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1 To begin at the beginning. ..

We study formal logic as a mathematical tool for reasoning and as a medium for
knowledge representation. The central notion is that of a consequence relation
defined over a formal language of some kind. This is intended to capture the
intuitive concept of valid inference or entailment, at least in that it provides a
catalogue of valid argument forms.

1.1 Consequence relations

At the most abstract level, we do not say what is in the language, except that it
is a set of objects which we may call sentences or, more neutrally, formulae. A
set of formulae (assumptions or premises) entails a single formula (conclusion)
if there is no way all of the premises could hold without the conclusion holding
as well. The relation of entailment, which we shall symbolise with a “turnstile”
(F), is a consequence relation in the technical sense if and only if it satisfies
three conditions. For all sets I'; A and for all formulae A, B:

1. f AeT then '+ A.
2. fT'F Aand I' C A then A F A.
3. T F A for every Ain A, and A+ B, then I' + B.

Condition 1 is an identity postulate: in asking whether a conclusion follows from
assumptions, or whether a query succeeds from a database, the answer is yes if
the conclusion is one of the assumptions, or if the query is already explicitly in
the database. Condition 2 imposes a requirement of monotonicity, also known
as weakening: for the query to succeed, it is OK to use only as much of the
database as is needed. Condition 3, called cut in the literature of logic, is a
kind of transitivity: if the lemmas follow from the axioms and the theorem from
the lemmas, that’s enough for a proof of the theorem from the axioms.

1.2 First order language

To make things a little more concrete, we now consider the standard first order
logic or [lower] predicate calculus. For this, we suppose we have denumerably
many variables 1 ...z, ... and also function symbols f' and predicate symbols
P for every arity n > 0. As usual, we call nullary functions constants, and
nullary predicate symbols propositional symbols. We also have one special binary



predicate ‘=" called identity, whose specialness will only matter when we define
models. A term is either a variable or an n-ary function symbol followed by n
terms. An atomic formula is an n-ary predicate symbol followed by n terms.
To these we apply the connectives =, A, v and — and quantifiers Vo; and Jx;
binding variable x;. A variable is free in a formula if it is not inside the scope
of any quantifier binding it. Term ¢ is free for variable x in formula A iff z does
not occur free in A inside the scope of a quantifier binding a variable which
occurs in t. The propositional constants T and L (true and false) are available
as nullary connectives (taking no arguments and returning a sentence).

We allow ourselves some freedom of formal vocabulary, dropping subscripts
and superscripts as much as is reasonable, writing certain binary function and
predicate symbols between arguments and not in front of them, using ‘y’ and
‘2" as ways of spelling variables such as x; and z;, and applying parentheses in
the obvious way. Thus we can get away with writing x + (y - z) = t rather than
=2 +2 Zo 2 XoL13Ts.

We use upper case A, B, etc as metalinguistic variables over formulae and
T', A, etc to stand for sets of formulae. We write, for example, I', A, B instead
of TU{A,B} in order to reduce clutter. When we want to indicate that a
sequent is provable in some proof system we write it with a single ‘turnstile’

F , subscripting with the name of the system if ambiguity is possible. To say
that the sequent is valid in some semantics we sometimes use a double turnstile
= in place of the single one.

1.3 Interpretations, models and satisfaction

An interpretation Z of the propositional fragment (with only nullary predicate
symbols and no terms or quantifiers) is a function assigning to each propositional
symbol one of two values. These might as well be 0 and 1, so let us fix them as
such. 7 induces a notion of truth: P is true for 7 iff Z(P) = 1. —A is true for
T iff A is false (not true) for Z. A A B is true for 7 iff both conjuncts are, and
similarly for the other connectives according to their truth tables. Z is a model
of T iff A is true for Z for all A € T. T' | A iff A is true for every model of T
More generally (though we shall not make much of this generalisation) we may
say that for sets I' and A, T' = A iff for every model of T' at least one formula
in A is true.

