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Abstract. We investigate the frontline of Gödel’s incompleteness theorems’ proofs and
the links with computability.

The Gödel incompleteness phenomenon

Gödel’s incompleteness theorems [Göd31, SFKM+86] are milestones in the subject of
mathematical logic.

Apart from Gödel’s original syntactical proof, many other proofs have been presented.
Kreisel’s proof [Kre68] was the first with a model-theoretical flavor. Most of these proofs
are attempts to get rid of any form of self-referential reasoning, even if there remains
diagonalization arguments in each of these proofs. The reason for this quest holds in the
fact that the diagonalization lemma, when used as a method of constructing an independent
statement, is intuitively unclear. Boolos’ proof [Boo89b] was the first attempt in this
direction and gave rise to many other attempts. Sometimes, it unfortunately sounds a bit
like finding a way to sweep self-reference under the mathematical rug.

One of these attempts has been to prove the incompleteness theorems using another
paradox than the Richard and the Liar paradoxes. It is interesting to note that, in his
famous paper announcing the incompleteness theorem, Gödel remarked that, though his
argument is analogous to the Liar paradox, “Any epistemological antinomy could be used
for a similar proof of the existence of undecidable propositions”. G. Boolos has proved quite
recently (1989) a form of the first incompleteness theorem using Berry’s paradox consisting
in the fact that “the least integer not nameable in fewer than seventy characters” has just
now been named in sixty-three characters. G. Boolos thought the interest of such proofs is
that they provide a different sort of reason for incompleteness. It is true that each of these
new arguments gives us a better understanding of the incompleteness phenomenon.

When studying proofs and provability, there are two different points of view: the proof-
theoretical one (axioms and inference rules) and the model-theoretical one (axioms, models,
consequences). The former one tends to be quite syntactical and the latter one more seman-
tical. We have tried to present both points of view and linger over the model-theoretical side
because, at least from the author’s point of view, model-theoretic arguments are intuitively
clearer than proof-theoretic ones.
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Gödel’s argumentation was heavily based not only on the arithmetization of syntax,
but on the arithmetization of all mathematical objects (sentences, proofs, theories) and the
fact that all this arithmetization is primitive recursive. In fact, it has opened the way for
the notions of computation and computability to arise.

The goal of this paper is twofold: a survey of incompleteness proofs and to precise links
with computability.

Computability and incompleteness are inherently linked. For instance, one can obtain
a first form of the first incompleteness theorem by considering propositions of the form
n 6∈ X, where X is a non-recursive but recursively enumerable set, e.g., the diagonal halting
set K. Even if the language of the considered theory does not contain ∈, there is a simple
algorithm that generates given n the proposition “n 6∈ X”. Given a sound (every provable
statement is true) recursively enumerable theory T , there is a number n0 such that n0 6∈ X
but T does not prove it. The proof is direct: Suppose that there is no such n0, then we
would have that T proves “n 6∈ X” if and only n 6∈ X, and X would be recursive (generate
the theorems of T and at the same time enumerate X; if n ∈ X then n will eventually show
up in the enumeration; otherwise, “n 6∈ X” will eventually show up in the theorems of T
and be true by the soundness assumption). We thus have a true sentence, “n0 6∈ X”, which
is not provable in T .

Incompleteness is also famously linked to computability via Chaitin’s incompleteness
theorem. Chaitin’s result, showing that there are unprovable statements on Kolmogorov-
Chaitin complexity1, is a form of Gödel’s first incompleteness theorem. Actually, Kol-
mogorov showed in the sixties that the set of non-random (or incompressible) numbers, i.e.,
{x : K(x) > x}, is recursively enumerable but not recursive, and, by the above argument,
this is already a version of Gödel’s first incompleteness theorem. Moreover, Kolmogorov’s
proof can be seen as an application of Berry’s paradox. Following Boolos, it is thus no
wonder that we can get proofs using this Kolmogorov complexity function (or other similar
computability-related functions) of both incompleteness theorems.

One of the reason of the existence of the quest of better understanding the incomplete-
ness phenomenon holds in the peculiarity of Gödel’s unprovable statements. They are not
natural mathematical statements: no mathematician has ever stumbled on them (or should
we say over them ?). And thus, it seems to many that normal mathematical practice is not
concerned with the incompleteness phenomenon. More and more results show however the
contrary. In particular, Harvey Friedman’s Π0

1 statements, that are unprovable in Zermelo-
Fraenkel (ZF) set theory and need the 1-consistency of strong set-theoretical unprovable
statements, going way beyond ZF, to be proved, are examples of such results.

Nevertheless, incompleteness theorems only provide unprovable statements like the con-
sistency of a theory, that are of an unclear nature. What combinatorial properties does the
consistency statement bring to a theory? Feferman [Fef62, Her88] has shown that a cer-
tain reflection principle, an unprovable statement, has to be added ωω

ω+1
times to Peano

arithmetic in order to cover all true arithmetical statements. Adding the 1-consistency, a
soundness assumption, of strong set-theoretical unprovable statements, e.g., large cardinal
axioms, to a given arithmetical theory amounts to asserting that “every Π0

2 consequence of
these strong statements is true”. In this case, the combinatorial properties that are added
are the combinatorial Π0

2 consequences of these strong statements. Having a link between
consistency (or soundness) and computability, in particular Kolmogorov complexity, would

1Loosely speaking, the Kolmogorov-Chaitin complexity of a natural number n, denoted by K(n), is the
smallest size of a program which generates n.
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make possible an understanding of what properties consistency adds to a theory. Adding
consistency as an axiom would then yield new combinatorial properties because of the ex-
isting links between combinatorics and Kolmogorov complexity. This could be one reason
behind the stir surrounding Chaitin’s incompleteness result.

