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1. Introduction, Solovay's theorems

G�odel's incompleteness theorems and Church's undecidability theorem for arith-
metic showed that reasonably strong formal systems cannot be complete and
decidable, and cannot prove their own consistency. Even at the time though these
negative theorems were accompanied by positive results. Firstly, formal systems fare
better in reasoning in restricted areas, and this reasoning can be formalized in the
theories themselves. In Hilbert and Bernays [1939] one �nds the formalization of
the completeness theorem for the predicate calculus, i.e., reasoning in the predicate
calculus is adequately described in strong enough theories. A fortiori, this is so for
the propositional calculus in which reasoning is even (provably) decidable. Secondly,
there is a positive component in the incompleteness theorems themselves. The
formalized version of the second incompleteness theorem, i.e., if it is provable in PA
that PA is consistent, then PA is inconsistent, is provable in PA itself. The area
here called the logic of provability arose in the seventies when two developments took
place almost simultaneously. The two facets mentioned above were, one might say,
integrated by showing that propositional reasoning about the formalized provability
predicate is decidable and can be adequately described in arithmetic itself. And
in the same period the de Jongh-Sambin �xed point theorem (see Sambin [1976],
Smory�nski [1978,1985]) was proved for modal-logical systems with the provability
interpretation in mind. Since that time the main achievements have been to show
that similar results mostly fail for predicate logic, to recognize reasoning about
more complex notions like interpretability where arithmetic can be shown to reason
adequately, and also to strengthen Solovay's results directly. Extensive overviews on
the subject can be found in Boolos [1993b] and Smory�nski [1985], a short history
in Boolos and Sambin [1991].

Let us proceed somewhat farther in formulating Solovay's theorems, and call
an arithmetic realization of the language of modal logic (see section 2) into the
language of the arithmetic theory T (�1 -sound and extending I�1, sometimes
I�0) a mapping

� that commutes with the propositional connectives and such that
(2A)� =PrT (pA

�q) (where PrT is the formalized provability predicate for T , i.e.,
it is of the form 9y ProofT (x; y) where ProofT is the formalized proof predicate of
T ). If we want to stress the dependency on T we write (A)�T for (A)�. More
standard is the term \interpretation" for \realization" but that con
icts somewhat
with our terminology with regard to interpretability. The term \realization" is used
by Boolos [1993b].

1.1. Theorem. (Solovay's �rst arithmetic completeness theorem) The modal
formula A is provable in T under all arithmetic realizations i� A is provable in
the modal logic L (see sections 2, 3).

1.2. Theorem. (Solovay's second arithmetic completeness theorem) The modal
formula A is true under all arithmetic realizations i� A is provable in the modal logic
S (see sections 2, 3).
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This chapter is to be thought of as divided into three parts: the �rst part consists of
sections 2-10 and is devoted to propositional provability logic, i.e., the propositional
logic of the provability predicate and its direct extensions, the second part consists
of sections 11-15 and treats interpretability logic and related areas, the last part
consists of section 16 and discusses predicate provability logic.

2. Modal logic preliminaries

The language of the modal propositional calculus consists of a set of propositional
variables, connectives _ ; ^ ; ! ; $ ;:;>;? and a unary operator 2 . Furthermore,
} is an abbreviation of :2 :. The modal logic K is axiomatized by the schemes 1
and 2:

1. All propositional tautologies in the modal language,

2. 2(A!B)! (2A! 2B),

together with the rules of modus ponens and necessitation, i.e., A=2A. The modal
logic L is axiomatized by adding the scheme 3:

3. 2(2A!A)! 2A,

to K and keeping the rules of modus ponens and necessitation. The system is often
called GL, e.g. in Boolos [1993b], and is named PrL in Smory�nski [1985]. It is an
exercise to show that 2A! 22A is derivable in L, which makes L an extension
of K4, the system axiomatized by the axioms of K together with 2A! 22A.
Extensions of K such as K4 and L that are closed under necessitation are called
normal modal logics.

We will write A1; : : : ; An`KB for: B is derivable in K from A1; : : : ; An without
use of necessitation, or more precisely, B is derivable by modus ponens from theorems
of K plus A1; : : : ; An. Similarly for K4; L. To this notation the deduction theorem
obviously applies: A1; : : : ; An; B `KC i� A1; : : : ; An`KB!C . We will write �A
for A ^ 2A. The results codi�ed in the next proposition are readily proved.

2.1. Proposition.
(a) If A1; : : : ; An `KB, then 2A1; : : : ;2An`K2B (also for K4;L),
(b) if 2A1; : : : ;2An`K4B, then 2A1; : : : ;2An`K42B (also for L),
(c) if 2A1; : : : ;2An;2B `LB, then 2A1; : : : ;2An`L2B,
(d) `K2(A ^B)$ 2A ^ 2B,
(e) `K42(A$B)! 2(C(A)$C(B)),
(f) `K42(A$B)! (2C(A)$ 2C(B)),
(g) `K4 �(A$B)! (C(A)$C(B)),
(h) if `K;K4;LA$B, then `K;K4;LC(A)$ C(B),
(i) `K }?!?,
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(j) `L }p!}(p ^ 2:p) and, hence, `L}p$}(p ^ 2:p) and
`L p! (p ^ 2:p) _}(p ^ 2:p).

The modal logic S is de�ned by:

`SA if and only if 2B1!B1; : : : ;2Bk!Bk `LA for some B1; : : : ; Bk .

The logic S is not closed under necessitation, and is therefore a nonnormal modal
logic.

2.2. De�nition.
(a) A Kripke-frame for K is a pair hW;Ri withW a nonempty set of so-called worlds
or nodes and R a binary relation, the so-called accessibility relation.
(b) A Kripke-frame for K4 is a Kripke-frame hW;Ri with R a transitive relation.
(c) A Kripke-frame for L is a Kripke-frame hW;Ri with R a transitive relation
such that the converse of R is well-founded. (Of course, a �nite transitive frame is
conversely well-founded i� it is irre
exive.)
(d) A root of a Kripke-frame is a node w such that wRw0 for all w0 6=w in the frame.
(In the case of K put the transitive closure of R here in place of R.) The depth
(also height) of a node w in a conversely well-ordered frame is the maximal m for
which there exists a sequence w = w0Rw1 : : : Rwm . The height of the model is the
maximum of the height of its nodes.
(e) A Kripke-model for K (K4, L) is a tuple hW;R; 
i with hW;Ri a Kripke-frame
for K (K4, L) together with a forcing relation 
 between worlds and propositional
variables. The relation 
 is extended to a relation between worlds and all formulas
by the stipulations

w 
 :A i� w 1A,
w 
A ^B i� w 
A and w 
B ,
and similarly for the other connectives,
w 
2A i� for all w0 such that wRw0; w0


A.

If K = hW;R;
i, then K �A is de�ned as, w 
A for each w 2W; and we say that A
is valid in M .

It is easy to check that Kripke-models are sound in the sense that each A
derivable in K (K4, L) is valid in each Kripke-model for K (K4, L). In fact, the
Kripke-models for K4 (resp. L) are exactly the ones that validate the formulas
derivable, respectively in K4 and L. One says that K4 and L characterize these
classes of models. (For the main concepts of modal logic, see e.g., Chellas [1980],
Hughes and Cresswell [1984].) Something stronger is true: in K, K4 and L one
can derive all the formulas that are valid in their respective model classes (modal
completeness). The standard method in modal logic for proving completeness is to
construct the necessary countermodels by taking maximal consistent sets of the logic
as the worlds of the model and providing this set of worlds with an appropriate
accessibility relation R. This method cannot be applied to L, since the logic is
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not compact: there exist in�nite syntactically consistent sets of formulas that are
semantically incoherent. We will apply to all three logics a method in which one
restricts maximal consistent sets to a �nite so-called adequate set of formulas. One
obtains �nite countermodels by this method and hence, immediately, decidability of
the logics.

2.3. De�nition. If A is not a negation, then �A is :A, otherwise, if A is :B ,
then �A is B .
An adequate set of formulas is a set � with the properties:
(i) � is closed under subformulas,
(ii) if B 2�, then �B 2�.

It is obvious that each formula is contained in a �nite adequate set.

2.4. Theorem. (Modal completeness of K, K4, L.)
If A is not derivable in K (K4, L), then there is a frame for K (K4, L) on which A
is not valid.

Proof. (K) Suppose 0KA. Let � be a �nite adequate set containing A. We consider
the set W of all maximal K-consistent subsets of �. We de�ne for w;w0 2W;

wRw0 () for all 2D 2w; D 2w0:

Furthermore, we de�ne w 
p i� p 2w. It now follows that for each B 2�; w 
B
i� B 2w, by induction on the length of B . For propositional letters this is so by
de�nition and the case of the connectives is standard, so let us consider the case that
B is 2C .
=): Assume 2C 2w. Then, for all w0 such that wRw0, C 2w0. By induction
hypothesis, w0


C for all such w0. So, w 
2C .
(=: Assume 2C =2w. Consider the set fDj2D 2wg[f�Cg. We will show this set
to be K-consistent which means, by the conditions on adequate sets, that a maximal
K-consistent superset w0 of it exists inside �. By induction hypothesis, w0

1C , and
since wRw0, this implies that w 12C .

To show that fDj2D 2wg [ f�Cg is indeed K-consistent, suppose that it is
not, i.e., D1; : : : ; Dk `KC for some 2D1; : : : ;2Dk 2w. Then 2D1; : : : ;2Dk `K2C
immediately follows, but that would make w inconsistent, contrary to what was
assumed.

(K4) Suppose 0K4A. Proceed just as in the case of K, except that now:

wRw0 () for all 2D 2w; both 2D 2w0 and D 2w0:

The argument is as for K; only the case B�2C ()) needs special attention.
Let 2C =2w. This time, consider the set f2D;Dj2D 2wg[f�Cg. The only
additional fact needed in the argument to show that this set is K4-consistent is that
2Di `K422Di.

(L) Suppose 0LA. Again proceed as before, except that now:
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wRw0 () for all 2D 2w; both 2D 2w0 and D 2w0 and,
for some 2C 2w0, 2C =2w.

The argument is as for K4; again, only the case B�2C ((=) merits some
special attention. This time, consider f2D;Dj2D 2wg[f2C;�Cg. Note that
the inclusion of 2C will insure that w0 really is a successor of w. The argument that
this set is consistent now rests on the fact that, if 2D1; : : : ;2Dk `L 2(2C!C),
then 2D1; : : : ;2Dk `L 2C . a

2.5. De�nition. If � is an adequate set of formulas, then the rooted Kripke-model
M is �-sound if in the root w of M, w 
2B!B for each 2B in �; M is A-sound
if M is �-sound for the smallest adequate set � containing A.

If K is a Kripke-model with root w, then the derived model K 0 of K is constructed
by adding a new root w0 below w and giving w0 exactly the same forcing relation as
w for the atoms.