Interpretations of the full first order language have to be more elaborate
because the language is so much richer. An interpretation consists of a nonempty
set D called the domain or universe and an interpretation function Z which
assigns to each f™ a total function from D™ into D and to each predicate symbol
P™ an n-ary relation over D (that is, a subset of D™).! The identity predicate
is always interpreted as the diagonal relation over D—that is, the relation that
every object bears to itself and to nothing else. A valuation over domain D
is a function v assigning to each variable z a member of D. In terms of this,
we can define denotation d. For variable x, 6(z) = v(x). For compound terms,
O0(ft1.. . tn) =Z(f)(0(t1)...d(¢tn)). We say that an interpretation and valuation
satisfies atomic Pty ... t, iff (0(t1)...d(tn)) € Z(P). Satisfaction extends in the

1First order interpretations extend propositional ones because DP is the set of all functions
from @ to D and the empty function is a function (that is, empty set satisfies set-theoretical
definition of function); therefore D° = {(} and this has exactly two subsets: § and {0}, that
is 0 and 1.



obvious way to compounds built by applying connectives: e.g. an interpretation
satisfies A— B iff either it satisfies B or it does not satisfy A. For quantifiers
we need the notion of an z-variant of valuation v, which is simply a valuation
w such that for all y other than z, v(y) = w(y). Then Vx A is satisfied by v iff
A is satisfied by all xz-variants of v, and similarly 3z A is satisfied by v if A is
satisfied by some z-variant of v. A is true for Z iff it is satisfied by all valuations
under Z. Z is a model of I iff every formula in I is true for Z. I" = A iff every
valuation under every interpretation which satisfies every formula in I' satisfies
A. Again, this definition generalises to the multiple conclusion case: T' = A
iff every valuation under every interpretation which satisfies every formula in I"
satisfies at least one formula in A.

1.4 Exercise
Show that the following are true:

1. | is a consequence relation.

[\

.I'EAABUfITEAandT | B.

3. TE-AffT Al L.

4. TEA-BIfIT,AE B.

5. If T' = L then I' = A for every formula A.

6. If A contains no free variables and A is satisfied by a valuation v under
interpretation Z, then A is true for 7.

7. If x does not occur free in any formula in I', then I' = V2 A Hf T’ = A.
8. Vz(Av B) = (VzA) v (3zB).
9. Ve(A—B),3z(A A C) = Jz(B A C).

10. Jz(Fz—VyF'y) is true for every interpretation.

11. Not every satisfiable formula has a model.

12. Not every formula that has a model has one in which the domain is finite.



2 Deduction and proof

The semantic definition of logical entailment is fine as an account of what validity
means in the abstract, but it does not provide a calculus for establishing good
arguments and it does not directly connect with the process of reasoning. An
alternative approach is needed, in which the focus will be on inference rather
than on truth. We begin with the notion of a derivation.

A derivation of a formula B from a set of formulae I' is, at its simplest, a
finite sequence of formulae Aq,..., A, such that:

1. The last formula in the sequence, A,, is B;
2. Every formula A; in the sequence is either

(a) a member of T, or
(b) an axiom of logic, or

(c¢) an immediate consequence of some formulae in {A;,..., A;_1}.

In order to make sense of this definition, we need two further ones: we need to

know what are the “axioms of logic” and what is “immediate consequence”.
As axioms of first order logic, we take all instances of the following formula

schemata. For all formulae A, B, C, and all variables x and terms ¢:

1. A»(B—A)
2. (A=(B=C))=((A=B)—=(A=0))
(~A—=B)— (B A)

- W

Vo A— Al where t is free for z in A
5. A—VxA where z is not free in A
6. YVo(A—B)— (VzA—VxB)

7. VxA where A is an axiom of logic

We take the quantifier Vo to bind more tightly (have smaller scope) than the
connective —, so for instance axiom 4 should be read (VzA)—AL. By Al we
mean the result of substituting term ¢ for all free occurrences of the variable
z in the formula A. By saying “t is free for x in A” we mean that x does not
occur free in A inside the scope of a quantifier binding any variable that occurs
in ¢. The idea is that by substituting ¢ for  we should not create any bindings
that were not there before.

The above axioms use only implication, negation and the universal quantifier.
We take all of the other connectives and the existential quantifier to be given
by definition, so A v B is short for “A— B, for instance, and 3z A is just short
for ~Vx—A.

The definition of immediate consequence is extremely simple: B is an im-
mediate consequence of A— B and A. This is the rule known as detachment, or
modus ponens.



2.1 The deduction theorem

The axiomatic presentation of logic, as what is known as a Hilbert system or a
Frege system,? is quite useful for establishing results about logic, because it is
easy to run inductions on the length of derivations, but it is hard to use as a
way of discovering proofs in logic itself. To make it somewhat easier to handle,
a key move is to establish the following theorem linking the arrow of implication
to the turnstile of deducability:

Theorem 1 (Deduction Theorem) For any set of formulae T' and formulae
A and B
r-A—B iff A+ B

Proof: Left to right: trivial. Right to left, induction on the length of the
shortest derivation of B from I', A. For derivations of length 1, either B is in I"
or B is an axiom of logic or B = A. If B is in I" or is an axiom of logic, A— B
follows from it and the instance B—(A— B) of axiom 1. If B = A then A—B
is just A— A, which follows from any T' (proof given in the lecture).

