
PROLOG EXTENSIONS BASED ON T A B L E A U CALCULUS

Wolfgang Schonfeld
Heidelberg Science Center

IBM Germany
Tiergartenstr. 15

D-6900 Heidelberg

Abstract

The intention of this paper is to help bridging the gap
between logic programming and theorem proving. It presents
the design of a Gentzen type proof search procedure, based
on classical tableau calculus, for knowledge bases consisting
of arbitrary first order formulas. At each proof search step,
when a new formula is to be chosen from the knowledge
base, the procedure chooses in such a way that the search
space is small. When applied to a Horn clause knowledge
base and an atomic goal, it performs the same proof search
steps as any PROLOG interpreter would do. Hence, PROLOG
can be viewed as a special Gentzen type procedure just as it
is a special (namely, linear input) resolution procedure.

1. Introduction

Problem description. Expert systems are able to draw con
clusions from data they contain. This deductive process can
adopt different forms. There is the tradition of automated
theorem proving, there are the many expert systems working
with a production rule formalism, and there is PROLOG, a
programming language which, at the same time, is a logical
language.

PROLOG has proven very successful though it has some
limitations. One of them is that it only accepts Horn clauses
as rules and atomic formulas as goals. This restriction makes
proof search simple and effective. But some properties cannot
be expressed by Horn clauses, e.g. the linearity of an order
relation. There are application domains where this handicap
is not severe. In the LEX (linguistics and logic based Legal
EXpert system) project at Heidelberg Science Center where
the paper in hand was worked out, we consider the expres
siveness of PROLOG to be too low. Only about 80 % of
the knowledge in legal applications can be formulated. For
the rest, we need negation, disjunction etc.

Existing solutions. Resolution calculus ([Robinson65]) is
able to accept arbitrary first order formulas, even in non-
clausal form if the extensions described in [Murray82] are
used. Some of its defects when applied in its pure form to
proving mathematical theorems are discussed in [Bledsoc77].
Bledsoe points out that heuristics should play an important
role. Another defect is (|Clocksin81], p.221): 'Resolution tells
us how to derive a consequence from two clauses, it does
not tell us either how to decide which clauses to look at next
or which literals to match.'

As compared with resolution based systems, Gentzen type
systems did not yet attract much attention. An important
theoretical article is [Beth59] where the notion of a tableau
is introduced to present a Gentzen type system in a more

natural way. This tableau method has been mainly used to
prove completeness of various logic calculi such as modal
logic [Rautcnberg79]. It has been used to test equivalence of
relational expressions [SagivSl]. And it has drawn some
attention in the legal domain where it is regarded as a natural
formalization of legal reasoning [Hcrbcrgcr80].

To implement tableau calculus as described in [Beth59] is
impossible since it is not invertible [Richter78]. This is because
any Herbrand term can be substituted for the universal vari
ables. It is the idea of Bowen [Bowen82] and (probably in
dependently) of Wrightson [Wrightson84] to use unification
in order to find the necessary substitutions. (TABLOG
[Malachi84] is not based on tableau calculus though its name
might suggest. It uses non-clausal resolution as in [Murray82|.)

Solution proposed in this paper. Regardless which calculus
we use, one problem still remains: In which way should
possible applications of rules be ordered ? This is important
in case of a very large knowledge base. In each state of
proof search, the inference engine can choose among a huge
set of formulas. PROLOG uses a rather simple and efficient
strategy to make this choice: It tries to unify the current
predicate with the head of some rule. The purpose of the
paper in hand is to extend the PROLOG idea to non-Horn
formulas. More precisely, it presents a strategy with the fol
lowing properties:
• It accepts arbitrary formulas of first order predicate logic.
• When given a Horn clause knowledge base and a provable

atomic goal, it finds the same proof in the same way as
any PROLOG interpreter would do.

The paper starts with a (slightly non-traditional) descrip
tion of tableau calculus for single formulas. The next chapter
contains the description of a goal oriented, depth-first strategy
with backtracking, as mentioned above, for propositional for
mulas. How this extends to predicate logic and some further
extensions are described in the final chapter.

An implementation of this procedure is under work. In
stead of mere first order formulas, it will accept so called
discourse representation structures, a modification of predicate
logic to cope with linguistic phenomena.