2.6. Lemma. If K is a �-sound Kripke-model with root w, then w0 forces in K 0

exactly the same formulas from � as w in K .

Proof. Let K be a rooted �-sound Kripke-model with root w. We prove by
induction on the length of A that w0


A i� w 
A. This is so by de�nition for the
atomic formulas and otherwise obvious except for the 2 . If w0


2A, then w 
2A,
since wRw0. If w 
2A, then not only for all w00 such that wRw00, w00


A, but also,
by the �-soundness of K , w 
A. But then, for all w00 such that w0Rw00, w00


A, i.e.,
w0


2A. a

2.7. Theorem. (Modal completeness of S) `SA i� A is forced in the root of all
A-sound L-models.

Proof. =) : Assume K is A-sound and root w 1A. If we assume to get a
contradiction that `SA, then A is provable in L from k applications of the re
ection
scheme: 2B1!B1; : : : ;2Bk!Bk . Consider the model K

(k+1) obtained from K by
taking k + 1 times the derived model starting with K . Each time that one takes the
derived model, one or more of the 2Bi may change from being forced to not being
forced (never the other way around). This implies, by the pigeon hole principle,
that one of the times that one has taken the derived model K (m) (06m6 k + 1) the
forcing value of all the 2Bi remain the same. It is easy to check that, in the root of
that model K (m) for that m, 2Bi!Bi is forced for all i 6 k. By lemma 2.6, A is
not forced however, and a contradiction has been reached.

(= : Assume 0 SA. Then a fortiori A is not derivable in L from the re
ection
principles for its boxed subformulas. The result then immediately follows by applying
theorem 2.4. a

An elegant formulation of the semantics of S in terms of in�nite models, so-called
tail models is given in Visser [1984].



The Logic of Provability 481

The well-known normal modal system S4 that is obtained by adding the scheme
2A!A to K4 plays a role in section 10. It can be shown that S4 is modally
complete with respect to the (�nite) re
exive, transitive Kripke-models.

3. Proof of Solovay's theorems

We rely mostly on Buss's Chapter II of this Handbook. One can �nd there an
intensional arithmetization of metamathematics worked out, the (Hilbert-Bernays)-
L�ob derivability conditions are given and proofs of the diagonalization lemma, G�odel's
theorems and L�ob's theorem are presented. An additional fact that we need is some
formalization of the recursion theorem.

To repeat the statement of Solovay's �rst arithmetic completeness theorem
(theorem 1.1), for �1 -sound r.e. theories T containing I�1:

` LA i� T `A� for all arithmetic realizations � .

Proof of theorem 1.1. ) : These are just the Hilbert-Bernays-L�ob conditions and
L�ob's theorem (see Chapter II of this Handbook).
( : What we have to do is show that, if 0LA(p1: : : : ; pk), then there exist �1; : : : ; �k
such that T 0A�, where � denotes the realization generated by mapping p1; : : : ; pk
to �1; : : : ; �k .

1 Suppose 0LA. Then, by theorem 2.4, there is a �nite L-model
hW;R; 
i in which A is not valid. We may assume that W = f1; : : : ; lg, 1 is the
root, and 1 1A. We de�ne a new frame hW 0; R0i:

W 0 =W [ f0g,

R0 =R [ f(0; w) jw 2Wg.

Observe that hW 0; R0i is a �nite L-frame.
We are going to embed this frame into T by means of a function h :!!W 0 (with

! the nonnegative integers) and sentences Limw , for each w 2W
0, which assert that

w is the limit of h. This function will be de�ned in such a way that a basic lemma 3.2
holds about the statements that T can prove about the sentences Limw . These
statements are tailored to prove the next lemma 3.3 that expresses that provability
in T behaves for the relevant formulas on the Kripke-model in the same way as the
modal operator 2 . This will allow us to conclude the proof.

3.2. Lemma.
(a) T proves that h has a limit in W 0, i.e., T `

_
fLimr j r 2W 0g,

(b) If w 6= u, then T ` : (Limw ^ Limu),
(c) If wR0 u, then T +Limw proves that T 0 :Limu,
(d) If w 6= 0 and not wR0 u, then T + Limw proves that T ` :Limu,
(e) Lim0 is true,
(f) For each i 2W 0, Limi is consistent with T .

1We will use italic capital letters for modal-logical formulas and Greek letters for arithmetic
sentences and formulas, except that we will use Roman letters for descriptive names like \Proof".
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We now de�ne a realization � by setting for each propositional letter pi,

p�i =
_
fLimw jw 2W; w 
pig:

This p�i will then function as the above-mentioned �i.

3.3. Lemma. For any w 2W and any L-formula B,

(a) if w 
B, then T + Limw ` B�,
(b) if w 1B, then T +Limw ` :B�.

Proof. By induction on the complexity of B . If B is atomic, then clause (a) is
evident, and clause (b) is also clear in view of lemma 3.2(b). The cases when B is a
Boolean combination are straightforward. So, only the case that B is 2C will have
to be considered.

(a) Assume that w 
2C . Then, for each w0 2W with wRw0, w0

C . By

induction hypothesis, for each such w0, T + Limw0 `C� , and this fact is then provable
in T . On the other hand, by lemma 3.2(a) (proved in T itself) and (c), T + Limw

proves that T `
_
fLimw0 j wR0w0g. Together this implies that T proves that

T `C� , i.e., T ` (2C)�.
(b) Assume that w 12C . Then, for some w0 2W with wR0w0, w0

1C .
By induction hypothesis, T +Limw0 ` :C

� , i.e., T `C�!:Limw0 . By the sec-
ond HBL-condition, T ` (2C)�! PrT (:Limw). But lemma 3.2(c) implies that
T + Limw ` :PrT (:Limw), i.e., T +Limw ` :(2C)� . a

Observe by the way that lemma 3.3 expresses that T + Limw ` \w 
B"$B� .
Assuming lemma 3.2 we can now complete the proof of theorem 1.1. By the
construction of the Kripke-model, 1 
:A. By lemma 3.3, T +Lim1 ` :A� . Since,
by lemma 3.2(f), T +Lim1 is consistent, T 0A� . a

Our remaining duties are to de�ne the function h and to prove lemma 3.2. The
recursion theorem enables us to de�ne this function simultaneously with the sentences
Limw (for each w 2W 0), which, as we have mentioned already, assert that w is the
limit of h.

3.4. De�nition. (Solovay function h)
We de�ne h(0) = 0.
If x is the code of a proof in T of :Limw for some w with h(x)Rw, then h(x+ 1) =w.
Otherwise, h(x + 1) = h(x).

It is not hard to see that h is primitive recursive.

Proof of lemma 3.2. In each case below, except in (e) and (f), we reason in T .
(a) By induction on the nodes. For end nodes w (i.e., the ones with no R-

successors), it can be proved that T ` 8x (h(x) = �w! 8y > xh(y) = �w) by induction
on x, and hence T ` 9x h(x) = �w! Limw . Next, it is easily seen that, if for all
successors w0 of a node w, T ` 9x h(x) = �w0!

_
fLimw00 j w0 = w00 _w0Rw00g, then
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T ` 9x h(x) = �w!
_
fLimw0 jw =w0 _wRw0g. Therefore, this will hold for w = 0,

which implies (a).
(b) Clearly h cannot have two di�erent limits w and u.
(c) Assume w is the limit of h and wR0 u. Let n be such that for all x > n,

h(x) =w. We need to show that T 0 :Limu . Deny this. Then, since every provable
formula has arbitrarily long proofs, there is x > n such that x codes a proof of :Limu;
but then, according to de�nition 3.4, we must have h(x + 1) = u, which, as u 6=w
(by irre
exivity of R0), is a contradiction.

(d) Assume w 6= 0, w is the limit of h and not wR0 u. If u=w, then (since
w 6= 0) there exists an x such that h(x+ 1) = w and h(x) 6=w. Then x codes a
proof of :Limw and :Limw is provable. Next suppose u 6=w. Let us �x a number
z with h(z) =w. Since h is primitive recursive, T proves that h(z) = w. Now
argue in T +Limu: since u is the limit of h and h(z) =w 6= u, there is a number x
with x > z such that h(x) 6= u and h(x+ 1) = u. This contradicts the fact that not
(w = )h(z)R0 u, Thus, T + Limu is inconsistent, i.e., T ` :Limu.

(e) By (a), as T is sound, one of the Limw for w 2W 0 is true. Since for no w
do we have wR0w, (d) means that each Limw , except Lim0 , implies in T its own
T -disprovability and therefore is false. Consequently, Lim0 is true.

(f) By (e), (c) and the soundness of T . a

To repeat the statement of Solovay's second arithmetic completeness theorem
(theorem 1.2):

` SA i� IN �A� for all arithmetic realizations �.

Proof of theorem 1.2. Since the 2A!A are re
ection principles and these are
true for a sound theory, the soundness part is clear. So, assume 0 SA. Modal
completeness of S then provides us with an A-sound (see de�nition 2.5) model in
which A is not forced in the root. We can repeat the procedure of the proof of the
�rst completeness theorem, but now directly to the model itself (which we assume to
have a root 0) without adding a new root, and again prove lemmas 3.2 and 3.3. But
this time we have forcing also for 0 and we can improve lemma 3.3 to apply it also to
w = 0, at least for subformulas of A.

The proof of the (b)-part of that lemma can be copied. With respect to the
(a)-part, restricting again to the 2-case, assume that 0 
2C . Then, for each w 2W
with w 6= 0, w 
C . But now, by the A-soundness of the model, C is also forced in the
root 0. By the induction hypothesis, for all w 2W , T +Limw `C� . By lemma 3.2(a)
then T `C�, so, T ` (2C)� and hence T ` Lim0! (2C)�.

Applying the strengthened version of lemma 3.3 to w = 0 and A, we obtain
T ` Lim0!:A� , which su�ces, since Lim0 is true (lemma 3.2). a

4. Fixed point theorems

For the provability logic L a �xed point theorem can be proved. One can view
G�odel's diagonalization lemma as stating that in arithmetic theories the formula :2p
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has a �xed point: the G�odel sentence. G�odel's proof of his second incompleteness
theorem e�ectively consisted of the fact that the sentence expressing consistency, the
arithmetic realization of :2?, is provably equivalent to this �xed point. Actually
this fact is provable from the principles codi�ed in the provability logic L, which
means then that it can actually be presented as a fact about L. This leads to a rather
general �xed point theorem, which splits into a uniqueness and an existence part. It
concerns formulas A with a distinguished propositional variable p that only occurs
boxed in A, i.e., each occurrence of p in A is part of a subformula 2B of A.

4.1. Theorem. (Uniqueness of �xed points) If p occurs only boxed in A(p) and q
does not occur at all in A(p), then `L �((p$A(p)) ^ (q$A(q))! (p$ q).