For derivations of length greater than 1, B must come from some C and
C— B by a step of immediate consequence, and as an induction hypothesis
we may suppose we have I' H A—(C—B) and I'  A—C. But then we get
I' M A—B by appeal to the instance (A—(C—B))—((A—C)—(A—DB)) of
axiom 2 and two steps of immediate consequence. O

2.2 Exercise

Appealing to the deduction theorem as necessary, show:
1. F is a consequence relation.

2. A-B,B—C + A—-C.

3. A,-AF+ B.

4. -—A F A

5. A F ——A.

6. A=B F -B—-A.

7. A-»—~(B—B) F -A.

8. A—B,A—-B F —A.

9. If  does not occur free in "' and I' = A then I' - Vz A.

10. Vz(Fx—Gz),Vo(Gx—Hzx) - Va(Fr— Hx)
11. V2(A—B) + A—VzB if z does not occur free in A.
12. Vo (Gx—Gfz) b Ga—3xGffx

2 After David Hilbert and Gottlob Frege who used this style of logical theory early in the
development of modern logic.



2.3 Natural deduction

One of the practically most convenient deductive systems is called Natural De-
duction (ND). It is based on a set of inference rules which naturally reflect the
logical meaning of the propositional connectives and provide a well-structured
way of formal reasoning, which closely resembles a good and correct informal
argumentation.

ND has no axioms, but several inference rules, including a pair of rules for
each logical connective: an introduction rule, which produces a conclusion
containing that connective as the main one, and an elimination rule, in which
the connective occurs as the main connective of a premise. The rules are listed
on page 7. Note that, since =A = A — 1, the rules for — can be regarded as
particular cases of the corresponding rules for — . Also, there are two additional
rules: (1) and (RA) which will be discussed further.

The derivation in ND consists of successive application of the inference rules,
using as premisses the initial assumptions or already derived formulae, as well
as additional assumptions which can be added at any step of the derivation.
Some of the rules allow for cancellation (or, discharge) of assumptions,
which is indicated by putting them in square brackets. The idea of the addi-
tional assumptions is that they only play an auxiliary role in the derivation,
and when not needed anymore they are cancelled, but only at an application of
an appropriate rule which allows such cancellation. Note that the cancellation
of an assumption, when the rule allows it, is a right, but not an obligation, so
an assumption can be re-used several times before being cancelled. However,
all assumptions which have not been cancelled during the derivation must be
declared in the list of assumption from which the conclusion is proved to be a
logical consequence. Therefore, if we want to prove that a formula C' is a logical
consequence from a set of assumptions I', then any assumption which is not in
T" must be cancelled during the derivation.

Formally, the definition of a derivation given above in the section on Hilbert
systems can be contracted a little since the reference to “axioms of logic” can
be removed, but then it must be re-expanded to allow formulae that are can-
celled by subsequent rule applications, and of course the notion of “immediate
consequence” must be extended to cover all of the natural deduction rules.

It turns out that, with appropriate definitions to take care of connectives
and quantifiers that are not primitive operations for the axiom system, and
with an extra axiom scheme | — A to provide for L as an extra primitive, the
same sequents are provable by natural deduction as are derivable in the Hilbert
system.

2.4 Exercise

Prove the last assertion above. This is the longest exercise in these notes and
requires you to go through many cases, but it is useful for making sure you
thoroughly understand the deductive systems.



2.5 ND rules for the propositional connectives

(The vertical dots below indicate derivations.)

Introduction rules: Elimination rules:
A B ANB ANB
W) — g (AE) i B
[A]  [B]
M AV B C C
B
V) VB AVEB (VE) o
[4]
B A A—B
S =B —F
[A]
1 A, A
S (-B)
[—A]
1 1
(L) e (RA) 1

Here is a brief justification of each of the rules:

(AI) To prove the truth of a conjunction A A B, we have to prove the truth of
each of A and B.

(AE) The truth of a conjunction AAB, implies the truth of each of the conjuncts.
(VI) The truth of a disjunction AV B follows from the truth of either disjunct.

(VE) If the premise is a disjunction AV B, we reason per cases, i.e. we consider
separately each of the two possible cases for that disjunction to be true:
Case 1: A is true, and Case 2: B is true. If we succeed to prove that in
each of these cases the conclusion C' follows, then we have a proof that C
follows from AV B.

