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Abstract 

The intention of this paper is to help bridging the gap 
between logic programming and theorem proving. It presents 
the design of a Gentzen type proof search procedure, based 
on classical tableau calculus, for knowledge bases consisting 
of arbitrary first order formulas. At each proof search step, 
when a new formula is to be chosen from the knowledge 
base, the procedure chooses in such a way that the search 
space is small. When applied to a Horn clause knowledge 
base and an atomic goal, it performs the same proof search 
steps as any PROLOG interpreter would do. Hence, PROLOG 
can be viewed as a special Gentzen type procedure just as it 
is a special (namely, linear input) resolution procedure. 

1. Introduction 

Problem description. Expert systems are able to draw con
clusions from data they contain. This deductive process can 
adopt different forms. There is the tradition of automated 
theorem proving, there are the many expert systems working 
with a production rule formalism, and there is PROLOG, a 
programming language which, at the same time, is a logical 
language. 

PROLOG has proven very successful though it has some 
limitations. One of them is that it only accepts Horn clauses 
as rules and atomic formulas as goals. This restriction makes 
proof search simple and effective. But some properties cannot 
be expressed by Horn clauses, e.g. the linearity of an order 
relation. There are application domains where this handicap 
is not severe. In the LEX (linguistics and logic based Legal 
EXpert system) project at Heidelberg Science Center where 
the paper in hand was worked out, we consider the expres
siveness of PROLOG to be too low. Only about 80 % of 
the knowledge in legal applications can be formulated. For 
the rest, we need negation, disjunction etc. 

Existing solutions. Resolution calculus ([Robinson65]) is 
able to accept arbitrary first order formulas, even in non-
clausal form if the extensions described in [Murray82] are 
used. Some of its defects when applied in its pure form to 
proving mathematical theorems are discussed in [Bledsoc77]. 
Bledsoe points out that heuristics should play an important 
role. Another defect is (|Clocksin81], p.221): 'Resolution tells 
us how to derive a consequence from two clauses, it does 
not tell us either how to decide which clauses to look at next 
or which literals to match.' 

As compared with resolution based systems, Gentzen type 
systems did not yet attract much attention. An important 
theoretical article is [Beth59] where the notion of a tableau 
is introduced to present a Gentzen type system in a more 

natural way. This tableau method has been mainly used to 
prove completeness of various logic calculi such as modal 
logic [Rautcnberg79]. It has been used to test equivalence of 
relational expressions [SagivSl]. And it has drawn some 
attention in the legal domain where it is regarded as a natural 
formalization of legal reasoning [Hcrbcrgcr80]. 

To implement tableau calculus as described in [Beth59] is 
impossible since it is not invertible [Richter78]. This is because 
any Herbrand term can be substituted for the universal vari
ables. It is the idea of Bowen [Bowen82] and (probably in
dependently) of Wrightson [Wrightson84] to use unification 
in order to find the necessary substitutions. (TABLOG 
[Malachi84] is not based on tableau calculus though its name 
might suggest. It uses non-clausal resolution as in [Murray82|.) 

Solution proposed in this paper. Regardless which calculus 
we use, one problem still remains: In which way should 
possible applications of rules be ordered ? This is important 
in case of a very large knowledge base. In each state of 
proof search, the inference engine can choose among a huge 
set of formulas. PROLOG uses a rather simple and efficient 
strategy to make this choice: It tries to unify the current 
predicate with the head of some rule. The purpose of the 
paper in hand is to extend the PROLOG idea to non-Horn 
formulas. More precisely, it presents a strategy with the fol
lowing properties: 
• It accepts arbitrary formulas of first order predicate logic. 
• When given a Horn clause knowledge base and a provable 

atomic goal, it finds the same proof in the same way as 
any PROLOG interpreter would do. 