4.2. Corollary. If p occurs only boxed in A(p), and both `LB$A(B) and
`LC$A(C), then `LB$C .

4.3. Theorem. (Existence of �xed points) If p occurs only boxed in A(p), then there
exists a formula B, not containing p and otherwise containing only variables of A(p),
such that `LB$A(B).

After the original proofs by de Jongh and Sambin (see Sambin [1976], Smory�nski
[1978,1985], and, for the �rst proof of uniqueness, Bernardi [1976]) many other,
di�erent, proofs have been given for the �xed point theorems, syntactical as well as
semantical ones, the latter e.g., in Gleit and Goldfarb [1990]. It is also worthwhile
to remark that theorem 4.3 follows from theorem 4.1 (which can be seen as a kind of
implicit de�nability theorem) by way of Beth's de�nability theorem that holds for L.
The latter can be proved from interpolation in the usual manner. Interpolation can
be proved semantically in the standard manner via a kind of Robinson's consistency
lemma (see Smory�nski [1978]), and syntactically in the standard manner by cut-
elimination in a sequent calculus formulation ofL (Sambin and Valentini [1982,1983]).

In an important sense the meaning of the �xed point theorem is negative, namely
in the sense that, if in arithmetic one attempts to obtain formulas with essentially
new properties by diagonalization, one will not get them by using instantiations of
purely propositional modal formulas (except once of course: the G�odel sentence, or
the sentence L�ob used to prove his theorem). That is one reason that interesting
�xed points often use Rosser-orderings (see section 9).

5. Propositional theories andMagari-algebras

A propositional theory is a set of modal formulas (usually in a �nite number of
propositional variables) which is closed under modus ponens and necessitation, but
not necessarily under substitution.

We say that such a theory is faithfully interpretable in PA, if there is a realization
� such that T = fA jPA `A�g. (This is an adaptation of de�nition 11.1 to the modal
propositional language.) Each sentence � of PA generates a propositional theory
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which is faithfully interpretable in PA, namely Th� = fA(p) jPA `A�(p�q)g. Of
course, this theory is closed under L-derivability: it is an L-propositional theory.
A question much wider than the one discussed in the previous sections is, which
L-propositional theories are faithfully interpretable in PA and other theories. This
question was essentially solved by Shavrukov [1993b]:

5.1. Theorem. An r.e. L-propositional theory T is faithfully interpretable in PA
i� T is consistent and satis�es the strong disjunction property (i.e., 2A 2 T implies
A 2 T , and 2A _ 2B 2 T implies 2A 2 T or 2B 2 T ).

Note that faithfully interpretable theories in a �nite number of propositional
variables are necessarily r.e. The theorem was given a more compact proof and at the
same time generalized to all r.e. theories extending I�0 + EXP by Zambella [1994].
If one applies the theorem to the minimal L-propositional theory, an earlier proved
strengthening of Solovay's theorem (Art�emov [1980], Avron [1984], Boolos [1982],
Montagna [1979], Visser [1980]) rolls out.

5.2. Corollary. (Uniform arithmetic completeness theorem) There exists a
sequence of arithmetic sentences �0; �1; : : : such that, for any n and modal for-
mula A(p0; : : : ; pn), ` LA i�, under the arithmetic realization � induced by setting
p�0 = �0; : : : ; p

�
n = �n, A

� is provable in PA.

Sets of modal formulas that are the true sentences under some realization are
closed under modus ponens, but not necessarily under necessitation; such sets are
generally not propositional theories in the above sense. Let us call a set T of modal
formulas realistic if there exists a realization � such that A� is true, for every A 2 T .
Moreover, we say that T is well-speci�ed if, whenever A 2 T and B is a subformula of
A, we also have B 2 T or :B 2 T . Stranneg�ard [1997] proves a result that generalizes
both theorem 5.1 and Solovay's second arithmetic completeness theorem. We give a
weak but easy to state version of it.

5.3. Theorem. Let T be a well-speci�ed r.e. set of modal formulas. Then T is
realistic i� T is consistent with S.

An even more general point of view than propositional theories is to look at the
Boolean algebras of arithmetic theories with one additional operator representing
formalized provability and, more speci�cally, at the ones generated by a sequence of
sentences in the algebras of arithmetic. The algebras can be axiomatized equationally
and are called Magari-algebras (after the originator R. Magari) or diagonalizable
algebras. Of course, theorem 5.1 can be restated in terms of Magari-algebras.
Shavrukov proved two beautiful and essential additional results concerning the
Magari-algebras of formal theories that cannot naturally be formulated in terms
of propositional theories.



486 G. Japaridze and D. de Jongh

5.4. Theorem. (Shavrukov [1993a]) The Magari algebras of PA and ZF are not
isomorphic, and, in fact not elementarily equivalent (Shavrukov [1997]).

The proof only uses the fact that ZF proves the uniform �1-re
ection principle
for PA. A corollary of the theorem is that there is a formula of the second order
propositional calculus that is valid in the interpretation with respect to PA, but not
in the one with respect to ZF. Beklemishev [1996b] gives a di�erent kind of example
of such a formula for the two theories PA and I�0 +EXP.

5.5. Theorem. (Shavrukov [1997]) The �rst order theory of the Magari algebra of
PA is undecidable.

Japaridze [1993] contains some moderately positive results on the decidability of
certain fragments of (a special version of) this theory.

6. The extent of Solovay's theorems

An important feature of Solovay's theorems is their remarkable stability: a wide
class of arithmetic theories and their provability predicates enjoys one and the same
provability logic L. Roughly, there are three conditions su�cient for the validity of
Solovay's results: the theory has to be (a) su�ciently strong, (b) recursively enu-
merable (a provability predicate satisfying L�ob's derivability conditions is naturally
constructed from a recursive enumeration of the set of its axioms), and (c) sound.
Let us see what happens if we try to do without these conditions. The situation is
fully investigated only w.r.t. the soundness condition.

Consider an arbitrary arithmetic r.e. theory T containingPA and a �1 provability
predicate PrT (x) for T . Iterated consistency assertions for T are de�ned as follows:

Con0(T ) := >; Conn+1(T ) := Con(T +Conn(T ));

where, as usual, Con(T + ') stands for :PrT (p: 'q). In other words, Conn(T ) is
(up to provable equivalence) the unique arithmetic realization of the modal formula
:2n?. We say that T is of height n if Conn(T ) is true and Conn+1(T ) is false in the
standard model. If no such n exists, we say that T has in�nite height.

In a sense, theories of �nite height are close to being inconsistent and therefore
can be considered as a pathology. The inconsistent theory is the only one of height
0. All �1-sound theories have in�nite height, but there exist �1-unsound theories
of in�nite height. The theory T + :Conn(T ) is of height n, if T has in�nite height.
Moreover, for each consistent but �1-unsound theory T and each n> 0, one can
construct a provability predicate for T such that T is precisely of height n with
respect to this predicate (Beklemishev [1989a]).

Let us call the provability logic of T the set of all modal formulas A such that
T ` (A)�T , for all arithmetic realizations

� with respect to PrT . The truth provability
logic of T is the set of all A such that (A)�T is true in the standard model, for all
realizations �.
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6.1. Theorem. (Visser [1981]) For an r.e. arithmetic theory T containing PA, the
provability logic of T coincides with

1. L, if T has in�nite height,
2. fA j 2n? ` LAg, if T is of height 06 n<1.

Proof. By Solovay's construction, using the fact that the formula 2n? is valid in
Kripke-models of height < n, and only in such models. a

Generalization of Solovay's second theorem is more interesting. To formulate it,
we �rst introduce a convenient notation. For a set of modal formulas X , let LX
denote the closure under modus ponens and substitution of the set X together with
all theorems of L. In this notation, Solovay's logic S is the same as Lf2A!Ag.
The following two logics have been introduced by respectively Art�emov [1980] and
Japaridze [1986,1988b] with di�erent provability interpretations in mind (see the
next section):

A := Lf:2n? jn2 INg

D := Lf:2?; 2(2A_2B)! (2A_2B)g

Obviously, A�D� S. The following theorem gives an exhaustive description of all
truth provability logics.

6.2. Theorem. (Beklemishev [1989a]) For an r.e. arithmetic theory T containing
PA, the truth provability logic for T coincides with

1. S i� T is sound,

2. D i� T is �1-sound but not sound,

3. A i� T has in�nite height but is not �1-sound,

4. Lf2n+1?;:2n?g i� T is of height 0 6 n<1.

It is known that, at least in some natural cases, the other two su�cient conditions
can also be considerably weakened. Boolos [1979] shows that the non-r.e. predicate of
!-provability (dual to !-consistency) over Peano arithmetic has precisely the same
provability logic as Peano arithmetic itself, i.e., L. The same holds for the natural
formalization of the �n+1-complete predicate \to be provable in PA together with all
true �n-sentences" (Smory�nski [1985]). Solovay (see Boolos [1993b]) showed that
L is also the logic of the �1

1-complete predicate of provability in analysis together
with the !-rule. However, no results to the e�ect that Solovay's theorems hold for
broad classes of non-r.e. predicates are known. On the other hand, Solovay found an
axiomatization of the provability logic of the predicate \to be valid in all transitive
models of ZF", which happens to be a proper extension of L (see Boolos [1993b]).

If one is somewhat careful, Solovay's construction can be adapted to show
that Solovay's theorems hold for all (r.e., sound) extensions of I�0 +EXP (de
Jongh, Jumelet and Montagna [1991]). The two theorems formulated earlier in this
section can be similarly generalized. However, the most intriguing question, whether
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Solovay's theorems hold for essentially weaker theories, such as Buss's S12 or even
S2 , remains open. This problem was thoroughly investigated by Berarducci and
Verbrugge [1993], where the authors, in a modi�cation of the Solovay construction,
only succeeded in embedding particular kinds of Kripke-models into bounded arith-
metic. The main technical di�culty lies in the fact that Solovay's construction, in
its known variations, presupposes (at least, sentential) provable 9�b

1-completeness of
the theory in question. This property happens to fail for bounded arithmetic under
some reasonable complexity-theoretic assumption (Verbrugge [1993a]). As far as we
know, it is not excluded that the answer to the question what is the provability logic
of S12 also depends on di�cult open problems in complexity theory.

Solovay's theorem does not hold in its immediately transposed form for Heyting's
arithmetic HA (the intuitionistic pendant of PA). The logic of the provability
predicate of HA with regard to HA certainly contains additional principles beyond
the obvious intuitionistic version of L: the intuitionistic propositional calculus IPC
plus 2(2A!A)! 2A. The situation has been discussed by Visser in several
papers (Visser [1985,1994], Visser et al. [1995]). It is unknown what the real logic is,
for all we know it may even be complete �0

2 . In any case it contains the additional
principles:

� 2::2A! 22A

� 2(::2A! 2A)! 22A

� 2(A _B)! 2(A _ 2B) (Leivant's Principle2)

But this is not an exhaustive list. It is well possible that the logic of the binary
operator of �-preservativity over HA is better behaved than the logic of provability
on its own: PA+A �-preserves PA+B , if from each �1-sentence from which
A follows in PA, B is also PA-derivable. In classical systems �-preservativity is
de�nable in terms of �1-conservativity (see sections 12 to 14 for that concept) and vice
versa, but constructively this is the proper version to study (see also Visser [1997]).