(— I) To prove the truth of an implication A — B, we assume (in addition to
all other premises) that the antecedent A is true and try to prove that the
consequent B is true.



(— E) This is the Detachment rule (Modus Ponens) which we have already dis-
cussed.

(=I) To prove a negation —A we can assume A and show that it leads to a
contradiction.

(=E) The falsum follows from any contradiction.

(L) “Ez falso sequitur quodlibet”: from a false assumption anything can be
derived.

(RA) This rule ‘Reductio ad absurdum’ formalizes the method of proof by
contradiction: if A can’t fail (the assumption —A leads to a contradiction)
then A must be true.

2.6 Rules for the quantifiers

Introduction rules: Elimination rules:
. AS . Vox A
VD" A N
[Ag]
@)™ 4 CET

* where ¢ is a constant symbol, not occurring in A, nor in any open assumption
used in the derivation of A.

** for any term ¢ free for x in A.

*** where ¢ is a constant symbol, not occurring in A, nor in C or in any open

assumption in the derivation of C' except for AS.

A brief discussion of these rules:

(VI) : What is true of an arbitrary thing is true of everything.

(31I) : To prove an existentially quantified sentence Iz A(x), try to find an explicit
example ¢ such that A(c).

(VE) : What is true in general (true of everything) is true of each particular thing,
including whatever is denoted by t.

(3F) : An existentially quantified sentence JxA(x) tells us that there is such a
thing as an A. We then say “let’s pick one and call it ¢.” Whatever
follows, provided it does not depend on the choice of the name ¢, follows
from the existential premise.



3 Soundness and completeness

Here we will give the relevant formal definitions and will outline a generic proof
of soundness and completeness for an arbitrary deductive system D, which
can be applied to any of those studied here (the Hilbert system, the natural
deduction system of the sequent calculus formulation of first order logic). As
noted, these deductive systems are all equivalent in any case.

Hereafter, by theory we mean any set of formulae in the propositional case,
or sentences (formulae with no free variables) in the case of first-order logic.

3.1 Soundness and completeness for propositional calculi

We begin with an outline of the completeness proof for propositional deductive
systems, but all that follows applies likewise to first-order logic, unless otherwise
specified. Note that the deductive power of D is needed to prove most of the
claims below.

1. Soundness and consistency.

Definition (Soundness1) A deductive system D is sound if for every the-
ory I' and a formula A,

I'Fp A implies T = A.

Definition (Deductive consistency) A theory I is consistent in D (or just,
D-consistent) if there is no formula A such that I' Fp A and ' Fp —A.
Otherwise, I' is D-inconsistent.

Definition (Soundness2) A deductive system D is sound if every satisfi-
able theory I' is D-consistent.

The two definitions of soundness are equivalent (exercise).

Definition (Completeness1) A deductive system D is complete if for every
theory I" and a formula A,

I' = A implies T Fp A.

Definition (Completeness2) A deductive system D is complete if for every
theory T, if T is consistent then I' is satisfiable.

Again, the two definitions of completeness are equivalent (exercise).
Theorem 2 (Soundness of D) The deductive system D is sound.

To prove soundness, say for the Hilbert system, we show that all of the
axioms are true for every interpretation and that the rule of inference
(immediate consequence) preserves satisfaction. This is all routine, if a
little tedious. Soundness then follows by an easy induction on the lengths
of shortest derivations. Since the Hilbert system is sound and the other
deductive systems are equivalent to it, they are sound as well.

Hereafter, ‘(in)consistent’ will mean D-(in)consistent. Note well that con-
sistency in the deductive sense has to do withg derivation systems only:
it is not a semantic notion.



. Some properties of deductive consequence and consistency.

(a) T U{B} is consistent iff I i/p —B.

(b) T kp B iff T U{—B} is inconsistent.

(¢) If T U {B} is inconsistent and I' U {-~B} is inconsistent then I is
inconsistent.

. Mazimal consistent theories.

A consistent theory I' is maximal if it cannot be extended to a larger
consistent theory.

Proposition 3 FEvery mazimal consistent theory is closed under deductive
consequence in D.

This is an obvious outcome of the admissibility of cut, which holds of
course for all of the deductive systems we consider.

. Some properties of mazrimal consistent theories.

Lemma 4 A theory I' is a maximal consistent theory iff it is deductively
closed in D and for every formula A, T'Fp A or I' Fp —A.

Theorem 5 For every maximal consistent theory I' and formulae A, B
the following hold:

(a) "AeT iff A¢T.

(b)) ANBeT iff AcT and B €T.

(c) AVBeT iff AcT or BeT.