This paper is organized as follows. We start by recalling the basic notions behind
formulæ, proofs, theories and arithmetization. Then we present Gödel’s original proofs.
We continue by presenting a survey of existing incompleteness proofs, of both first and
second incompleteness theorems. We finish with incompleteness results and proofs that are
computability-related and discuss the interpretation of Chaitin’s incompleteness theorem.

1. Objects to play with

1.1. What are the basic objects?

On top of the usual logical connectives (∧, ∨ and ¬), we will respectively denote the
logical connectives of implication and equivalence by 3 and ≡.
LPA will designate the first order language on the signature of arithmetic {S,+,×,6,0}.

S, +, × designate respectively the successor, addition and multiplication functions. 6
designates the lower-or-equal relation and 0 designates the constant zero.

The Turing machines indexed by their codes, for any appropriate coding which we will
later on make to coincide with the Gödel numbering, are denoted by {Ti}i∈N. A computation
(of a Turing machine, or any equivalent computation model) either diverges, denoted by ↑,
or converges, denoted by ↓. The partial recursive functions computed by Turing machines,
following a fixed convention, are denoted by {ϕi}i∈N (agreeing with the Turing machines’
coding). The sets {Wi}i∈N denote the recursively enumerable sets, i.e., the domains of
partial recursive functions. A central set in computability theory is the diagonal halting set
K = {x : ϕx(x) ↓} = {x : Tx(x) ↓} = {x : x ∈ Wx}. The set K is recursively enumerable
but not recursive; it is the archetypal creative set.

Concerning computability, the reader is referred to [Odi89, Odi99, Rog67, Rog58,
Smu93, VS03].

1.2. What is a proof?

A formal theory T is determined by a first order2 language LT and a set of axioms AT ,
which are formulæ in that language. The set ThmsT of theorems consists of those formulæ
φ for which there is a proof in T .

There are two different points of view concerning proofs: the proof-theoretical one
(axioms and inference rules) and the model-theoretical one (axioms, models, consequences).

2All our reasoning also works for theories on second order languages. For simplicity and brevity, we will
only consider first order theories in this article.
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1.2.1. Proof theoretical. Proofs are most commonly seen as a deduction sequence from a set
of axioms.

In proof theory, we can for example take the following deduction rules:

Γ⇒ φ if φ ∈ Γ Γ⇒ φ ∧ ψ iff Γ⇒ and Γ⇒ ψ
If Γ⇒ φ or Γ⇒ ψ, then Γ⇒ φ ∨ ψ If Γ ∪ {φ} ⇒ ψ, then Γ⇒ φ3 ψ

If Γ⇒ φ and Γ⇒ φ3 ψ, then Γ⇒ ψ If Γ⇒ (s = t) and Γ⇒ φ(s)x, then Γ⇒ φ(t)x
If Γ⇒ ψ and Γ⇒ ¬ψ, then Γ⇒ φ Γ⇒ ∀x (x = x)

If Γ ∪ {¬φ} ⇒ ψ and Γ ∪ {¬φ} ⇒ ¬ψ, then Γ⇒ φ
If Γ ∪ {φ} ⇒ ψ and Γ ∪ {φ} ⇒ ¬ψ, then Γ⇒ ¬φ

If Γ ∪ {φ} ⇒ θ and Γ ∪ {ψ} ⇒ θ, then Γ ∪ {φ ∨ ψ} ⇒ θ
If Γ⇒ φ and x does not occur free in Γ, then Γ ∪∆⇒ ∀x φ
If Γ⇒ ∀x φ, then Γ⇒ φ(s)x for any term s free for x in φ
If Γ⇒ φ(s)x, then Γ⇒ ∃x φ, for any term s free for x in φ

If Γ ∪ {φ(y)x} ⇒ ψ and y is not free in Γ or ψ, then Γ ∪∆ ∪ {∃x φ} ⇒ ψ
If Γ⇒ ∀x (x ∈ X ≡ x ∈ Y ), then Γ⇒ X = Y

∆ ⇒ φ holds if and only if there is a derivation showing this in the form of a finite
sequence 〈Γ1, φ1〉, . . . , 〈Γn, φn〉, where 〈Γn, φn〉 is 〈∆, φ〉 and each 〈Γi, φi〉 follows by one
of the above rules from previous pairs in the sequence. A derivation is a sequence number
〈s0, . . . , sn〉 where each si is a pair 〈ti, φi〉 with ti a sequence number of formulæ and si is
related as indicated in the rules to zero, one or two previous pairs in the sequence. s is a
derivation of φ from Γ if sn is 〈tn, φ〉 where every formula in the sequence tn is a member
of Γ. A proof in a theory T is a derivation from AT .