7. Classi�cation of provability logics

One of the important methodological consequences of G�odel's second incomplete-
ness theorem is the fact that, in general, it is necessary to distinguish between a
theory T under study, and a metatheory U in which one reasons about the properties
of T . Perhaps, the most natural choice of U is the full true arithmetic TA, the
set of all formulas valid in the standard model, yet this is not the only possibility.
Other meaningful choices could be T itself, or the reader's favorite minimal fragment
of arithmetic, e.g., I�1. The separate role of the metatheory is emphasized in the
de�nition of provability logic of a theory T relative to a metatheory U that was
suggested independently by Art�emov [1980] and Visser [1981].

2added as one of the \stellingen" (theses) to Leivant's Ph.D. thesis, Amsterdam, 1979
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Let T and U be arithmetic theories extending I�0 +EXP, T r.e. and U not
necessarily r.e. The provability logic of T relative to, or simply at, U is the set of
all modal formulas ' such that U ` (')�T , for all arithmetic realizations

� (denoted
PRLT (U)). Intuitively, PRLT (U) expresses those principles of provability in T that
can be veri�ed my means of U . As a set of modal formulas, PRLT (U) contains L
and is closed under modus ponens and substitution, i.e., is a (not necessarily normal)
modal logic extending L.

Solovay's theorems can be restated as saying that, if T is a sound theory, then
PRLT (T ) = L and PRLT (TA) = S. A modal logic is called arithmetically complete, if
it has the form PRLT (U), for some T and U . The problem of obtaining a reasonable
general characterization of arithmetically complete modal logics has become known
as `the classi�cation problem', and was one of the early motivating problems for the
Moscow school of provability logic founded by Art�emov.

The solution to this problem is the joint outcome of the work of several au-
thors Art�emov [1980], Visser [1981,1984], Art�emov [1985b], Japaridze [1986,1988b],
Beklemishev [1989a]. Art�emov [1980] (applying the so-called uniform version of
Solovay's theorem, corollary 5.2) showed that all logics of the form LX , for any set
X of variable-free modal formulas, are arithmetically complete. In Art�emov [1985b],
he showed that such extensions are exhausted by the following two speci�c families
of logics:

L� := LfFn j n 2�g,

L
�

� := Lf
W
n62� :Fng,

where �; � � IN, � is co�nite, and Fn denotes the formula 2n+1?! 2
n?. Some

of the provability logics introduced above have this form: L= L; , A= LIN ,
Lf2n+1?;:2n?g= L

�

INnfng .

The families L� and L
�

� are ordered by inclusion precisely as their indices, and

L� is included in L
�

� for co�nite �. Note that the logics L
�

� are not contained in
S, and therefore correspond to unsound metatheories U if the theory T is sound.
Visser [1984] showed that these are the only arithmetically complete logics not
contained in S. Art�emov [1985b] improved this by actually reducing the classi�cation
problem to the interval between A and S. Any arithmetically complete logic ` from
this interval generates a family of di�erent arithmetically complete logics of the
form ` \ L

�

� , for co�nite � , and Art�emov showed that such logics, together with the

families L� and L
�

� , exhaust all arithmetically complete ones.

Japaridze [1986,1988b] found a new provability logic within the interesting inter-
val by establishing that PRLPA(PA+ !-Con(PA)) =D, where !-Con(PA) denotes
the formalized !-consistency ofPA. The �nal step was made by Beklemishev [1989a],
who showed thatD is the only arithmetically complete modal logic within the interval
between A and S, thus completing the classi�cation. This result was also crucial
for the proof of theorem 6.2 of the previous section. We denote S� := S \ L

�

� ,

D� := D \ L
�

� and formulate the resulting theorem.
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7.1. Theorem. (Classi�cation Theorem, Beklemishev [1989a]) The arithmetically
complete modal logics are exhausted by the four families: L�, L

�

� , S� , D� , for
�; � �N, � co�nite.

From a purely modal-logical point of view, the meaning of the classi�cation
theorem is that only very few extensions of L are arithmetically complete. The word
`few' must not be understood here in terms of cardinality, because the family L�

has already the cardinality of the continuum, but rather less formally. E.g., there
is a continuum of di�erent modal logics containing A (Art�emov [1985b]), but only
four of them are arithmetically complete. Similar observations hold for other natural
intervals in the lattice of extensions of L.

All arithmetically complete logics have nice axiomatizations, and are generally
well-understood, although most of them are not normal. An adequate Kripke-type
semantics is known for all arithmetically complete logics: for L� and L

�

� it can be
formulated in terms of the height of the tree-like models for L; the so-called tail
models for S were suggested independently by Boolos [1981] and Visser [1984]; a
similar kind of semantics for D was produced by Beklemishev [1989b]. A corollary is
that all logics of the families S� , D� , and L

�

� are decidable, and a logic of the form
L� is decidable, i� its index � is a decidable subset of IN, i.e., i� it has a decidable
axiomatization.

The fact that arithmetically complete logics are scarce tells us that inference
`by arithmetic interpretation' considerably strengthens the usual modal-logical
consequence relation. In fact, the classi�cation theorem can be understood as a
classi�cation of modally expressible arithmetic schemata. Familiar examples of such
schemata are: the local re
ection principle for T , that is the schema PrT (pAq)!A
for all arithmetic sentences A, which is expressed by the modal formula 2p! p;
! times iterated consistency of T , which is expressed by f:2n? j n 2 INg; the local
�1-re
ection principle, which can be expressed by the axioms of D, etc. In general,
a schema is modally expressible over a theory T , if it is deductively equivalent to the
set of all arithmetic realizations with respect to T of a family of modal formulas.
The classi�cation theorem gives us a complete description of all modally expressible
arithmetic schemata: they precisely correspond to axiomatizations of arithmetically
complete modal logics.

It is very surprising that all such schemata are built up from instances of the
local re
ection principle, sometimes a little twisted by axioms of L

�

� type. This can
be considered as a theoretical justi�cation of the `empirical' rule that in the study
of provability all reasonable metatheories happen to be equivalent to some version of
the re
ection principle.

We round up the discussion of the classi�cation theorem by giving some examples
for natural pairs (theory, metatheory) of fragments of arithmetic.

PRLI�1
(PA) = S;

PRLI�1
(I�n) = D; for n> 1;

PRLI�0+EXP(PRA) = D;



The Logic of Provability 491

PRLI�1
(I�1+Con(PA)) = A;

PRLPRA(I�1) = L:

All such results follow easily from the classi�cation theorem and the usual proof-
theoretic information about the provability of re
ection principles for the theories in
question. E.g., I�1 +Con(PA) obviously contains !-times-iterated consistency for
I�1, but, being a �nite �1-axiomatized extension of I�1, cannot contain the local
�1-re
ection principle for I�1 (by L�ob's theorem). Hence, PRLI�1

(I�1 +Con(PA))
contains A but does not contain D. The classi�cation theorem implies that, in this
case, it must be A.

8. Bimodal and polymodal provability logics

The fact that all reasonable theories have one and the same|L�ob's | provability
logic is, in a sense, a drawback: it means that the provability logic of a theory
cannot distinguish between most of the interesting properties of theories, such as
e.g., �nite axiomatizability, re
exivity, etc. In fact, by Visser's theorem 6.1, the
only recognizable characteristic of a theory is its height, and the situation does not
become much better even if one considers truth provability logics.

One obvious way to increase the expressive power of the modal language is
to consider provability operators in several di�erent theories simultaneously, which
naturally leads to bi- and polymodal provability logic. It turns out that the modal
description of the joint behaviour of two or more provability operators is, in general,
a considerably more di�cult task than the calculation of unimodal provability logics.
There is no single system that can justi�ably be called the bimodal provability
logic | rather, we know particular systems for di�erent natural pairs of provability
operators, and none of those systems occupies any privileged place among the others.
Moreover, the numerous isolated results accumulated in this area, so far, give us no
clue as to a possible general classi�cation of bimodal provability logics for pairs of
sound r.e. theories. This problem remains one of the most challenging open problems
in provability logic. A short survey of the state of our knowledge in this �eld is given
below.

The language L(2;4) of bimodal provability logic is obtained from that of
propositional calculus by adding two unary modal operators 2 and 4. Let (T; U)
be a pair of arithmetic r.e. theories, taken together with some �xed canonical �1

provability predicates PrT and PrU . An arithmetic realization (�)�T;U with respect to
(T; U) is a mapping of modal formulas to arithmetic sentences that commutes with
Boolean connectives and translates 2 as provability in T and 4 as that in U :

(2A)�T;U = PrT (p(A)
�
T;U

q); (4A)�T;U = PrU(p(A)
�
T;U

q):

The provability logic for (T; U), denoted PRLT;U , is the collection of all L(2;4)-
formulas A such that T ` (A)�T;U and U ` (A)�T;U , for every arithmetic realization

�.
In general, as in the unimodal case, one can consider bimodal provability logics
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for (T; U) relative to an arbitrary metatheory V (where PRLT;U corresponds to
V = T \ U ).

Not too much can a priori be said about PRLT;U , for arbitrary T and U . Clearly,
PRLT;U is closed under modus ponens, substitution and the 2- and 4-necessitation
rules. Moreover, PRLT;U has to be a (normal) extension of the bimodal system CS,
given by the axioms and rules of L formulated separately for 2 and 4, and by the
obvious mixed principles:

2A!42A; 4A! 24A:

By Solovay's theorem we know that, whenever both T and U have in�nite height,
the fragment of PRLT;U in the language L(2) of 2 alone, as well as the one in the
language of 4, actually coincides with L. Using the uniform version of Solovay's
theorem, Smory�nski [1985] showed that CS is the minimal bimodal provability
logic, i.e., it coincides with PRLT;U for a certain pair of �nite extensions T; U of
Peano arithmetic. Beklemishev [1992] showed that there is even a pair of provability
predicates for Peano arithmetic itself for which the corresponding bimodal provability
logic coincides with CS. Such predicates can be called independent in the sense that
they `know' as little about each other as is possible in principle. It should be noted
however that, neither the theories in Smory�nski's example, nor the independent
provability predicates are natural| they are constructed by a tricky diagonalization.
Thus, we are in the interesting situation that the bimodal logicCS, which structurally
occupies a privileged place among the provability logics, does not correspond to any
known natural pair of theories.

Deeper structural information on bimodal provability logics is provided by the
Classi�cation Theorem 7.1 for arithmetically complete modal logics. With every
bimodal logic ` we can associate its type:

(`)0 := fA 2L(2) j ` `4Ag:

An easy analysis then shows that (�)0 surjectively maps normal extensions ofCS onto
the lattice of the unimodal logics containingL. Under the assumption of �1-soundness
of T \ U we obviously have:

PRLT (U) = (PRLT;U)
0:

The classi�cation theorem not only shows that not every type (of unimodal logic)
is materialized as that of a bimodal provability logic, but also gives us a complete
description of all such possible types.

