functions are primitive recursive.
- Well known Counterexample: David Hibert(On the Infinite), Gabriel Sudan, Wihelm Ackermann(1928)

Basic conceptions

- Recursive function theory: one way to make formal and precise the intuitive, informal, and imprecise notion of an effective method.
- Church's thesis: every function that is effectively computable in the intuitive sense is computable in these formal ways.

Inductive Definition of Primitive Recursive Functions

- The initial functions: The zero function, the successor function, and all projection functions.
- Functions which arise by composition and primitive recursion from primitive recursive functions.
- In the programming language: it has FORloops as the only iterative control structure.

Recursive Function

Algorithms can be written in the form of WHILE-Loop.

- Technically, add a construct operation called minimization which does something equivalent.

Unbounded search: If we say that $g(x)$ is a function that computes the least x such that $f(x)=0$, then we know that g is computable. We will say that g is produced from f by
minimization.

Ackermann's Function

Ackermann originally considered a function of three variables $A(m, n, p)=m \rightarrow n \rightarrow p$ (Conway chained arrow notation).

- Hyper operators: a variant of Ackermann function For the successive operators beyond exponentiation.

$$
\begin{aligned}
\text { hyper }(a, n, b) & =a \uparrow(n-2) b \text { (knuth's up-arrownotation) } \\
& =a \rightarrow b \rightarrow(n-2) .
\end{aligned}
$$

- Ackermann proved that A is computable and not a primitive recursive function.

Different Versions of Ackermann's function

- Van Heijenoort(1928)
-

$\operatorname{ack}(x, y, z)= \begin{cases}y+z & \text { for } x=0, \\ 0 & \text { for } x=1, z=0, \\ 1 & \text { for } x=2, z=0, \\ y & \text { for } x>2, z=0, \\ \operatorname{ack}(x-1, y, \operatorname{ack}(x, y, z-1) & \text { for } x, z>0 .\end{cases}$

- Analysis: $\quad \operatorname{ack}(0, y, z)=y+z ;$
$\operatorname{ack}(1, y, z)=y \times z ;$
$\operatorname{ack}(2, y, z)=y^{\wedge} z$;
$\operatorname{ack}(3, y, z)=h y p e r(y, 4, z+1)$.

Hyper operator

- Buck(1963): recursively define an infix triadic operator
$\operatorname{ack}-b(x, y)= \begin{cases}y+1 & \text { for } x=0, \\ 2 & \text { for } x=1, y=0, \\ 0 & \text { for } x=2, y=0, \\ 1 & \text { for } x>2, y=0, \\ \text { ack }-b(x-1, \operatorname{ack}-b(x, y-1)) & \text { for } x, y>0 .\end{cases}$
- Analysis: ack-b(0,y)=hyper(2,0,y)=y+1; (Successor function) ack-b $(1, y)=$ hyper $(2,1, y)=2+y$; (Summation) ack-b($2, y$) $=$ hyper $(2,2, y)=2 \times y$; (multiplication) ack-b($3, y$) $=$ hyper $(2,3, y)=2^{\wedge} y$; (exponentiation) ack-b(4,y) $=$ hyper $(2,4, y)=y 2$; (superpower, power towers)

Rósza Péter(1935), Raphael M. Robins(1948)

for $\mathrm{a}=0$,
for $a>0, b=0$, for $a, b>0$.

- Analysis:
ack-p(0,b)=b+1;
ack-p(1,b) $=2+(b+3)-3$; ack-p(2,b) $=2 \times(b+3)-3$; ack-p(3,b)=2^(b+3)-3=(2 $\uparrow(b+3))-3=h y p e r(2,3, b+3)-3 ;$ ack-p(4,b) $=(2 \uparrow \uparrow(b+3))-3=$ hyper $(2,4, b+3)-3$; ack-p(a,b)=hyper(2,a,b+3)-3.

Values of $A(m, n)$ (Rósza Péter version)

$a \backslash b$	0	1	2	3	4
0	1	2	3	4	5
1	2	3	4	5	6
2	3	5	7	9	11
3	5	13	29	61	125
4	13	65533	$2^{65536}-3$	$2^{2^{65536}}-3$	$\mathrm{~A}(3, \mathrm{~A}(4,3))$

Computing the value of Ackermann function:

Example (Rósza Péter version)

```
- A(4,3)=A(3,A(4,2))
    =A(3,A(3,A(4,1)))} b decrease
    =A(3,A(3,A(4,0)))
    =A(3,A(3,A(3,1)))\leftarrowa decrease
    =..
    =A(3,A(3,A(3,13))
    = =̈(3,A(3,65533))
    =..
    =A(3, 265536-3)
```


Ackermann is total computable

functions

- $A(0 ; y)=y+1$ $A(x+1 ; 0)=A(x ; 1)$ $A(x+1 ; y+1)=A(x ; A(x+1 ; y))$
- Define the lexicographical order on $\mathrm{N} \times \mathrm{N}$ as follows:
$(x ; y)>(x 0 ; y 0)$ iff $x>x 0$ or $(x=x 0$ and $y>y 0)$:
a well-ordering of order type ω^{2}
- The clauses (2) and (3) lead to lexicographically smaller arguments; this cannot go on forever, so A must finally halt.

Ackermann is not primitive

recursive

Theorem: The Ackermann function dominates every primitive recursive function in the sense that there is a k such that

$$
f(x)<A(k, \Sigma x)
$$

Where f is a primitive function, $\Sigma \mathrm{x}$ is the sum of all the components of x.

Sketch of proof:
One can argue by induction on the buildup of f. Deal with the atomic functions and then show that the property is preserved during an application of composition and primitive recursion.

- So in particular, A is not primitive recursive.

Applications

- Inverse Ackermann function (extremely slowgrowing function)
$\alpha(m, n)=\min \left\{i \geq 1, A(i,[m / n]) \geq \log _{2} n\right\}$
For all practical purposes: $\alpha(m, n)$ can be regarded as being a constant, less than 5 . In the time complexity of some algorithm: Union-Find problem: $O(\alpha(m, n)+n))$,
- Use as Benchmark: Compliers' ability to optimize recursion.

Reference

- Ackermann function:
http://en.wikipedia.org/wiki/Ackerman_function
- Hyper operator:
http://en.wikipedia.org/wiki/Hyper_operator
- Versions of Ackermann's Function:
http://www.mrob.com/pub/math/In-2deep.htm|
- A. Garrido. Primitive Recurison and μ-Recursivity. Journal of Numerical Analysis, Industrial and Applied Mathematics (JNAIAM), vol.1,no.3,pp.273-280, 2006.
- B. Nordstrom. Primitive Recursive Functions. Models of Computation, Chalmers and University of Goteborg, 2005.
- K. Sutner. Primitive and General Recursive Functions. Presentation, Carnegie Mellon University, 2006.
- R.Seidel. Understanding the inverse Ackermann function. EWCG 2006, Delphi, March 27-29, 2006.