1.2.2. Model theoretical. Another way to consider provability is through models. A sentence
φ is provable in an axiomatic theory T if all models of T satisfy φ.

Leon Henkin gave in 1949 a non-constructive but easier (than Gödel’s original) proof of
Gödel’s completeness theorem. It consists in reducing the consistency of a set of sentences
in a language L to that of a set of quantifier-free sentences in an extended language. This
process can be arithmetized to build a partial order, called the Henkin tree. It gives an
arithmetical ∆n+1 model for any consistent Σn or ∆n theory. For a complete description,
the reader is referred to [Kay91].

Through Henkin’s method, we can obtain a more model-theoretical notion of proof. If
φ and ψ are sentences, to say that ψ is a consequence of φ is to say that the set {φ,¬ψ} is
inconsistent. The consistency of {φ,¬ψ} can be determined by Henkin’s method. We get
a proof that ψ is a consequence of φ as soon as we reach a natural number p at which the
branches of Henkin’s tree all end at a contradiction. This natural number p can take the
place of a proof.

If a theory T is a Σn fragment of arithmetic, then consistency can be expressed by a
Πn sentence: it is enough to express that 0 = S0 is not a consequence of the axioms of T
or else to express that the Henkin tree associated with T is infinite.

For more on model theory, see [Hod93].
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1.3. What is an arithmetical-able theory?

Throughout this paper, T will be some fixed, but unspecified, consistent formal theory.
The properties that a theory T should meet to satisfy the clauses of incompleteness

theorems are for it to contain arithmetic. There are several ways to precise these properties.
These properties are encodability conditions and, as Gödel showed, one can do a great deal
of encoding on natural numbers.

To follow classical expositions of the incompleteness theorems, we assume that the
encoding is done in some fixed formal theory S and that T contains S. S is usually not
specified but it is commonly taken to be a formal system of arithmetic, although a weak
set theory3 is often more convenient. If S is a formal system of arithmetic, e.g., PA (Peano
Arithmetic), and T is ZF (Zermelo-Fraenkel set theory), then T contains S in the sense
that there is a well-known embedding of S in T .

S needs to be able to represent primitive recursive functions. It should be primitive
recursive-able. A more model-theoretical way to require these properties is to require of the
theory to have Σ1-induction.

To each formula φ of the language of T is assigned a closed term, pφq, called the code
of φ. For any natural number n, pnq designates a closed term, the numeral for n, in the
language S that represents n, e.g., σ(σ(. . . (0) . . . )). n is called the value of this numeral
pnq.

To avoid any ambiguity, we define a function called var. An ambiguity arises in the
following example. There are two possible meanings for pxq: the code for the value for the
variable x or the code for the variable x. var(x) designates the latter case, i.e., the code for
the variable x.

S will have certain function symbols corresponding to the logical connectives and
quantifiers : neg, implies, etc., such that, for all formulæ φ, ψ, S ` neg(pφq) = p¬φq,
S ` implies(pφq, pψq) = pφ3 ψq, etc.

The substitution operator, represented in S by the function symbol sub, is of particular
importance. For any codes c1 and c2 for terms t1 and t2 and a variable x, subx(c1, c2)
is the code of the term that results from substituting t1 for every occurrence of x in t2 :
S ` subx(ptq, pφ(x)q) = pφ(t)xq.

For readability, we will use the same names for functions and predicates in formulæ and
in the running text. All the functions previously defined are actually primitive recursive.

From the previous discussion on proofs, we have a binary relation, whose symbol in S
is Proof, such that for closed t1 and t2: S ` ProofT (t1, t2) iff t1 is the code of a proof in T
of the formula with code t2. It follows that T ` φ if and only if S ` ProofT (t, pφq) for some
closed term t.

We then define a predicate, whose symbol in S is Prov, asserting provability :

ProvT (y) ≡ ∃x ProofT (x, y)

One must be careful and understand that we do not always have : T ` φ if and only if
S ` ProvT (pϕq). It depends on the soundness properties of our theory. Soundness is linked
to consistency as summarized in section 1.4.

We will use a special notation for formalizations of provability statements. If φ is a sen-
tence, we write �φ for the sentence ProvT (pφq), where the theory T is implicit. Accordingly,
�� φ is the formula ProvT (pψq) where ψ is ProvT (pφq).

3See [Dev84, Jec78].
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This encoding (of S in T ) can be carried out in such a way that the following important
conditions, the deducibility (or derivability) conditions, are met for all sentences φ:

T ` φ implies S ` ProvT (pφq), for every sentence φ. (1.1)
S ` ProvT (pφq) 3 ProvT (pProvT (pφq)q), for every sentence φ. (1.2)

S ` ProvT (pφq) ∧ ProvT (pφ3 ψq) 3 ProvT (pψq), for all sentences φ, ψ. (1.3)

Much of the intricacy of Gödel’s incompleteness theorems’ proofs lies in the scarcely
illuminating details of setting up and checking the properties of a coding system representing
the syntax of LPA within that same language. For this reason a number of efforts have
been made to present the essentials of the proofs of Gödel’s theorems without getting
entangled in syntactic details. One of the most important of these efforts was made by Löb
[Löb55] and Hilbert and Bernays [HB39]. They formulated these three conditions on the
provability predicate in a formal system which are jointly sufficient to yield Gödel’s second
incompleteness theorem.