Besides the general observations above, a number of particular bimodal provabil-
ity logics for natural pairs of theories are known. These logics cover most of the
examples of pairs of arithmetic theories that come to mind, but, unfortunately, are
far from being an exhaustive list of all bimodal provability logics.

The best known system is the logic PRLPA;ZF discovered by Carlson [1986], and
independently (with a di�erent interpretation in mind) by Montagna [1987]. This
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logic can be axiomatized over CS by the principle of essential re
exivity

4(2A!A):

It is the only bimodal provability logic of type S and a maximal one among the
bimodal logics for pairs of sound theories. In other words, PRLT;U = PRLPA;ZF,
whenever the theories T; U are sound and U contains the local re
ection principle
for T .

Furthermore, we know two natural bimodal provability logics of type D, intro-
duced by Beklemishev [1996a]. The �rst one corresponds to pairs of theories (T; U)
such that U is a �nite extension of T that proves the local �1-re
ection principle for
T . Typical examples are the pairs (I�0 +EXP; I�0 + SUPEXP), (I�m; I�n), for
n>m > 1, etc. The logic can be axiomatized over CS by the monotonicity axiom
2A!4A and the schema

4(2S! S);

where S is an arbitrary (possibly empty) disjunction of formulas of the form 2B and
4B .3

The second one corresponds to �1-essentially re
exive (see de�nition 12.3) exten-
sions of theories of bounded arithmetic complexity such as e.g., (I�0 +EXP;PRA),
(I�n; I�

R
n+1) for n > 1, where I�R

k is de�ned like I�k but with the induction
for �k -formulas formulated as a rule. The corresponding provability logic can be
axiomatized over CSM by the �1-essential re
exivity schema

4A!4(2(A! S)! S);

where S is as before.
We also know two natural provability logics of type A (Beklemishev [1994]). The

�rst system corresponds to pairs of theories (T; U) such that U is an extension of T
by �nitely many �1-sentences and proves !-times-iterated consistency of T , such as
e.g., the pairs (PA;PA+Con(ZF)), (I�1; I�1 +Con(I�2)), etc. This logic can be
axiomatized over CSM by the principle

(P) 4A! 2(4? _A);

valid for all �1-axiomatizable extensions of theories, together with the schema

4:2n?; n > 1:

The second system corresponds to re
exive �1-axiomatizable extensions of theories,
such as e.g., (PA;PA+ fConn(PA) j n> 1g), (I�1; I�1 + fCon(I�n) j n > 1g). It
can be axiomatized over CSM plus (P) by the re
exivity axiom

4A!43A:

3In the following, CS together with the monotonicity axiom will be denoted CSM.
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Finally, we know by Beklemishev [1996a] a natural system of type L that corresponds
to �nite extensions of theories of the form (T; T +A), where both T + ' and T + : '
are conservative over T with respect to Boolean combinations of �1-sentences.
Examples of such pairs are (PRA; I�1), (I�

R
n ; I�n), for n> 1, and others. The

logic is axiomatized over CSM by the B(�1)-conservativity schema

4B! 2B;

where B denotes an arbitrary Boolean combination of formulas of the form 2C and
4C .

The six bimodal logics described above essentially exhaust all nontrivial cases
for which natural provability logics have explicitly been characterized. It is worth
mentioning that all these systems are decidable, and a suitable Kripke-style semantics
is known for each of them. Smory�nski [1985] contains an extensive treatment of
PRLPA;ZF including proofs of three arithmetic completeness theorems due to Carlson.
These theorems are extended by Stranneg�ard [1997] to the setting of r.e. sets of
bimodal formulas (as discussed in section 5). Visser [1995] presents a beautiful
approach to Kripke semantics for bimodal provability logics. Beklemishev [1994,
1996a] gives a detailed survey of the current state of the �eld.

Apart from describing the joint behaviour of two `usual' provability predicates,
each of them being separately well enough understood, bimodal logic has been
successfully used for the analysis of some nonstandard, not necessarily r.e., concepts
of provability. The systems emerging from such an analysis often have not so much in
common with CS, although di�erent `bimodal analyses' do share common technical
ideas.

As early as 1986, Japaridze [1986,1988b] characterized the bimodal logic of prov-
ability and !-provability (dual to !-consistency) in Peano arithmetic. Later his study
was simpli�ed and further advanced by Ignatiev [1993a] and Boolos [1993b,1993a],
who, among other things, showed that the same system corresponds to some other,
so-called strong, concepts of provability (taken jointly with the usual one). Other
examples of strong provability predicates are the �n+1-complete provability from all
true arithmetic �n-sentences, for n > 1, and the �1

1-complete provability under the
!-rule in analysis.

Japaridze's bimodal logic can be axiomatized by the axioms and rules of L,
formulated separately for 2 and for 4, the monotonicity principle 2A!4A, and
an additional �1-completeness principle

3A!43A;

which re
ects in so far as that is possible that 4 is strong enough to prove all true
�1-sentences (if 2 is the usual r.e. provability predicate and 4 a strong provability
predicate). Japaridze's logic is decidable and has a reasonable Kripke semantics. An
extensive treatment of Japaridze's logic is given in Boolos [1993b].

Bimodal analysis of other unusual provability concepts has been undertaken
by Visser [1989,1995] and Shavrukov [1991,1994]. Using the work of Guaspari and
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Solovay [1979], Shavrukov [1991] found a complete axiomatization of the bimodal
logic of the usual and Rosser's provability predicate for Peano arithmetic (see also
section 9). It is worth noting that Rosser's provability predicate, although numerating
(externally) the same theory as the usual one, has a very di�erent modal behaviour;
e.g., Rosser consistency of PA is a provable fact, but on the other hand, Rosser's
provability predicate is not provably closed under modus ponens. Shavrukov [1994]
characterizes the logic of the so-called Feferman provability predicate. This work
was preceded by Visser [1989,1995], where the concept of provability in PA from
`nonstandardly �nitely many' axioms and some other unusual provability concepts
were bimodally characterized. These systems were motivated by their connections
with interpretability logic, but another motivation originates with Jeroslow and
Putnam who studied the Rosser and Feferman style systems as `experimental'
systems: their self-correcting behaviour is supposed to be closer to the way humans
reason. Studying ordinary provability and self-correcting provability can provide a
good heuristic for appreciating the di�erences between both kinds of systems.

A �nal example of such an analysis of an unusual proof predicate by the
development of a bimodal logic was Lindstr�om [1994]'s analysis of Parikh provability,
i.e., the proof predicate that allows 2A/A as a rule of inference.

Additional early results in bimodal logic, e.g., a bimodal analysis of the so-called
Mostowski operator, can be found in Smory�nski [1985].

Many results in bimodal provability logic can be generalized to polymodal logic.
Such a generalization is particularly natural in the modal-logical study of progressions
of theories, a topic in proof theory that goes as far back as the work of Turing [1939].
From the modal-logical point of view, however, such a generalization, in all known
cases, does not lead to any essentially new phenomena. Roughly, the resulting
systems happen to be direct sums of their bimodal fragments; therefore we shall not
go into the details.

Polymodal analogues are known for Japaridze's bimodal logic (modalities, in-
dexed by natural numbers n, correspond to the operators to be provable from all true
�n-sentences), and for natural provability logics due to Carlson and Beklemishev.
Here, the modal operators correspond to the theories of the original Turing-Feferman
progressions of trans�nitely iterated re
ection principles, and thus, are indexed by
ordinals for some constructive system of ordinal notation, say, the natural one up
to �0 . Iterating full re
ection leads to the polymodal analogue of PRLPA;ZF, and
trans�nitely iterated consistency leads to a natural polymodal analogue of A-type
provability logics (Beklemishev [1991,1994]).

9. Rosser orderings

To discuss Rosser sentences and more generally the so-called Rosser provability
predicate in a modal context, Guaspari and Solovay [1979] enriched the modal
language by adding, for each 2A and 2B , the formulas 2A� 2B and 2A 4 2B ,
with as their arithmetic realizations the �1-sentences \A� is provable by a proof
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that is smaller than any proof of B�", and \A� is provable by a proof that is
smaller than or equal to any proof of B�" (so-called witness comparison formulas).
They axiomatized modal logics R� and R =R� + the rule 2A=A, and gave an
arithmetic completeness result forR. In this arithmetic completeness result they did
have to allow arbitrary standard provability predicates in the arithmetic realizations
however, i.e., arbitrary provability predicates satisfying the three L�ob conditions.
Shavrukov [1991] (see also the end of section 8) showed that this restriction can be
dropped when one restricts the contexts for the new operator to 2A� 2:A (the
Rosser provability predicate, for short: 2RA), and de Jongh and Montagna [1991]
showed that, allowing formulas with free variables as arithmetic substitutions leads to
R� as the arithmetically complete system. Guaspari and Solovay [1979] also showed
that for some standard provability predicates all Rosser sentences (i.e., sentences �
such that PA`�$ (PrPA(p:�q)� PrPA(p�q)) are equivalent, and that for some
other standard provability predicates this is not the case. This leaves open the
question whether a reasonable notion of usual proof predicate can be de�ned for
which the question \Is the Rosser sentence unique?" does have a de�nite answer.
Hence also, uniqueness of �xed points is not provable inR. Finally, they showed that
also the existence part of the �xed point theorem fails for R. Simpler proofs for the
completeness theorems were given in de Jongh [1987] and Voorbraak [1988].

There are connections between this work in provability logic and speed up.
First, de Jongh and Montagna [1988,1989] gave a new simpler proof of Parikh [1971]'s
theorem that, for any provably recursive function g there is a sentence � provable
in PA such that PA proves PrPA(p�q) by a much shorter proof in the sense of g
(a< g b i� g(a)< b) than it proves A itself. In de Jongh and Montagna [1988] this
was done for g the identity function by showing that `R �(p$ (22p� 2p))! p
(22p� 2p has only provable �xed points in R). The result shows that any �xed
point � in PA of the arithmetic formula PrPA[PrPA(x)]� PrPA(x)

4 is provable in
PA, and the shortest proof of PrPA(p�q) is shorter than the one of �. In the paper
general conditions were given under which formulas have only provable �xed points in
R. In de Jongh and Montagna [1989] a Guaspari-Solovay theory of � g is developed
for the notion \much shorter in the sense of g". Under reasonable conditions on g
the resulting modal theory R0

g is not dependent on g. Parikh's theorem can then
be proved in this setting. The theory of provable �xed points was extended to this
setting. In his review of these and some consecutive papers Beklemishev [1993b]
rightly remarked that the changing of the orders of the proofs in Guaspari-Solovay
style interferes with the order induced by the function g and makes some of the
results somewhat less clear than one might wish.