The paper starts with a (slightly non-traditional) descrip
tion of tableau calculus for single formulas. The next chapter 
contains the description of a goal oriented, depth-first strategy 
with backtracking, as mentioned above, for propositional for
mulas. How this extends to predicate logic and some further 
extensions are described in the final chapter. 

An implementation of this procedure is under work. In
stead of mere first order formulas, it will accept so called 
discourse representation structures, a modification of predicate 
logic to cope with linguistic phenomena. 

2. Tableaux for propositional formulas 

Tableau calculus as developed in [Beth59] is a formaliza
tion of the search for counterexamples or, equivalently, for 
models. Assume e.g. that the formula y = 

( ( -R&-S) |S)&((R&-S) | ( -R&S))&-R 
is satisfiable. ('&', 'I', ' - ' mean 'and', 'or', 'not' resp.) 
Satisfiability can be visualized by drawing a logic diagram. 
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y is satisfiablc if and only if there is a non-contradictory path 
through its diagram, i.e. a path containing no complementary 
pair of literals. 

This method to represent formulas is used in [Bibcl83]. 
It should be compared with the usual and-or-graphs. Bibel 
describes a procedure which directly checks for the existence 
of non-contradictory paths. A better way to get an overview 
of all paths is to arrange them into a tree. 

subpath a branch of the tableau for T is called a tableau 
for T if each non-contradictory branch crosses each at 
least once. If T is no proof, then it contains at least one 
non-contradictory branch. The interpretation determined by 
such a branch satisfies each . (since it crosses it). If T 
is a proof, then no interpretation can satisfy T. Hence, T is 
unsatisfiable if and only if there is a tableau for T which is 
a proof. 

Choosing the next formula. To make search effective, it 
is necessary to keep the tableau as small as possible. First, 
no path should cross a formula twice. Second, branches 
should be cut off by a complementary pair as soon as pos
sible. For example, a better tableau than Figure 2 on page 
3 is 

More precisely, we call the smallest tree containing the same 
paths as the diagram of y the tree of y. A tableau for y is 
a tree for y where any contradictory branch is cut off as 
soon as a complementary pair occurs. (In [Beth59], a tableau 
docs not only contain literals but also the initial formula as 
well as all intermediate steps. Since these steps are 'straight-
forward', it suffices to represent only the final result.) A 
proof for the unsatisfiability of y is a tableau for it in which 
all branches are contradictory, y is satisfiablc if and only if 
its tree is no proof. Hence, any procedure which, given a 
formula, generates a tableau and checks whether it is a proof 
is correct and complete. 

Two literals are linked if they form a complementary pair. 
Furthermore, a literal is linked to a formula if it is comple
mentary to some literal in . Suppose that a set T of formulas 
contains an element a singled out for some reason, a is called 
the goal. Furthermore, suppose that a tableau for T is being 
generated, starting with a, and suppose that this process is 
now in a state where the tableau of another has to be 
appended to a certain non-contradictory branch B. 

The idea is to choose a so that at least one of the 
resulting branches contains a complementary pair. To this 
end, let 8 be the last formula crossed by B, and let be 
the restriction of B to , i.e. that subpath of B which is part 
of the tableau for _. Furthermore, let C (for 'choices') be 
the set of all with the following properties. 
1 . i s linked to some literal on 
2. is not crossed by B. 

C is ordered in a certain way, e.g. by respecting a given order 
of r. This is used to organize backtracking. If backtracking 
occurs, the subtableau starting with the actually chosen 
is removed, and a new subtableau is generated starting with 
the next We say that the choice at is altered. Back
tracking means that we go upwards on B up to the next 
where such an altering of a choice is possible. 

The following gives the whole algorithm, called SEARCH. 
1. Start with the.tableau for 
2. Mark contradictory paths. 
3. If all paths are contradictory, stop with 'succeed'. 
4. Otherwise, let B be the leftmost non-contradictory path. 
5. Let C be as above. 
6. If C is empty, then check whether any choice can be 

altered along B. 
a. If yes, then backtrack. 
b. Otherwise, choose a which is not yet crossed 

by B and go to 8. If there is none, then stop with 
'fail'. 