Given that the axioms of T are defined using a Σ-formula, these deducibility conditions
all hold: the first two conditions are corollaries of the Σ-completeness theorem and the third
condition is a formalization of an obvious argument.

1.4. What are consistency statements?

A theory T is inconsistent if there exists φ such that φ and ¬φ are theorems of T , and
otherwise consistent.

A theory T is complete if for every sentence φ in the language of T , φ or ¬φ is a theorem
of T , and otherwise incomplete.

Gödel introduced a stronger form of consistency, coined ω-consistency. In a w-consistent
theory T , we cannot have at the same time T ` ∃x φ(x) and T ` ¬φ(p0q), T ` ¬φ(p1q), . . .
(having for all natural number i, T ` ¬φ(piq)).

More formally: T is ω-consistent if for any formula φ

ProvT (p∃x φ(x)q) implies ∃x ¬ProvT (p¬φ(x)q) (1.4)

ω-consistency is a restriction of another property, reflection:

ReflT : ProvT (pφq) implies φ for closed φ

For φ ∈ ∆0, (1.4) is called 1-consistency. It can be shown that 1-consistency means
that all Σ1 provable statements are true. It is actually ReflT for Σ1 statements, denoted by
ReflΣ1

T . Reflection is also called soundness. Σ-soundness is 1-consistency
Nevertheless, every arithmetical-able theory T has the following property.

Theorem 1.1 (Σ1-completeness). If φ is a Σ1 statement, then S ` φ3 ProvT (pφq).

Hence, in T , ConsT , the statement expressing that there is no proof in T of 0 = S0, is
equivalent to reflection of Π1 statements, denoted by ReflΠ1

T .
Consistency statements play a major role in the incompleteness theorems. Each incom-

pleteness result necessitates a consistency statement assumption on the considered theory.
Plain consistency is the weakest of these statements. Gödel introduced ω-consistency to
be able to obtain an independent statement. The weaker assumption, 1-consistency, gen-
erally suffices. In all our incompleteness theorems and proofs, the strongest assumption
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is 1-consistency. For more details on consistency and reflection statements, the reader is
referred to [Smo77].

2. Original and model-theoretical proofs

For various descriptions of mathematical logic in general and Gödel’s incompleteness
theorems in particular, see [Smo77, Kle52, Fef60, Kre50, Kot94, Kot96, Kot98, Kot04,
Ros36, Boo95, End72, Hen57].

2.1. Original (syntactical) proof

The original proof of Gödel’s incompleteness theorems goes necessarily through proving
the diagonalization lemma.

Lemma 2.1 (Diagonalization lemma). For every formula ψ with a single free variable x
there is a sentence φ such that S ` φ ≡ ψ(pφq)x.

Proof. Given ψ, let θx be ψ(subx(var(x), x))x, the diagonalization of ψ. Let m = pθxq and
φ = θ(m)x. Then we have

S ` φ ≡ ψ(pφq)x
In S, we have that

φ ≡ θ(m)x ≡ ψ(subx(var(m),m))x ≡ ψ(subx(var(m), pθxq))x ≡ ψ(pθ(m)xq)x ≡ ψ(pφq)x

The4 Gödel sentence GT for T consists in diagonalizing ¬ProofT (·). By the diagonal-
ization lemma, we have a sentence GT such that GT ≡ ¬�GT is provable in S.

Theorem 2.2 (Gödel’s first incompleteness theorem). If T is consistent, GT is not provable
in T , and if T is Σ-sound, then GT is independent of T .

Proof. If GT is provable in T , then �GT is also provable by the first deducibility condition.
By definition of GT , we thus have that ¬GT is provable in T , so T is inconsistent.

If ¬GT is provable in T , either T is inconsistent and thus not Σ-sound, or if T is
consistent, ¬GT is false (since GT is true: we have just proved that “GT is not provable”,
which is equivalent in S to GT ) and again T is not Σ-sound, since ¬GT is equivalent in S
(and thus in T ) to �GT , which is equivalent in S to a Σ-formula.

4There is no uniquely defined Gödel sentence for a theory T , because the sentences depend on the Σ-
formula used to define the axioms of T . It is an abuse of language.
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This proof is formalizable in T : �(GT 3 ¬�GT ) is provable in T by definition of GT
and 1.1, so �GT 3�¬�GT is provable in T by 1.3, and �GT 3��GT is provable in T
by 1.2, so �GT 3 (��GT ∧�¬�GT ) is provable in T . Hence, �GT 3¬ConsT is provable
in T .

Thus, ConsT implies ¬�GT (and also GT ) in T .
This yields the second incompleteness theorem:

Theorem 2.3 (Gödel’s second incompleteness theorem). If T is consistent, ConsT is not
provable in T .

Proof. The formalization of theorem 2.2 shows that ConsT implies GT in T and by the same
theorem 2.2, GT cannot be provable in T , and thus in T neither can ConsT .

The implication GT 3 ConsT is also provable in T , since “if T is inconsistent, every
formula is provable in T” is provable in T . Thus, GT and ConsT are in fact equivalent in
T .