(d) A—-BeTl iff AeT implies BeT (i.e. A¢T or BeT).

. Lindenbaum’s Lemma.

Lemma 6 (Lindenbaum’s Lemma) Every consistent theory T' can be
extended to a maximal consistent theory.

There are several ways to prove Lindenbaum’s lemma. We do it by con-
structing the maximal consistent theory incrementally, starting with the
empty set, considering each formula in turn and adding it to the set if
it, together with I" and the set so far, is consistent. The key observation
is that this big set is consistent because any derivation of a contradic-
tion from it, being finite, could only involve finitely many of its members
and so would be a derivation from one of its finite subsets—which cannot
happen, by construction.

. Truth lemma for propositional theories.
Given a propositional theory I', consider the following truth-assignment:

_f T, ifpel,
Sr(p) = { F, otherwise.

for every propositional variable p.

10



Lemma 7 (Truth Lemma) If T' is a mazimal propositional consistent
theory, then for every formula A, Sr(A) =T iff A€ T.

7. Completeness for propositional deductive systems.
Corollary 8 FEvery maximal consistent theory is satisfiable.

Theorem 9 (Completeness of D) The deductive system D is complete.

3.2 Completeness of first-order logic

Now we will establish the main result of this short course: the completeness of
any of the deductive systems for first-order logic introduced here. Again, we
denote by D any of these deductive systems, and fix it hereafter.

The proof builds on the completeness of the propositional fragment of D,
but requires extra work because instead of a satisfying valuation, we now have
to build a whole structure (model) for our consistent theory. There is one addi-
tional problem, though: the maximal consistent theory constructed by Linden-
baum’s Lemma may not be ‘rich’ enough to provide all the information needed
for the construction of such model. In particular, it may happen that e.g. a
formula 3z A belongs to the maximal consistent theory, while for every term ¢
in the language, free for z in A, =AY is in that theory, so the theory contains
no ‘witness’ of the truth of 3z A. We resolve that problem with a few extra
technical lemmas, the proofs of which use the deductive power of D.

1. Conservative language extensions.
Lemma 10 (Conservative extensions lemma) IfT' is consistent in a
language L, then it remains consistent when L is extended by the addition

of new function symbols (and, in particular, constants).

2. Constants and variables.

Lemma 11 (Variables lemma) LetT" be a consistent set and let by, ... by, ...

be denumerably many constants not occurring in I'. Let A be the result
of replacing each free occurrence of variable x; in I' by the corresponding
constant b;. Then:

(a) T is consistent iff A is consistent.
(b) T is satisfiable iff A is satisfiable.

3. Henkin witnesses and Henkin extensions of theories.

Lemma 12 (Henkin witnesses lemma) LetT" be consistent in language
L, letby,...,by,,... be denumerably many constants not in L and let L' be

the extension of L obtained by adding those constants. Let 3x1Aq,...,dx, Ay, . ..

be an enumeration of the existentially quantified formulae of L' chosen
such that each b; does not occur in Ax1A1,...,3dx;A;. For each i, let B; be
the formula 3x; A;— A;(b;/x;). Then the theory H(I') = TU{By,...,B,,..
1s consistent in language L.

}

11



The theory H(I') defined above clearly has the property that for every
formula 3zA such that H(T') - 3z A, there is a constant symbol ¢ in the
language of T'#, such that H(I') = AS. A theory with this property is
called a Henkin theory.

. Lindenbaum’s lemma for first-order theories.

Lemma 13 (Lindenbaum’s Lemma) Every consistent first-order the-
ory I' can be extended to a maximal consistent theory I'*. Moreover, if T’
is a Henkin theory, then I'* is a Henkin theory, too.

. Building canonical models from mazimal Henkin theories.

Given a maximal consistent Henkin theory A, we can construct a model
for A by taking as domain the set of ground terms of its language. Then we
interpret that language in a ‘canonical’ way: every ground term designates
itself, and the predicate symbols are interpreted according to what A
dictates. The resulting structure satisfies A.

. Completeness proof completed.

Now, the completeness proof follows immediately: take a consistent the-
ory T'; construct a Henkin theory I' extending I'; then extend I' to
a maximal consistent Henkin theory A, and construct a model for A as
above. That model will, in particular, satisfy I'.

12



The first six books in the following list are suggestions for elementary logic
texts that you might wish to read as background. There is no need to read more
than one of them, as they all cover pretty much the basics.

The other books in the list are treatments of mathematical logic which in-
clude a lot more metatheory than we have been able to cover in this course. If
you intend to go further with mathematical logic, you will need to study one or
more of them.
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