Montagna [1992] applied the results on provable �xed points in a study of
metamathematical rules, i.e., rules like PrT (p�q)=� that can be considered as
realizations of modal-logical rules (in case: 2A=A). He classi�ed these rules into
two types: rules giving only polynomial speed up in proofs in arithmetic, and rules
giving a superexponential speed up. In H�ajek, Montagna and Pudlak [1993] it was

4for the meaning of [...] see notation 12.2.
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shown that the rule 2A=A is maximally powerful among these metamathematical
rules in the sense that the use of any of them can be polynomially simulated by
2A=A. Moreover, in that paper natural examples of statements of which the proof
is superexponentially shortened by the above rule are given.

10. Logic of proofs

A provability reading of the modality 2 as \is (informally) provable" was an
intended semantics for the classical system S4 of propositional modal logic (see
end of section 2) since G�odel's paper (G�odel [1933]). However, as we have seen,
the straightforward interpretation of 2F as Pr(pF q) leads to the logics L and
S which are incompatible with S4. The re
exivity principle 2F ! F fails in L,
and the necessitation rule fails in S. Nevertheless, an interesting interpretation
of the S4-modality as formal provability is possible. One can have the re
exivity
principle as well as the necessitation rule if one incorporates into the modal language
machinery to keep all proofs \real", i.e., given by actual natural numbers and not
quantifying over them as in the provability predicate. Art�emov succeeded in doing
this by replacing the quanti�ers by a kind of Skolem functions in his logic of proofs
LP (Art�emov [1994,1995]).

The language of LP contains besides the usual Boolean constants, connec-
tives and sentence variables, proof variables x0; : : : ; xn; : : :, proof axiom constants
a0; : : : ; an; : : :, function symbols: monadic !, and binary + and �, and �nally the
modal operator symbol [[ ]]( ).

Terms and formulas are de�ned in the natural way: proof variables and axiom
constants are terms; sentence variables and Boolean constants are formulas; whenever
s and t are terms !t; (s+ t); (s � t) are again terms, Boolean connectives behave
conventionally, and for t a term and F a formula, [[t]] F is a formula. We will write
s � t or even st instead of (s � t) and skip parentheses when convenient. A term
is ground if is does not contain variables. The system LPAS has as its axioms all
formulas of the of the forms below, and as its only rule modus ponens:

A0. The tautologies in the language of LP,
A1. [[t]] F ! F \re
exivity"
A2. [[t]] (F !G)! ([[s]] F ! [[ts]]G) \application"
A3. [[t]] F ! [[!t]][[t]] F \proof checker"
A4. [[s]] F ! [[s+ t]] F , [[t]] F ! [[s+ t]] F \choice"
AS. A �nite set of formulas of the form [[c]]A, where c is an axiom constant,

and A is an axiom A0-A4 \axiom speci�cation"

The system LP is the generic name for the LPAS 's of the various axiom speci�cations
AS. The intended understanding of LP is as a logic of operations on proofs, where
[[t]]F stands for \t is a code for a proof of F". For the usual G�odel proof predicate
Proof(x; y) inPA there are provably recursive functions from codes of proofs to codes
of proofs corresponding to � and !: � stands for an operation on proof sequences
which realizes the modus ponens rule in arithmetic, and ! is a proof checker operation



498 G. Japaridze and D. de Jongh

as it appears in the proof of the second G�odel Incompleteness theorem. The usual
proof predicate has a natural nondeterministic version PROOF(x; y) here called
standard nondeterministic proof predicate: \x is a code of a derivation containing
a formula with a code y". The predicate PROOF already has all three operations
of the LP-language: the operation s+ t is in its case just the concatenation of the
(nondeterministic) proofs s and t.

The system LP reminds one of propositional dynamic logic (see e.g., Harel [1984]),
but is really quite di�erent in character, since the modalities [[t]](�) do not satisfy the
property [[t]] (p! q)! ([[t]] p! [[t]] q) in LP. This makes the logic LP nonnormal
and not a polymodal logic in the sense of section 8. Nevertheless, the entire variety
of labeled modalities in LP can simulate S4. For example, the necessitation rule
F=2F of normalmodal logics has its constructive counterpart inLP: if LP ` F , then
LP ` [[t]]F for some ground term t. In general, let F o be the result of substituting 2
for all occurrences of [[t]] in F , and Xo = fF o j F 2Xg for any set X of LP -formulas.
It is easy to see that LP is sound with respect to S4: (LP)o � S4. The converse
inclusion S4� (LP)o turns out to be valid as well: by an LP-realization r = r(AS)
of a modal formula F we mean

1. An assignment of LP-terms to all occurrences of 2 in F ,

2. a choice of an axiom speci�cation AS.

Under F r we denote the image of F under the realization r. Positive and negative
occurrences of modality in a formula and a sequent are de�ned in the usual way. A
realization r is normal if all negative occurrences of 2 are realized by proof variables.

10.1. Theorem. (Art�emov [1995]) If `S4F , then `LPASF
r for some axiom

speci�cation AS and some normal realization r = r(AS).

The proof of the theorem provides an algorithm which, for a given cutfree
derivation T in S4, assigns LP-terms to all appearances of the modality in T .

Let us agree to use a new function symbol �z '(z) for any arithmetic formula
'(z). A formula  (�z '(z)) is now supposed to be decoded in the usual way (see van
Dalen [1994]) as a pure arithmetic formula  (�z '(z))� : for the innermost occurrence
of �z '(z) put  (�z '(z))� to be 9z('(z) ^  (z)), and then iterate this procedure
when needed. Under �z ' we understand the �-term determined by the formula
'(z) ^ 8v < z : '(v). An arithmetic formula ' is provably �1 i� both ' and : ' are
provably �1 . A term �z ' is provably recursive i� ' is provably �1 and provably total
i� PA ` 9z '(z). A closed recursive term is a provably total and provably recursive
term �z ' such that ' contains no free variables other than z . Closed recursive
terms represent all provably recursive names for natural numbers. We have to make
these distinctions, since some operations on proofs, e.g., the proof checker !, really
depend on the name of the argument, not only on its value.

A proof predicate is a provably �1-formula Prf(x; y) such that, for all ', if
PA ` ', then, for some n 2!, Prf(n; p'q) holds. A proof predicate Prf(x; y) is here
called normal if
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1. For every proof k, the set of corresponding theorems is �nite and the function
T (k) = the code of the set fl j Prf(k; l)g is provably total recursive,

2. For any �nite set X of codes of theorems of PA there exists a natural number
n such that X � T (n).

For each normal proof predicate Prf there are provably recursive terms m(x; y);
a(x; y); c(x) such that for all closed recursive terms s; t and for all arithmetic
formulas ';  the following formulas are valid:

Prf(s; p'!  q) ^Prf(t; p'q)! Prf(m(s; t); p q)

Prf(s; p'q)! Prf(a(s; t); p'q); Prf(t; p'q)! Prf(a(s; t); p'q)

Prf(t; p'q)! Prf(c(ptq); pPrf(t; p'q)q).

As we have noted above, the nondeterministic G�odel proof predicate PROOF is a
normal proof predicate.

Let AS be an axiom speci�cation. An arithmetic AS-realization � of the
LP-language has the following parameters: AS, a normal proof predicate Prf,
an evaluation of the sentence letters by sentences of arithmetic, and an eval-
uation of proof letters and axiom constants by closed recursive terms. We
put >� � (0 = 0) and ?� � (0 = 1), � commutes with Boolean connectives,
(t � s)� � m(t�; s�); (t+ s)� � a(t�; s�); (!t)� � c(pt�q), ([[t]]F )� � Prf(t�; pF �q).
We assume also that PA `G� for all G 2AS .

Under any AS-interpretation � an LP-term t becomes a closed recursive term
t� (i.e., a recursive name of a natural number), and an LP-formula F becomes
an arithmetic sentence F �. Also note that the re
exivity principle is there, since
[[t]]F ! F is provable in PA under any interpretation �. Indeed, let n be the value
of t�. If Prf(n; pF �q) is true, then PA ` F �, thus PA ` Prf(n; pF �q)! F �. If
Prf(n; pF �q) is false, then PA ` :Prf(n; pF �q), and again PA ` Prf(n; pF �q)! F �.

10.2. Theorem. (Art�emov [1995], arithmetic completeness of LP) If `LPASF ,
then PA ` F � and hence IN � F � , for any AS-interpretation �.

Combining theorems 10.1 and 10.2 provides arithmetic completeness of S4:

10.3. Theorem. If `S4 F , then PA ` F r for some realization r and some axiom
speci�cation AS.

By G�odel's translation of intuitionistic propositional logic into S4, which provides
a faithful embedding of intuitionistic propositional logic in to S4 (G�odel [1933],McK-
insey and Tarski [1948]), this automatically includes an arithmetic completeness
result for intuitionistic logic as well. If one considers this in the light of the Curry-
Howard term interpretation of intuitionistic natural deduction (see e.g., Troelstra
and Schwichtenberg [1996]), then one notes that many more terms are used in
the LP-interpretation. It seems worthwhile to search in this light for a naturally
restricted subsystem of LP.
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The logic LP is a version of S4 presented in a more rich operational language,
with no information being lost, since S4 is the exact term-forgetting projection ofLP.
A transliteration of an S4-theorem into LP-language may result in an exponential
growth of its length, because the S4-derivations are included in the LP-formulas as
proof terms. However, this increase looks much less dramatic if we calculate the
complexity of the input S4-theorem F in an `honest' way as the length of a proof of
F in S4: the proof terms appearing in the realization algorithm have a size linear of
the length of the proof, so, the total length of an LP-realization of an S4-theorem F
is bounded by the quadratic function of the length of a given S4-derivation of F .

11. Notions of interpretability

In the part on interpretability and its logics (sections 11-15) we are going to
investigate a family of concepts like interpretability and partial conservativity, which,
in a sense, are generalizations of the notion of provability and for which we use
the common name \interpretability". In the �rst two sections we will explain
these concepts and relate them to each other. In the third section we develop an
extension of provability logic to so-called interpretability logic with these concepts
in mind. In the fourth section we will prove arithmetic completeness of the best-
known interpretability logic ILM with regard to interpretability in as well as �1-
conservativity overPA. In the �fth section we give a brief survey of the logics induced
by some other concepts from the above family.

The concepts discussed in the �rst two sections are de�ned in terms of the
comparison of the deductive strengths of theories like \one theory is included in
another" or \one theory is consistent with another". To compare the strengths of
two theories, these theories are not necessarily to be written in the same language, it
is enough to organize a translation (\interpretation") of the language of one theory
into the language of the other and just consider the translated variant of the �rst
theory. While introducing the notions we will even assume that di�erent theories
always have di�erent languages, even if the two languages coincide graphically.