2. Tableaux for propositional formulas

Tableau calculus as developed in [Beth59] is a formaliza
tion of the search for counterexamples or, equivalently, for
models. Assume e.g. that the formula y =

((-R&-S) |S)&((R&-S) | (-R&S))&-R
is satisfiable. ('&', 'I', ' - ' mean 'and', 'or', 'not' resp.)
Satisfiability can be visualized by drawing a logic diagram.

W. Schonfeld 731

y is satisfiablc if and only if there is a non-contradictory path
through its diagram, i.e. a path containing no complementary
pair of literals.

This method to represent formulas is used in [Bibcl83].
It should be compared with the usual and-or-graphs. Bibel
describes a procedure which directly checks for the existence
of non-contradictory paths. A better way to get an overview
of all paths is to arrange them into a tree.

subpath a branch of the tableau for T is called a tableau
for T if each non-contradictory branch crosses each at
least once. If T is no proof, then it contains at least one
non-contradictory branch. The interpretation determined by
such a branch satisfies each . (since it crosses it). If T
is a proof, then no interpretation can satisfy T. Hence, T is
unsatisfiable if and only if there is a tableau for T which is
a proof.

Choosing the next formula. To make search effective, it
is necessary to keep the tableau as small as possible. First,
no path should cross a formula twice. Second, branches
should be cut off by a complementary pair as soon as pos
sible. For example, a better tableau than Figure 2 on page
3 is

More precisely, we call the smallest tree containing the same
paths as the diagram of y the tree of y. A tableau for y is
a tree for y where any contradictory branch is cut off as
soon as a complementary pair occurs. (In [Beth59], a tableau
docs not only contain literals but also the initial formula as
well as all intermediate steps. Since these steps are 'straight-
forward', it suffices to represent only the final result.) A
proof for the unsatisfiability of y is a tableau for it in which
all branches are contradictory, y is satisfiablc if and only if
its tree is no proof. Hence, any procedure which, given a
formula, generates a tableau and checks whether it is a proof
is correct and complete.

Two literals are linked if they form a complementary pair.
Furthermore, a literal is linked to a formula if it is comple
mentary to some literal in . Suppose that a set T of formulas
contains an element a singled out for some reason, a is called
the goal. Furthermore, suppose that a tableau for T is being
generated, starting with a, and suppose that this process is
now in a state where the tableau of another has to be
appended to a certain non-contradictory branch B.

The idea is to choose a so that at least one of the
resulting branches contains a complementary pair. To this
end, let 8 be the last formula crossed by B, and let be
the restriction of B to , i.e. that subpath of B which is part
of the tableau for _. Furthermore, let C (for 'choices') be
the set of all with the following properties.
1 . i s linked to some literal on
2. is not crossed by B.

C is ordered in a certain way, e.g. by respecting a given order
of r. This is used to organize backtracking. If backtracking
occurs, the subtableau starting with the actually chosen
is removed, and a new subtableau is generated starting with
the next We say that the choice at is altered. Back
tracking means that we go upwards on B up to the next
where such an altering of a choice is possible.

The following gives the whole algorithm, called SEARCH.
1. Start with the.tableau for
2. Mark contradictory paths.
3. If all paths are contradictory, stop with 'succeed'.
4. Otherwise, let B be the leftmost non-contradictory path.
5. Let C be as above.
6. If C is empty, then check whether any choice can be

altered along B.
a. If yes, then backtrack.
b. Otherwise, choose a which is not yet crossed

by B and go to 8. If there is none, then stop with
'fail'.

7. Otherwise, choose a

732 W. Schonfeld

8. Append its tableau to B.
9. Goto 2.

This strategy is again correct and complete. Correctness
follows from the fact that any tableau (found by a strategy
whatsoever) with all branches closed by contradictions is a
correct proof. To see completeness, note that 6.b. guarantees
that all formulas in T are crossed exactly once by each
non-contradictory branch. If it is applied to the above T
with γ3 as a goal, then Figure 3 on page 4 results.

Comparison with PROLOG. It is claimed that algorithm
SEARCH, when applied to propositional Horn clauses, is
very close to PROLOG'S search strategy. Some remarks will
help to understand the claim.

The 8 as considered above corresponds to the current
predicate. C is the set of rules with which this predicate
matches (with the above mentioned exception that matches
leading to loops are avoided). Step 4 means that the first
predicate on the right hand side of a rule is chosen.

One important difference is that SEARCH does never get
into a loop. This comes from the fact that C as defmed above
does not contain any formula crossed previously by branch
B. Such loop checking is essential when definitions of the
form P(x) s a(x) are evaluated. Note what PROLOG inter
preters do when given the data base a<- b,b +~ a.