The second incompleteness theorem can also be strengthened:

Theorem 2.4 (Löb’s theorem). If φ is a sentence for which �φ3 φ is provable in T , then
φ is provable in T .

Kreisel’s proof. If �φ 3 φ is provable in T , then T + ¬φ ` ¬ � φ, which is equivalent in
T to ConsT+¬φ. Thereby, T + ¬φ proves its own consistency, and so by theorem 2.3 is
inconsistent. Thus φ is a theorem of T .

Löb’s original proof. Suppose that �φ3φ is provable in T and let ψ be the diagonalization
of �x3 φ: the diagonal lemma gives ψ such that ψ ≡ (�ψ 3 φ) is provable in T . Thus we
have by 1.1 and two applications of 1.3 that

�ψ 3 (�� ψ 3�φ) is provable in T .

By 1.2, we obtain that �ψ 3�φ is provable in T and also by the assumption on φ,

�ψ 3 φ is provable in T . (2.1)

By definition of ψ, it follows that ψ is provable in T . All of this has been proven in T , thus
�ψ is provable in T , and by 2.1, φ is provable in T .

Rosser’s theorem is a variant of Gödel first incompleteness theorem dropping the sound-
ness condition on T to obtain an independent statement. It uses a modification of ProofT .

ProofRT (x, pyq) iff ProofT (x, pyq) ∧ ∀z, pwq 6 x, (ProvT (z, pwq)3 y 6= ¬w)

From ProofRT , one defines ProvRT and ConsRT .

Theorem 2.5 (Rosser’s theorem). Let φ be a sentence by the diagonalization lemma such
that S ` φ ≡ ¬ProvRT (pφq). Then

(1) T 0 φ;
(2) T 0 ¬φ;
(3) T ` ConsRT .

2.2. Semantical proofs

By semantical proofs, we mean “more model-theoretical” proofs.
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2.2.1. GT ≡ ConsT . From the first syntactical incompleteness theorem, one can obtain a
model theoretical proof of the second incompleteness theorem: a model theoretical way
to prove the equivalence of GT and ConsT . It is a forerunner of the ideas underlying the
subsequent model-theoretical proofs of both incompleteness theorems.

Model-theoretical proof of GT ≡ ConsT . Suppose that we have a model M of T + ConsT
such that M |= ¬GT .

Since M |= ConsT , Henkin’s completeness theorem gives a ∆2 model M′ such that
M′ |= T .
M |= ¬GT , thus M |= �GT and by Henkin’s construction, M′ |= GT .
In M, we define a function which to x ∈ M gives xM′ , the x-th successor of 0 in the

sense of M′. Let M′′ be the image of M by this function; it is an initial segment of M′.
GT is Π1 and M′ |= GT , thus so does M′′ and M. Contradiction with M |= ¬GT .

2.2.2. Chaitin’s proofs of theorem 2.2. Let {ϕi}i∈N designate a recursive enumeration of all
partial recursive functions. We work with an acceptable enumeration ϕ, in which all classical
computability results hold (enumeration, s-m-n, fixed point, etc.).

For the purpose of proving Chaitin’s incompleteness theorem, the following simple def-
inition of Kolmogorov complexity is sufficient.

Kϕ(x|y) = smallest e such that ϕe(y) = x, and Kϕ(x) = Kϕ(x|0)
A more classical definition of Kolmogorov complexity goes as follows. A complexity

is defined according to a decompressor, giving the length of a smallest input to the de-
compressor yielding the sought string. The Kolmogorov complexity is then the complexity
according to an optimal decompressor; optimal in the sense that it differs only by an ad-
ditive constant from other decompressors. For more on classical Kolmogorov complexity,
see [LV90]. Our definition is merely a change of scale from the classical one. Both share
the same basic computability properties: a computable function which is a lower bound for
them is necessarily bounded and their graphs are Turing-complete. We call these functions
the Kolmogorov functions.

Theorem 2.6 (Chaitin’s theorem). Let T be a arithmetical-able sound theory. There is a
constant cT such that T does not prove “Kϕ(x) > cT” for any x.

Proof. Let f be the recursive function assigning to c the code m of a the Turing machine M ,
such that M enumerates the theorems of T , searches for a theorem of the form “Kϕ(x) > c”
and in case of success, outputs x.

By Kleene’s recursion theorem there is an e such that ϕe = ϕf(e). Suppose that Te halts
when started with input 0. Te outputs x such that Kϕ(x) > e because of the soundness
assumption. On the other hand, if Te outputs x with input 0, then Kϕ(x) 6 e by the
definition of Kϕ. Contradiction.

Hence, Te does not halt and thus there is no proof of “Kϕ(x) > e” for any x. Thereby
cT = e works.
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Chaitin has given many other variants of this proof. Another proof goes by the observa-
tion that if no such cT existed, then there would exist an unbounded lower bound function
of the Kolmogorov complexity function.

2.2.3. Other proofs. Many other model-theoretical proofs of the incompleteness theorems
have appeared.

In [Vop66], Vopěnka proved theorem 2.3 for Bernays-Gödel axiomatic set theory using
Richard’s paradox: “the least number not definable in 1000 words”. More recently, in
[Jec94], Jech gave a short proof of theorem 2.3 for set theory.