For simplicity we restrict our considerations to theories formalized within the
classical �rst order logic with identity; we suppose that the languages of the theories
we consider contain �nite or in the worst case countable sets of predicate constants
and do not contain functional or individual constants. For a language K , FmK

denotes the set of formulas of K and StK the set of sentences, i.e., closed formulas of
K . If D is a nonempty set, StDK denotes the set of sentences of K with parameters
in D. More precisely, the elements of StDK are pairs h'; f i, where ' 2FmK and f is
a valuation of the free variables of ' in D; we usually write '(a1; : : : ; an) instead of
h'(x1; : : : ; xn); f i, if a1 = f(x1), . . . , an = f(xn).

By a theory we mean a pair T = hA;Ki, where K is a language and A� StK .
The set A contains the extra-logical axioms of T ; provability in T means derivability
from A in the classical predicate logic with identity. Thus, here we do not identify a
theory with the set of its theorems, but rather with the set of its nonlogical axioms
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(in particular, we suppose that I�1 is �nitely axiomatized). However we do say that
a theory T = hA;Ki is a subtheory of a theory T 0 = hA0; K 0i and write T � T 0, if
K �K 0 and the set of theorems of T is a subset of that of T 0; if at the same time A is
�nite, then T is said to be a �nite subtheory of T 0. If K =K 0 , we denote the theory
hA [A0; Ki by T + T 0 ; if M � StK and ' 2 StK , we may also use T +M and T + '
to denote the theories hA [M;Ki and hA [ f'g; Ki, respectively.

Let us not be too lazy to de�ne the well-known notion of �rst order model: for
a language K , a K -model is a pair M = hD;Gi, where D is a nonempty set (of
D-\individuals") called the domain and G is a function that assigns to each n-place
predicate constant P of K an n-ary relation GP on D, such that G= is the identity
relation. The truth of ' 2 StDK in M , in symbols M � ', is de�ned in the standard
way: an atom P (a1; : : : ; an) is true in M i� GP (a1; : : : ; an) holds, truth commutes
with the Boolean connectives and M � 8x'(x) i� for all a 2D, M � '(a). The
theory TM of a K -model M is de�ned as hf' 2 StKjM � 'g; Ki. And M is said to
be a model of a theory hA;Ki, if M � ' for each ' 2A (of course the latter also
implies that M � ' for any closed theorem ' of T ).

Let K and K 0 be languages. We may suppose that the set of individual variables
of K is a subset of that of K 0 and that there are in�nitely many variables of K 0

not belonging to K . Then a relative translation from K into K 0 is a pair h`; �(x)i,
where:

� ` is a function which assigns to each n-place predicate constant P of K a
formula P `(v1; : : : ; vn) of K

0 whose bounded variables do not belong to K and
whose free variables are the �rst n variables of the alphabetical list of the
variables of K 0 ,

� �(x) is a formula of K 0 (called the relativizing formula) with precisely x free
whose bounded variables do not belong to K .

Henceforth we usually omit the word \relative(ly)" and we call translations from
the language of PA into the same language arithmetic translations. Now, for each
formula ' 2FmK we de�ne t' , the t-translation of ' into K 0 , by the following
induction on the complexity of ' :

� t(x= y) is x= y,

� for any other atom P (x1; : : : ; xn), tP (x1; : : : ; xn) is P
`(x1; : : : ; xn),

� t commutes with Boolean connectives: t(�! �) = t�! t� , etc.,

� t(8x�) is 8x(�(x)! t�), and thus t(9x�) is 9x (�(x) ^ t�).

If T and T 0 are theories in the languages K and K 0 and t is a translation from K
into K 0 , we de�ne the theories

t(T ) = hft' j ' 2 StK; T ` 'g; K 0i and

t�1(T 0) = hf' j ' 2 StK; T 0 ` t'g; Ki.
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The notion of translation is a formal analog of that of model: a translation
t= h`; �(x)i fromK intoK 0 in fact de�nes aK -model in the languageK 0 , where �(x)
plays the role of D and ` the role of G; as soon as we have a K 0-modelM 0 = hD0; G0i
such that fa 2D0 jM 0

� �(a)g 6= ;, a unique K -model M = hD;Gi arises by taking
D = fa 2D0 jM 0

� �(a)g and GP = fha1; : : : ; ani 2Dn jM 0
� P `(a1; : : : ; an)g for each

n-place predicate letter P of K ; we call this model the K -model induced by (t;M 0).
Suppose K and K 0 are languages and M = hD;Gi and M 0 = hD0; G0i are K -

and K 0-models, respectively. Then an interpretation of M in M 0 is a translation
t from K into K 0 such that for all ' 2 StK , M � ' () M 0

� t' , i.e., the
K -model induced by (t;M 0) is elementarily equivalent to M . And a strong
interpretation of M in M 0 is a pair (t; f), where t= h`; �(x)i is a translation
from K into K 0 (in fact an interpretation of M in M 0) and f is an injection
of D into fa 2D0 jM 0

� �(a)g such that for any n-place predicate letter P of K
and any a1; : : : ; an 2D, we have M � P (a1; : : : ; an) () M 0

� P `(fa1; : : : ; fan); as
is easily seen we have then also M � '(a1; : : : ; an) () M 0

� t'(fa1; : : : ; fan) for
all a1; : : : ; an 2D, '(x1; : : : ; xn) 2FmK . If M and M 0 are models of theories T
and T 0 respectively and t (or (t; f) for some f ) is an interpretation (or a strong
interpretation) ofM inM 0 , then M is also a model of T + t�1(T 0) and M 0 is a model
of T 0 + t(T ), so we have a \truth-preserving" way of enriching both T and T 0.

G�odel's method of arithmetization can be mentioned here as an impressive
example of a strong interpretation (t; f) of the \standard model" of meta-arithmetic
(though the latter is not formal) in the standard model of arithmetic: f is just the
G�odel numbering function which injects the \domain" of the \standard model" of
meta-arithmetic, the set of �nite strings of arithmetic symbols, into the domain !
of the standard model of arithmetic, and t is the function which assigns to each
meta-predicate its what we call \arithmetic formalization".

The above-de�ned notion of interpretability of models can also be considered as a
relation between complete and consistent theories (of these models). It is easily seen
that, if T = hA;Ki and T 0 = hA0; K 0i are two such theories and t is a translation
from K into K 0, then the assertions t(T )� T 0, t�1(T 0)� T , T 0 � t(T ), T � t�1(T 0)
are equivalent. But in the general case that is not so, and we get at least the following
four natural binary relations between theories (T and T 0 are arbitrary theories and
t ranges over translations from the language of T into the language of T 0):

11.1. De�nition.

� T is interpretable in T 0, if there exists t, called an interpretation of T in T 0 such
that t(T )� T 0,

� T 0 is cointerpretable in T , if there is t, called a cointerpretation of T 0 in T , such
that t�1(T 0)� T ,

� T is faithfully interpretable in T 0, if there is t, called a faithful interpretation of
T in T 0, which is both an interpretation of T in T 0 and a cointerpretation of T 0

in T ,
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� T is weakly interpretable in T 0 if there exists t, called a weak interpretation of T
in T 0 such that T 0+ t(T ) is consistent (which is also equivalent to the assertion
that T + t�1(T 0) is consistent).

The binary relation of weak interpretability has a natural many-place generaliza-
tion. Observe that T is weakly interpretable in T 0 if and only if T is interpretable
in some consistent extension of T 0 which has the same language as T 0 . Instead of
pairs we can consider arbitrary nonempty �nite sequences of theories and say that
such a sequence T1; : : : ; Tn is (linearly) tolerant, if there are consistent extensions
T+
1 ; : : : ; T

+
n of these theories such that for each 16 i< n, T+

i+1 is interpretable in
T+
i . Thus, consistency is the unary case of linear tolerance and weak interpretability

the binary case. Further generalization consists in removing linearity and passing
from sequences of theories to trees: a �nite tree of theories is tolerant, if there
are consistent extensions of these theories, of which each one is interpretable in its
predecessors in the tree. The intuition here is that in a tolerant tree of theories
we can add to each theory the translated information contained in its children
(which already have been augmented in the similar manner), obtaining this way a
consistent \avalanche" of information. Changing in the above de�nition the word
\interpretable" for \cointerpretable", we obtain the notion of cotolerance of a tree of
theories.

The notions of interpretability and weak interpretability between theories were in-
troduced by Tarski, Mostowski and Robinson [1953]; faithful interpretability was �rst
considered by Feferman, Kreisel and Orey [1960], and cointerpretability, tolerance
and cotolerance by Japaridze [1992,1993]. These relations between axiomatic theories
can be used, and actually have been used many times, to prove relative consistency
results, di�erent kinds of conservativity results, decidability and undecidability of
theories.

12. Interpretability and partial conservativity.

In many cases the interpretability relations can be characterized in terms of
partial conservativity or consistency. We are going to study these characterizations
only for theories in the language of PA with primitive recursive sets of axioms
which contain the axioms of PA. Let us call such theories superarithmetic theories
(again we consider the variant of PA without functional symbols; however, below
we speak, without any confusion, about terms for primitive recursive functions in
superarithmetic theories). As usual, the theorems proved below for this special class
of theories are of a much more general character; actually they hold for all reasonable
so-called (locally) essentially re
exive theories (see de�nition 12.3). The main
theorems that we are going to prove in this section establish that for such theories
interpretability and cointerpretability are nothing but �1- and �1-conservativity,
respectively (theorems 12.7 and 12.13); weak interpretability corresponds to what
we call �1-consistency (theorem 12.8), and faithful interpretability of T in S takes
place exactly when we have interpretability of T in S and cointerpretability of S in
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T (theorem 12.14). For �nitely axiomatizable theories the situation is considerably
di�erent. We will make some remarks and give references on this at the end of this
section.

12.1. De�nition. Let R be an n-ary relation on !, �(x1; : : : ; xn) an arithmetic
formula, and T a superarithmetic theory. We say that:

� � de�nes R,

if for all k1; : : : ; kn 2 !, we have R(k1; : : : ; kn) () IN � �(�k1; : : : ; �kn), IN the
standard model of arithmetic,

� � numerates R in T ,

if for all k1; : : : ; kn 2!, R(k1; : : : ; kn) =) T ` �(�k1; : : : ; �kn),

� � binumerates R in T ,

if � numerates R and :� numerates the complement of R in T .

We need some more terminology and notation. The formula class �1! is the set of
arithmetic formulas which have an explicit �1 form, i.e., 9x ' for some primitive
recursive formula '. Similarly for �1!. Simply �1 (resp. �1) denotes the class of
formulas which are I�1-equivalent to some �1!- (resp. �1!-) formula.

It is known (see Smory�nski [1977]) that the predicate \x codes a true �1!-
sentence" can be formalized by a �1!-formula, which we will denote by True(x). This
formula is such that (I�1 proves that)

for each �1!�sentence '; I�1 ` '$ True(p'q):

Next, we denote by Regwit(y; x) the very primitive recursive formula for which

True(x) � 9yRegwit(y; x)

and say that k is a regular witness of a �1!-sentence ', i� Regwit(�k; p'q) is true.
And k is said to be a regular counterwitness of a �1!-sentence 8z ', i� k is a regular
witness of 9z : '.