7. Otherwise, choose a 
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8. Append its tableau to B. 
9. Goto 2. 

This strategy is again correct and complete. Correctness 
follows from the fact that any tableau (found by a strategy 
whatsoever) with all branches closed by contradictions is a 
correct proof. To see completeness, note that 6.b. guarantees 
that all formulas in T are crossed exactly once by each 
non-contradictory branch. If it is applied to the above T 
with γ3 as a goal, then Figure 3 on page 4 results. 

Comparison with PROLOG. It is claimed that algorithm 
SEARCH, when applied to propositional Horn clauses, is 
very close to PROLOG'S search strategy. Some remarks will 
help to understand the claim. 

The 8 as considered above corresponds to the current 
predicate. C is the set of rules with which this predicate 
matches (with the above mentioned exception that matches 
leading to loops are avoided). Step 4 means that the first 
predicate on the right hand side of a rule is chosen. 

One important difference is that SEARCH does never get 
into a loop. This comes from the fact that C as defmed above 
does not contain any formula crossed previously by branch 
B. Such loop checking is essential when definitions of the 
form P(x) s a(x) are evaluated. Note what PROLOG inter
preters do when given the data base a<- b,b +~ a. 

The main difference comes in with 6.b. PROLOG stops 
at this point with 'fail'. SEARCH will in general go on and 
eventually generate a satisfying interpretation. This is neces
sary since it may e.g. happen that T contains a contradiction 
which cannot be reached from the goal by chaining through 
linked formulas. Note that no PROLOG knowledge base can 
be inconsistent. Furthermore, note that resolution calculus 
captures this situation by working breadth-first. 

Predicate logic Suppose T consists of arbitrary predicate 
logic formulas. A naive implementation of the tableau calculus 
would be to substitute all Herbrand terms for all universal 
variables in a fixed order and then to generate a tableau from 
the resulting set of variable-free formulas (level saturation). 
It is one of the key observations in [Bowen82] and in 
[Wrightson84] that only those substitutions need to be per
formed which produce complementary pairs. The combination 
of their idea (they do not worry about the propositional case, 
e.g. backtracking) with those of this paper is not difficult and 
yields a strategy for full first order logic extending PROLOG. 

4. Extensions 

Our strategy may be refined in many ways. E.g. we could 
extend the definition of the choice set C in such a way that 
more than one link is taken into account. This would lead 
far beyond PROLOG. 

Another point to be mentioned is the following. SEARCH 
composes tableaux starting with the root. But we might 
equally well try to compose them starting from the leaves. 
This is nothing else than resolution calculus. Using this 
unified view of different proof procedures, the following can 
be said. 
• Resolution calculus generates a theory, i.e. a deductively 

closed set of formulas, and stops when it derives the empty 
clause. 

• Tableau calculus generates models and stops when all cases 
lead to contradiction. 

• In the PROLOG case, both calculi coincide since the theory 
to be generated consists of atomic formulas only, describing 
the 'minimal' model. 

• Resolution may make multiple use of the same inference, 
of lemmas, and so reduce proof length. 

• Tableau calculus may be extended to recognize loops in 
the generation of models and so reduce proof search length 
[Schonfeld83]. 

Both proof search approaches formalize different reasoning 
principles, and it seems useful to combine them. Mathema
ticians work this way: When given an open problem, they 
start by deriving some relevant facts from known theorems 
(resolution!). But then, they disbelieve their hypothesis and 
try to construct counterexamples (tableau!). They may switch 
back to the theorems and so on. I do not claim that their 
reasoning principles arc the ultima ratio. But this shows that 
a combination of different principles can be useful. (In addi
tion, we should not forget Bledsoe's claim for heuristics.) 

To draw a final conclusion from all these considerations 
- I believe that tableau calculus is not a substitute for other 
calculi, but a useful complement. 
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