In [Kre68], Kreisel gave the first proof of theorem 2.3 using Henkin’s arithmetized
completeness theorem.

In [Boo89b, Boo89a], Boolos proved both theorems 2.2 and 2.3 using both model-
theoretical techniques and Berry’s paradox.

3. Incompleteness revisited

From Henkin’s proof of the completeness theorem, one can derive the arithmetized
completeness theorem. It is an important result that is essential for constructing arithmetical
models and thus for proving Gödel’s second incompleteness theorem.

The arithmetized completeness theorem asserts that any recursively axiomatizable
consistent theory has an arithmetically definable model. We say that a formula φ in
LPA defines a model of T in a theory S in LPA if we can prove within S that the set
{σ : σ is a sentence in LT ∪ C that satisfies φ(pσq)}, where C is a set of new constants,
forms an elementary diagram of a model of T with a universe from C.

Theorem 3.1 (Hilbert-Bernays arithmetized completeness theorem). There exists a ∆2

formula TrT in LPA that defines a model of T in PA+ ConsT .

The following is a corollary of this theorem: if M0 is a model of PA+ ConsT , then
there exists a model M1 of T such that

(1) for any sentence φ in LPA, M1 |= φ if and only if M0 |= TrT (pφq),
(2) for any Σ1 sentence φ in LPA, if M0 |= φ, then M1 |= φ.

We then say thatM1 is a model of T definable in a model ofM0 of PA+ ConsT and write
M1 ≺dM0.

3.1. Incompleteness in computability

3.1.1. From K = {x : ϕx(x) ↓} or similar. Using the same basic arguments we have used in
the introduction, if we consider any non-recursive recursively enumerable set L, then given
a Π1-sound (≡ consistent) theory T , there is an nLT 6∈ L such that T does not prove it. This
is a form of the first incompleteness theorem.

Using the arithmetized completeness theorem 3.1, the second incompleteness theorem
(T ` 1- ConsT 3¬ProvT (ConsT )) can be proved as follows:
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K-related proof of a variant of theorem 2.3. We assume that ConsT is derivable from T .
Then by the completeness theorem, there exists a model M0 of T .

IfM0 |= ProvT (p0 ∈ Lq), then letM1 =M0. OtherwiseM0 |= ¬ProvT (p0 ∈ Lq) and
thusM0 |= ConsT+06∈L. Hence, by the Hilbert-Bernays arithmetized completeness theorem,
there exists M1 ≺dM0 such that

either M1 |= ProvT (p0 ∈ Lq) (in case M1 =M0) or M1 |= ProvT (p0 6∈ Lq).

We iterate this construction.
Consider the final model MnLT

, it satisfies ¬ConsT by the previous form of the first
incompleteness theorem: If we have MnLT

|= ProvT (pnLT ∈ Lq), then the 1-consistency of
T is contradicted by the fact that nLT 6∈ L, since it is a Σ1 statement. Hence, MnLT

|=
ProvT (pnLT 6∈ Lq) which implies the non-consistency of T , since nLT is such that nLT 6∈ L is
not provable in T .

3.1.2. From computability functions. In the sixties, Tibor Radó, a professor at the Ohio
State University, thought of a simple non-computable function besides the standard halting
problem for Turing machines. Given a fixed finite number of symbols and states, select
those Turing machines which eventually halt when run with a blank tape. Among these
programs, find the maximum number of non-blank symbols left on the tape when they halt.
Alternatively, find the maximum number of time steps before halting. These functions are
well-defined but uncomputable. Tibor Radó called them the Busy Beaver functions. For
more on the Busy Beaver problem, read [Rad62, Lin63, LR65, Bra66, Bra83, Dew84, Dew85,
Her88, MS90, MB90, LP07].

Alternative functions can be defined that are close in nature to these Busy Beaver
functions. Let σsteps be the function which to i gives the maximum number of steps for
which a Turing machine with code 6 i will keep running before halting starting with a blank
tape. For a Turing machine M , tM denotes the time complexity function of M : tM (x) = s
if M(x) halts after s steps. Following the Busy Beaver functions’ definitions, we define
σvalue to be the function which to i gives the maximum number which a Turing machine
with code 6 i will output, following a fixed convention, after halting starting with an input
6 i. These functions are in a sense inverses of the Kϕ function.

Other functions can be defined following classical Kolmogorov complexity, e.g., the
function which to n gives the biggest number with Kolmogorov complexity lower than n.

We call these functions the σ functions. For each variant, we can define a function
focusing on maximizing the number of steps, e.g., σsteps, or the outputted values, e.g., σvalue.
The value of one of the functions on a certain x is computable from x and the value of the
other function on input x+ c for a certain constant c.

A result similar to Chaitin’s result (see section 2.2.2) can be obtained concerning the
σ functions:

Theorem 3.2 (Chaitin-like incompleteness theorem for σ functions). Let σ be one of the
σ functions. Let T be an arithmetical-able consistent theory. There is a constant nσT such
that

T ` ConsT 3 ∀s¬ProvT (pσ(nσT ) < sq). (3.1)

Proof. Consider a Π1 formula φσ in the language of T such that φσ(x, s) expresses that
σ(x) < s.



