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History

 The  belief in the early 1900s: every computable function was 
also primitive recursive 

 A strict subset of the recursive functions: every primitive 
recursive function is total recursive, but not all total recursive 
functions are primitive recursive.

 Well known Counterexample: David Hibert(On the Infinite), 
Gabriel Sudan, Wihelm Ackermann(1928)

Partial Recursive Functions

General Recursive Functions

Primitive Recursive Functions



  

Basic conceptions 
 Recursive function theory: one way to 

make formal and precise the intuitive, 
informal, and imprecise notion of an 
effective method. 

 Church's thesis: every function that is 
effectively computable in the intuitive 

sense is computable in these formal ways. 



  

Inductive Definition of Primitive 
Recursive Functions

 The initial functions: The zero function, 
the successor function, and all 
projection functions.

 Functions which arise by composition 
and primitive recursion from primitive 
recursive functions.

 In the programming language: it has FOR-
loops as the only iterative control 
structure.



  

Recursive Function
 Algorithms can be written in the form of 

WHILE-Loop.
 Technically, add a construct operation 

called minimization which does 
something equivalent. 
Unbounded search: If we say that g(x) is a function that 
computes the least x such that f(x) = 0, then we know that g is 
computable. We will say that g is produced from f by 

minimization. 



  

  Ackermann's Function
 Ackermann originally considered a function of three 

variables A(m,n,p) =m np (Conway chained 
arrow notation).

 Hyper operators: a variant of Ackermann function  
For the successive operators beyond 
exponentiation.
 hyper(a,n,b)= a↑ (n-2) b (knuth’s up-arrownotation)
                    =ab(n-2).





Ackermann proved that A is computable and not a 
primitive recursive function.



  

 Different Versions of 
Ackermann’s function

 Van Heijenoort(1928)
                        y+z                                 for x=0,

                             0                                   for x=1,z=0,
ack(x,y,z)=      1                                   for x=2,z=0,
                             y                                   for x>2, z=0,
                            ack(x-1,y,ack(x,y,z-1)       for x,z>0.

 Analysis:       ack(0,y,z)=y+z;  
                       ack(1,y,z)=y×z;
                       ack(2,y,z)=y^z;
                       ack(3,y,z)=hyper(y,4,z+1).



  

Hyper operator

 Buck(1963): recursively define an infix triadic operator
                       y+1                                         for x=0, 

                              2                                             for x=1, y=0,
ack-b(x,y)=    0                                              for x=2, y=0,
                              1                                             for x>2, y=0,
                            ack-b(x-1, ack-b(x,y-1))              for x,y>0.

 Analysis:  ack-b(0,y)= hyper(2,0,y)=y+1; (Successor function)
                   ack-b(1,y)= hyper(2,1,y)=2+y; (Summation)
                   ack-b(2,y)= hyper (2,2,y)=2×y; (multiplication)
                 ack-b(3,y)=hyper(2,3,y)=2^y; (exponentiation)
                 ack-b(4,y)= hyper( 2,4,y)=y2; (superpower, power towers) 



  

 Rόsza Péter(1935), Raphael M. Robins(1948)


                               b+1                                 for a=0,
ack-p(a,b)=   ack-p(a-1,1)                      for a>0,b=0, 
                            ack(a-1, ack-p(a,b-1)         for a,b>0.

 Analysis:   
ack-p(0,b)=b+1;
ack-p(1,b)=2+(b+3)-3;
ack-p(2,b)=2×(b+3)-3;
ack-p(3,b)=2^ (b+3)-3=(2↑ (b+3))-3 =hyper(2,3,b+3)-3;
ack-p(4,b)=(2 ↑↑ (b+3))-3=hyper(2,4,b+3)-3;
ack-p(a,b)=hyper(2,a,b+3)-3.



  

Values of A(m,n) (Rόsza Péter version)

A(3,A(4,3))2265536
-3265536-365533134

12561291353

1197532

654321

543210

43210a\b



  

Computing the value of Ackermann function: 

Example (Rόsza Péter version) 
 A(4,3)=A(3,A(4,2)) 

     =A(3,A(3,A(4,1)))    b decrease 
     =A(3,A(3,A(4,0)))
     =A(3,A(3,A(3,1)))    a decrease
     =…
     =A(3,A(3,A(3,13))
     =…
     =A(3, A(3, 65533))
     =…
     =A(3, 265536-3)
     =…
     =2265536

≈ 10 10 19727.78



  

Ackermann is total computable 
functions 
 A(0; y) = y + 1                                      (1) 

A(x + 1; 0) = A(x; 1)                              (2) 
A(x + 1; y + 1) = A(x;A(x + 1; y))           (3)

 Define the lexicographical order on 
N×N as follows: 

(x; y) > (x0; y0) iff x > x0 or (x = x0 and y > y0):

a well-ordering of order type ω2

 The clauses (2) and (3) lead to 
lexicographically smaller arguments; this 
cannot go on forever, so A must finally 
halt.



  

Ackermann is not primitive 
recursive

 Theorem: The Ackermann function dominates every 
primitive recursive function in the sense that there is a k 
such that 
          f(x) < A(k, ∑ x),
Where f is a primitive function, ∑ x is the sum of all the components 
of x.

Sketch of proof: 
One can argue by induction on the buildup of f. 
Deal with the atomic functions and then show that the 
property is preserved during an application of composition 
and primitive recursion. 

 So in particular, A is not primitive recursive.



  

Applications
 Inverse Ackermann function (extremely slow-

growing function) 
α(m,n)=min {i ≥ 1, A (i, [m/n]) ≥ log2n} 

For all practical purposes: α(m,n) can be regarded 
as being a constant, less than 5. 
In the time complexity of some algorithm:
 Union-Find problem: O(α(m,n)+n)),

 Use as Benchmark: Compliers’ ability to optimize 
recursion.
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