Presented by: Margareta Ackerman

Kruskal's Tree Theorem

Given an infinite set of trees, one of the trees in the set is topologically contained in another tree in the set.

Quasi Order

 (S, \leq) where S is a set and \leq is a relation, such that (1) If $a \leq b$ and $b \leq c$ then $a \leq c$ (transitivity) (2) $a \leq a \forall a \in S$ (reflexivity)

Antichain

A set $\{a_1, a_2, a_3, ..\} \subseteq S$ of incomparable elements.

Example

Consider the set $\mathbb{Z} \times \mathbb{Z}$. Let $(a_i, b_i) \leq (a_j, b_j)$ iff $a_i \leq a_j$ and $b_i \leq b_j$.

The set contains the antichain $(1, -1), (2, -2), (3, -3), \dots$

Bad Sequence

A sequence $(a_1, a_2, a_3, ...)$ such that $a_i \not\leq a_j$ whenever i < j

ex. In (\mathbb{Z}, \leq), the sequence -1, -2, -3, ...

Well Quasi Order

A quasi order (S, \leq) such that there is no infinite bad sequence in S.

i.e. For every infinite sequence $(a_1, a_2, a_3, ...) \exists i < j$ such that $a_i \leq a_j$

Lemma 1

Given a quasi order (S, \leq) containing an infinite sequence (a_1, a_2, a_3, \ldots) , either

(1) $(a_1, a_2, a_3, ...)$ contains an infinite bad sequence, or

(2) $(a_1, a_2, a_3, ...)$ contains an infinite increasing sequence (need not be strict)

proof

• Let N be the subsequence of all elements

 $a_i \in (a_1, a_2, a_3, \ldots)$ such that $a_i \not\leq a_j \ \forall j > i$.

• Assume that $(a_1, a_2, a_3, ...)$ does not contain an infinite bad chain. Then N is finite.

• Let a_k be the last element in N. Then a_{k+1} is a start of an infinite increasing sequence.

Example

Consider the quasi order $(\mathbb{Z}_+ \times \mathbb{Z}_+, \leq)$. Is it well quasi ordered?

Yes.

• Consider a sequence $(a_1, b_1), (a_2, b_2), (a_3, b_3), \dots$ Since $a_1 \in \mathbb{Z}_+, a_1, a_2, a_3, \dots$ cannot contain an infinite bad sequence.

• Let $a_{\alpha_1}, a_{\alpha_2}, a_{\alpha_3}, \dots$ be an infinite increasing subsequence.

- By a similar argument, $b_{\alpha_1}, b_{\alpha_2}, b_{\alpha_3}, \dots$ must contain an infinite increasing subsequence $b_{\beta_1}, b_{\beta_2}, b_{\beta_3}, \dots$
- Therefore, $(a_{\beta_1}, b_{\beta_1}), (a_{\beta_2}, b_{\beta_2}), (a_{\beta_3}, b_{\beta_3}), \dots$ is an infinite increasing sequence.

Therefore, $(\mathbb{Z}_+ \times \mathbb{Z}_+, \leq)$ is well quasi ordered.

Higman's Theorem

Given the quasi order (S, \leq) , define $(L(S), \leq)$ where L(S) is the set of all lists in S, and

 $[s_1, s_2, s_3] \le [t_1, t_2, t_3, t_4, t_5]$

If (S, \leq) is a well quasi order, then $(L(S), \leq)$ is a well quasi order.

Theorem

Let $(T_1, T_2, T_3, ...)$ be an infinite sequence of **rooted** cubic trees. Then T_i is a topological minor of T_j for some i < j.

i.e. Rooted cubic trees are well quasi ordered under taking topological minors.

Proof

Suppose $A = (T_1, T_2, T_3, ...)$ is an infinite bad sequence of cubic trees chosen such that $(|T_1|, |T_2|, |T_3|, ...)$ is lexicographically minimal.

Define T_i^L and T_i^R .

Claim

 $(\{T_i^L : i \in [1,\infty)\}, \leq)$ and $(\{T_i^R : i \in [1,\infty)\}, \leq)$ are well quasi ordered.

subproof

• Assume $A^L = (T^L_{\alpha_1}, T^L_{\alpha_2}, T^L_{\alpha_3}, ...)$ is a bad sequence.

We may assume that $\alpha_1 < \alpha_2 < \alpha_3 < \dots$

• Let $B = (T_1, T_2, T_3, ..., T_{\alpha_1-1}, T_{\alpha_1}^L, T_{\alpha_2}^L, T_{\alpha_3}^L, ...)$. Since $|T_{\alpha_1}^L| < |T_{\alpha_1}|$, B is lexicographically smaller than A. Therefore, B is not a bad sequence.

• Since A and A^L are bad sequences, $T_i \leq T_j^L$ for some *i*. But $T_j^L \leq T_j$. Then $T_i \leq T_j$ for i < j. A contradiction.

By the same argument, $(\{T_i^R : i \in [1,\infty)\}, \leq)$ is well quasi ordered.

Therefore, \exists a sequence $(T_{\beta_1}, T_{\beta_2}, T_{\beta_3}, ...)$ such that (1) $T_{\beta_1}^L \leq T_{\beta_2}^L \leq T_{\beta_3}^L \leq ...$, and (2) $T_{\beta_1}^R \leq T_{\beta_2}^R \leq T_{\beta_3}^R \leq ...$

Thus, $T_{\beta_1} \leq T_{\beta_2}$.

Q.E.D.

Kruskal's Tree Theorem

Rooted trees are well quasi ordered under topological minors.

Proof

For each tree T_i , define $T_i^1, T_i^2, T_i^3, ..., T_i^{n_i}$

• Let $S = \bigcup_{i=0} (\bigcup_{j=0}^{n_i} T_i^j)$

• By the construction of a minimal lexicographical bad sequence, we show that S is w.q.o.

- By Higman's theorem, L(S) is well quasi ordered.
- In particular, $[T_1^1, T_1^2, ... T_1^{n_1}], [T_2^1, T_2^2, ... T_2^{n_2}], ...$

contains an infinite increasing sequence.

Q.E.D.

Generalizations

• Graphs are not well quasi ordered under topological minors.

• Graphs are well quasi ordered under minors (Robertson & Seymour).