GÖDEL INCOMPLETENESS REVISITED 85

Working in T , for a given x, take the smallest s such that ProvT (pφσ(x, s)q) holds. T
being consistent and φσ Π1, φσ(x, s) also holds.

ProvT (pφσ(x, s)q) is a Σ1 formula and thus can be seen as ∃yψ(x, s, y) or equivalently
∃〈s, y〉ψ(x, s, y) where ψ is ∆0.

Thus there is a Turing machine computing ψ. Consider its code iψ (or its number of
states or transitions, depending on the choice of σ). For large enough x, i.e., x > iψ + c,
knowing that φσ(x, s) holds (using the computation through shifting, i.e., the constant c,
between both types of σ functions), we know that σ(x) < s and thus there is an s′ =
〈s′1, s′2〉 < s such that ψ(x, s′1, s

′
2) holds. But for each s′ = 〈s′1, s′2〉 smaller than s, the

statement ¬ψ(x, s′1, s
′
2) is true by the minimality of s, and provable (being ∆0). Thus we

have ¬ConsT .

It is also possible to go through the same proof but using Kolmogorov functions (classical
Kolmogorov complexity function C, Kϕ, . . . ) and a variant of Chaitin’s theorem 2.6,
following closely the proof of theorem 3.2: Let K be a Kolmogorov function. If T is
consistent, then there exists nKT such that for all x, T 0 K(x) > nKT . Moreover, if T is
ω-consistent, then for all x, if K(x) > nKT , then T 0 K(x) 6 nKT .

From there, we can show Gödel’s second incompleteness theorem in a model-theoretical
way.

Model-theoretical proof of theorem 2.3 using σ functions. We have supposed that T is con-
sistent. So, let M0 be a model of T .

If M0 |= ProvT (p∀x ¬tT0(0) = xq), then let M1 =M0. Otherwise,

M0 |= ¬ProvT (p¬∃x tT0(0) = xq)

Thereby, M0 |= ConsT+∃x tT0
(0)=x. Hence there exists, by theorem 3.1, M1 ≺d

M0 such that either M1 |= ProvT (p¬∃x tT0(0) = xq) (when M1 = M0), or M1 |=
∃xProvT (ptT0(0) = xq) (because {(i, x) : tTi(0) = x} is ∆0, in other words primitive re-
cursive, and thus its truth in M1 implies its provability).

We iterate this construction (consider now M1 and “tT1(0) = x”, instead of M0 and
“tT0(0) = x”; in i-th iteration, consider Mi and “tTi(0) = x”).

Consider the last model MnσT
, the model constructed after the nσT -th iteration. This

model satisfies ∀i 6 nσT ProvT (p¬∃x tTi(i) = xq) ∨ ∃xProvT (ptTi(i) = xq) by theorem 3.1.
In this model, for each i 6 nσT such that the second case holds (∃xProvT (ptTi(i) = xq)), we
take the smallest appropriate x and choose s to be greater than all these x’s. Thus, this
model satisfies the provability in T of σ(nσT ) < s and thus satisfies ¬ConsT by (3.1).

This argument can be carried out for other functions than σ. In particular for the
variants of the Busy Beaver functions.

The second incompleteness theorem 2.3 can also be proved in this manner from the
above Kolmogorov function variant of theorem 3.2.

It is an open question to carry out this type of argument (for proving both incom-
pleteness theorems) for bizarre functions derived from the Busy Beaver functions, defined
in [LP07], e.g., consider the function giving the parity of one of the Busy Beaver functions.
One of the obvious missing properties of these functions is unboundedness.
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3.1.3. Giving its own relative consistency. We say that a statement φ is a revelation for T
if φ is unprovable in T and its consistency relative to T (if T is consistent, so is T + φ) is
provable from itself in T :

T ` φ3 ConsT (φ)
The links between incompleteness and computability functions described above in sec-

tion 3.1.2 have yielded the following serendipitous result.

Theorem 3.3 (Serendipitous incompleteness theorem for σ functions). Let σ be one of the
σ functions. If T is consistent, then there exists a natural number rσT such that for all x,
σ(rσT ) < x is a revelation for T .

Proof. Consider the Π1 statement ∀x ψ(x)x equivalent to ConsT+φ.
ψ ∈ ∆0 and thus there is a machine Mψ with code iψ such that Mψ decides {x : ψ(x)x}:

Mψ on input x eventually enters an acceptance state if ψ(x)x, or a rejection state otherwise.
Consider another Turing machine M ′

ψ which runs Mψ successively on each natural
number starting from 0 and stops and writes the counter example of ψ if the simulation of
Mψ enters a rejection state.

Let i′ψ be the code of Turing machine M ′
ψ. σ(i′ψ) makes the verification of ∀x ψ(x)x a

∆0 property.
By using Kleene’s recursion theorem on this previous construction, we find rσT such

that knowing (or bounding) the value of σ(rσT ) makes the verification of ConsT+σ(rσT )6x

a ∆0 property. Knowing that T is consistent and assuming σ(rσT ) 6 x, T thus proves
ConsT (σ(rσT ) 6 x).

By Gödel second incompleteness theorem, σ(rσT ) 6 x is an unprovable statement in T .