The main difference comes in with 6.b. PROLOG stops
at this point with 'fail'. SEARCH will in general go on and
eventually generate a satisfying interpretation. This is neces
sary since it may e.g. happen that T contains a contradiction
which cannot be reached from the goal by chaining through
linked formulas. Note that no PROLOG knowledge base can
be inconsistent. Furthermore, note that resolution calculus
captures this situation by working breadth-first.

Predicate logic Suppose T consists of arbitrary predicate
logic formulas. A naive implementation of the tableau calculus
would be to substitute all Herbrand terms for all universal
variables in a fixed order and then to generate a tableau from
the resulting set of variable-free formulas (level saturation).
It is one of the key observations in [Bowen82] and in
[Wrightson84] that only those substitutions need to be per
formed which produce complementary pairs. The combination
of their idea (they do not worry about the propositional case,
e.g. backtracking) with those of this paper is not difficult and
yields a strategy for full first order logic extending PROLOG.

4. Extensions

Our strategy may be refined in many ways. E.g. we could
extend the definition of the choice set C in such a way that
more than one link is taken into account. This would lead
far beyond PROLOG.

Another point to be mentioned is the following. SEARCH
composes tableaux starting with the root. But we might
equally well try to compose them starting from the leaves.
This is nothing else than resolution calculus. Using this
unified view of different proof procedures, the following can
be said.
• Resolution calculus generates a theory, i.e. a deductively

closed set of formulas, and stops when it derives the empty
clause.

• Tableau calculus generates models and stops when all cases
lead to contradiction.

• In the PROLOG case, both calculi coincide since the theory
to be generated consists of atomic formulas only, describing
the 'minimal' model.

• Resolution may make multiple use of the same inference,
of lemmas, and so reduce proof length.

• Tableau calculus may be extended to recognize loops in
the generation of models and so reduce proof search length
[Schonfeld83].

Both proof search approaches formalize different reasoning
principles, and it seems useful to combine them. Mathema
ticians work this way: When given an open problem, they
start by deriving some relevant facts from known theorems
(resolution!). But then, they disbelieve their hypothesis and
try to construct counterexamples (tableau!). They may switch
back to the theorems and so on. I do not claim that their
reasoning principles arc the ultima ratio. But this shows that
a combination of different principles can be useful. (In addi
tion, we should not forget Bledsoe's claim for heuristics.)

To draw a final conclusion from all these considerations
- I believe that tableau calculus is not a substitute for other
calculi, but a useful complement.

References

[Beth59] E.W. Beth, The foundations of mathematics, North-
Holland Pub. Co., Amsterdam 1959,

[Bibel83] W. Bibel, Matings in Matrices, Communications of
the ACM 26(1983), 844-852,

[Bledsoe77] W.W. Bledsoe, Non-resolution theorem proving,
Artificial Intelligence 9(1977), 1-35,

[Bowcn82] K.A. Bowen, Programming with full first order
logic, Machine Intelligence 10(1982), 421-440,

[Clocksin81] W.F. Clocksin, C.S. Mellish, Programming in
Prolog, Springer, New York 1981,

[Herberger 80] M. Herberger, D. Simon, Wissenschaftstheorie
fiir Juristen, Alfred Metzner Verlag, Frankfurt 1980,

[Malachi84] Y. Malachi, Z. Manna, R. Waldingcr, TABLOG:
The deductive-tableau programming language, SRI Tech
nical Note 328 (1984),

|Murray82] N.V. Murray, Completely non-clausal theorem
proving, Artificial Intelligence 18(1982), 67-85,

[Rautcnberg79] W. Rautenberg, Klassische und
nichtklassische Aussagcnlogik, Vieweg 1979,

[Richter78] M.M. Richter, LogikkalkUle, Teubner, Stuttgart
1978,

[Robinson65] J.A. Robinson, A machine-oriented logic based
on the resolution principle, J. ACM 12(1965), 23-41,

[Sagiv81] Y.C. Sagiv, Optimization of queries in relational
databases, UMI Research Press, Ann Arbor 1981,

[Sch6nfeld83] W. Schonfeld, Proof search for unprovable for
mulas, 7th German Workshop on Artif. Int. GWAI-83,
Springer, 1983, 207-215,

[Wrightson84] G. Wrightson, Semantic tableaux, unification,
and links, Technical Report CSD-ANZARP-84-001,
University of Wellington, 1984,