3.2. Interpretations of Chaitin’s theorem

Chaitin’s famous version of Gödel’s first incompleteness theorem (see section 2.2.2) is
compelling for various obvious reasons. Firstly a statement of the type “the Kolmogorov
complexity of this integer is greater than that integer” looks more mathematically natural
than a consistency statement and secondly it gives a bound on the provable complexity
of objects in a given theory. The question that arises forthrightly is the relevance of this
bound to measure the complexity, the power, or information content of a theory.

We will now discuss the validity of the common way of interpreting Chaitin’s theorem.
Many people have addressed criticisms towards this interpretation. In particular see [Fal96,
Raa98]. We try to sum up these criticisms here.

Chaitin’s result, theorem 2.6, has been interpreted to show that in a formalized theory
one cannot prove an object to be more complex than the complexity of the theory itself. This
received interpretation claims that the limiting constant cT is determined by the complexity
of the theory T itself and is a good measure of the strength of the theory.

As Chaitin puts it in [Cha82]: “I would like to measure the power of a set of axioms
and rules of inference. I would like to be able to say that if one has ten pounds of axioms
and a twenty-pound theorem, then that theorem cannot be derived from those axioms.”

It is assumed here that the algorithmic complexity of the axioms gives a good measure
of the power, or information content, of the theory. The constant cT is assumed to depend
on the complexity of the axioms of T . The finite bound given by the constant cT is hence
thought to reflect the power, or information content, of the theory.
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By playing with Kleene’s fixed point theorem, for any suitable theory T , one can con-
struct acceptable enumerations of partial recursive functions yielding constants cT equal to
0 or arbitrarily large, whatever the theory T .

A closer inspection shows that the value of cT is actually determined simply by the
smallest (by its code) Turing machine which does not halt, but for which this cannot be
proved in T . It is really hard to see why the code of such a Turing machine would reveal
anything interesting about the power or information content of T .

Considering a strong theory like ZFC, Zermelo-Fraenkel set theory with the axiom
of choice, we could compare its constant cZFC to the constant of a weak theory, say PA,
Peano Arithmetic. The constants depend on our acceptable enumeration of partial recursive
functions. Thus, suppose we have cZFC > cPA. We can then add to PA all true sentences
of the form ¬∃x ϕe(0) = x which are provable in ZFC, for all e < cZFC. It follows from a
result of Kreisel and Levy [KL68] that this new theory cannot possibly come even close to
the power of ZFC. But the constants of this new theory and ZFC are now equal, and hence,
they should, according to the received interpretation, have the same power. Furthermore,
we may still add to our new theory one more true sentence ¬∃x ϕcZFC(0) = x. Now the
constant of this theory is bigger than the one of ZFC. This whole argumentation shows
that one has to be careful on the interpretation given to the constants cT ’s.

As mentioned in [Fal96], the only thing that these constants could at most tell of a
theory is what propositions of the form “K(·) > ·” it can prove. Therefore, withstanding all
the above arguments, one could wonder whether adding as an axiom a sentence of the form
“K(x) > c” could not be equivalent to the relative 1-consistency of a strong (consistency-
wise) unprovable statement or even to the 1-consistency of a theory. For example, the
1-consistency of a large cardinal axiom5 would also only add “information” about some of
the propositions and be incredibly weaker than the large cardinal axiom itself. This would
give credit to Chaitin’s interpretation of his theorem and present the constant cT as a partial
measure of the power of a theory T .

Having a link between consistency (or soundness) and computability (K, Busy beaver
functions or Kolmogorov complexity) would make possible an understanding of what prop-
erties consistency adds to a theory. Adding consistency as an axiom would then yield new
combinatorial properties. Until now, consistency has been seen as a strange statement, only
considered because of Gödel’s second incompleteness theorem. It is true that even if one can
construct stronger theories by adding as a new axiom its consistency, it is not clear in what
way the obtained theory is stronger. It could well be that the only additional information
this new theory has is this consistency statement and that nothing else is added because of
this additional axiom. In fact, as mentioned in the introduction of this paper, one would
need to add 6 ωω

ω+1
times a reflection principle to our theory to cover all true arithmetic

statements.
Taking into account the above arguments, we see that the only total measure one

could get of a theory through Chaitin’s theorem 2.6 would not be a constant cT but a
set CT of constants for which Chaitin’s proposition is unprovable in T . If we want the
above objections not to apply (in particular modifying by Kleene’s fixed point theorem the

5See [KM78, Kan94].
6For any uniform reflection progression {Ta}a∈O, there is a branch B in an ordinal notation system O,

such that there is, for any true arithmetical sentence φ, an a in B with |a| < ωω
ω+1

for which φ is provable
in Ta. For details, see [Fef62, FS62].
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acceptable enumeration with which we work), CT should necessarily be infinite and non-
recursive. This set could not then be used to form an additional axiom if we want our
theory to stay recursively axiomatizable.
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[Rog58] Rogers (H.), « Gödel numberings of partial recursive functions », Journal of Symbolic Logic,

vol. 23, 1958, p. 331–341.
[Rog67] Rogers (H.), The Theory of Recursive Functions and Effective Computability. MIT Press, 1967.
[Ros36] Rosser (J. B.), « Extensions of some theorems of Gödel and Church », Journal of Symbolic
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