We write T `k ' to express that k is the code of a T -proof of ', and denote by
PC the pure predicate calculus (with identity); theorems of PC will be referred to
as tautologies and Pr(x) will denote in this section an intensional formalization of
the predicate \x codes a tautology"; dually, Con(x) expresses that x codes a formula
' such that PC 0 : '. For a theory T and a natural number m, T #m denotes the
�nite subtheory of T obtained by restricting the set of axioms of T to those whose
codes are 6m.

Suppose T is a theory in the arithmetic language. Given an arithmetic formula �
de�ning the set of (codes of) axioms of T , we can build in a uniformway (see Feferman
[1960]) a formula Prf�(z; x) (resp. Prf�#y(z; x)) expressing that x codes some sentence
' and T `z ' (resp. T #y `z '). The formulas Pr�(x) and Pr�#y(x) will abbreviate
9z Prf�(z; x) and 9z Prf�#y(z; x), respectively. If T is a �nite theory, there is a
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canonical formula de�ning T , namely the formula x= �n, where n is the code of the
conjunction of all axioms of T ; in this case we will write PrT instead of Prx = �n. The
sentences Con�, Con�#y and ConT will abbreviate :Pr�(px 6= xq), :Pr�#y(px 6= xq)
and :PrT (px 6= xq), respectively. Using the formula Pr� , we can also construct in a
standard way the sentence Compl� expressing that T is syntactically complete, i.e.,
that for every ' 2 StT we have T ` ' or T ` : '.

12.2. Notation. For any arithmetic formula ', let ['] denote the term (with
exactly the same free variables as ') for the primitive recursive function which, if
the free variables of ' and ['] are x1; : : : ; xn, assigns to each n-tuple k1; : : : ; kn of
numbers the code of the formula '(�k1; : : : ; �kn).

We prefer this notation to the more common dot notation, because it avoids the need
to specify the free variables.

12.3. De�nition. A theory T , the language of which contains that of PA, is
said to be locally essentially re
exive, if for any sentence ' of the language of T ,
T `PrT#n(p'q)! ' for all n. The theory is said to be globally essentially re
exive if
for any formula ' of the language of T , T `PrT#n[']! ' for all n.

It is known that superarithmetic theories are globally essentially re
exive. At the
same time no consistent �nite(ly axiomatized) theory which satis�es the conditions
of G�odel's second incompleteness theorem can even be locally essentially re
exive,
for otherwise such a theory would prove its own consistency. In fact, it is shown
in Visser [1990] that essential re
exivity is equivalent to full induction. (The idea
of the proof, by the way, is already present in Kreisel and L�evy [1968].) That local
essential re
exivity is much weaker than global essential re
exivity follows from the
following observation. For any reasonable theory T , T plus local re
ection for T is
easily seen to satisfy local essential re
exivity. However, by a result from Feferman
[1962], T plus local re
ection for T is contained in T plus all true �1-sentences,
which for weaker theories certainly does not entail full induction. It turns out that
for our results we just need local essential re
exivity. This is the reason that, in the
following we will with \essential re
exivity", perhaps nonstandardly, refer to its local
version.

12.4. De�nition. Let T = hA;Ki and T 0 = hA0; K 0i be theories and suppose
that ��FmK \ FmK0 . Then

� T is �-conservative over T 0, if for any ' 2 �\ StK , we have that T ` ' implies
T 0 ` ' ,

� T is �-consistent with T 0, if for any ' 2� \ StK , we have that T ` ' implies
T 0

0 : '; in other words, if T is �-conservative over some consistent extension
of T 0 in the same language.
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Note that for su�ciently strong theories the notions of �1!- and �1-conservativity
(as well as �1!- and �1-conservativity) are equivalent.

12.5. Lemma. (PA `:) Suppose t= h`; �(x)i is a translation from a language K
into a language K 0 and ' 2 StK . Then PA ` Pr(p'q)! Pr(p9x �(x)! t'q).

Proof. Argue in PA. Suppose P is a proof of ' in PC, and let x1; : : : ; xn be all
variables occurring freely in P . Let then �= �(x1) ^ : : : ^ �(xn). By induction
on the length of P , one can easily verify that `PC �! t' and hence (as ' is
closed) PC ` 9�! t', where 9� is the existential closure of �. On the other hand,
`PC 9x �(x)!9�. Consequently, `PC 9x �(x)! t'. a

12.6. Lemma. (PA ` :) For any formula �(x) de�ning a set of arithmetic
sentences, there is an arithmetic translation t such that for any sentence ',

(a) PA+ Con� ` Pr�(p'q)! t',
(b) PA+ Con� + Compl� ` Pr�(p'q)$ t' .

It is easier to explain the idea of the proof of this lemma than to give a strict
proof. G�odel's completeness theorem for the classical predicate calculus (with
identity) says that every consistent theory has a model. An analysis of Henkin's
proof of this theorem shows how to construct for a consistent arithmeticly de�nable
(say, superarithmetic) theory T = hA;Ki a model M = hD;Gi, where both D and
each relation GP are arithmetically de�ned; the whole proof can be formalized in
PA (Hilbert and Bernays [1939]). As we noted above, to de�ne a K -model in some
language (in our case in the language of PA) means to give a translation from K
into this language; for each concrete sentence ', PA plus the assumption that T
is consistent then proves that as soon as ' is a theorem of T , ' is true in M ,
and the clause (a) of the lemma expresses just this fact; as for clause (b), it is an
immediate consequence of (a), for PA+Compl� ` :Pr�(p'q)! Pr�(p: 'q) and
PA ` t: ' $ : t' .

12.7. Theorem. (Orey [1961], H�ajek [1971,1972]) (PA ` :) For superarithmetic
theories T and S the following are equivalent:

(i) T is interpretable in S ,
(ii) for all m, S `ConT#m,
(iii) T is �1-conservative over S .

Proof. (i))(ii): Suppose t= h`; �i is an interpretation of T in S . Let ' be the
conjunction of all axioms of T with codes 6m. Then S ` t', i.e., S ` : t: ';
as T ` 9x (x= x), we also have S ` 9x �(x). Then, by lemma 12.5 and since S is
essentially re
exive, S ` :Pr(p: 'q), i.e., S `ConT#m .

(ii))(i): Let �(x) be a primitive recursive formula de�ning the set of axioms
of T , and �(x) the formula �(x) ^ConT#x. Then, as soon as condition (ii) holds,
�(x) binumerates the set of axioms of T in S and, thus, Pr�(x) numerates the set
of theorems of T in S . According to lemma 12.6(a), there is a translation t such
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that PA+Con� ` Pr�(p'q)! t' for all ', whence, taking into account the obvious
fact that S ` Con� , we have S ` Pr�(p'q)! t' for each '. This, together with
the fact that Pr�(x), numerates the set of theorems of T in S , implies that t is an
interpretation of T in S .

(ii))(iii): Suppose ' is a �1!-sentence and T ` '. This means that T#m` ' for
some m. We can suppose that m is large enough for T #m to prove all axioms of Q
(Robinson's arithmetic). It is known that the latter disproves all false �1!-sentences.
This fact is provable in S and, as S ` PrT#m(p'q), S proves that the consistency of
T #m implies '. Then, if (ii) is satis�ed, we have S ` '.

(iii))(ii): Suppose T is �1-conservative over S and let m be an arbitrary natural
number. It is obvious that T being essentially re
exive, proves ConT#m . And as
ConT#m is a �1!-sentence, S `ConT#m . a

Taking into account that weak interpretability of T in S is nothing but inter-
pretability of T in some consistent extension of S , we get:

12.8. Corollary. (PA ` :) For superarithmetic theories T and S the following are
equivalent:

(i) T is weakly interpretable in S ,
(ii) for all m, S 0 :ConT#m,
(iii) T is �1-consistent with S .

Our next goal is to �nd a similar characterization for cointerpretability. We need
some preparatory lemmas.

12.9. Lemma. (Guaspari [1979]) (PA ` :) Suppose S is a superarithmetic theory
and � is a recursively enumerable set of natural numbers. Then there is a �1-formula

(x) such that:

(i) 
(x) numerates � in S ;
(ii) for any k 2 !, if k =2�, then S +: 
(�k) is �1-conservative over S .

Proof. Let �(x) be a �1-formula which de�nes �. Let �1!(x) be a primitive recursive
formula expressing that x is (the code of) a �1!-sentence and let

�
! be a term for

the primitive recursive function which assigns to each pair m1; m2 of numbers, as
soon as they code some formulas �1 and �2 , the code of the formula �1! �2 . Finally,
let �(x) be a primitive recursive formula de�ning the set of axioms of S . Applying
self-reference, we can construct a �1!-formula 
(x) such that

PA ` 
(x) $ 9y
�
Regwit(y; [�(x)])^8z; t � y(1)

(�1!(z)^Prf�(t; [: 
(x)]
�
! z)!

9 r(Regwit(r; z)^8r0 6 r :Regwit(r0; [
(x)])))
�
:

The formula 
(x) expresses that there is a regular witness y of �(�x) and any �1!-
sentence � with S `�y: 
(�x)! � has a regular witness less than any regular witness
of 
(�x).
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(i). Suppose n 2�. Then �(�n) is true; let k be the smallest regular witness of
�(�n). Let �1; : : : ; �m be all the �1!-sentences with

S `�k : 
(�n)!�i:(2)

Then

S ` 
(�n) $
^
f9r(Regwit(r; p�iq)^(3)

8 r06 r:Regwit(r0; [
(�n)])) j 16 i6mg:

Argue in S . Suppose : 
(�n). Then, by (3), there is i (16 i 6m) such that for any
regular witness r of �i there is an r

0 with r0 6 r which is a regular witness of 
(�n). By
(2), �i is true and has a regular witness. But 
(�n) has no regular witness, because
(as we have assumed) it is false, which is a contradiction. Thus S ` 
(�n), and this
proves that 
(x) numerates � in S .

(ii). Now suppose n =2� (i.e., �(�n) is false), � is a �1!-sentence and S+: 
(�n) ` �.
Then S `e : 
(�n)! � for some e (under the standard G�odel numbering, e> p�q)
and S proves that if �(�n) has a regular witness, the latter is larger than e. Argue
in S , and suppose 
(�n). Then, by (1) and the above remark, �(�n) has a regular
witness and the smallest such witness is larger than e. Then, again by (1), � has a
regular witness (smaller than any regular witness of 
(�n)), so � is the case. Thus
S + 
(�n) ` � and, since we have assumed that S + : 
(�n) ` �, we have S ` �. This
proves the desired conservativity. a

12.10. Lemma. (Lindstr�om [1984]) (PA ` :) For superarithmetic theories T and
S , there is a formula �(x) such that:

(i) for all �, if S ` Pr�(p�q), then, for some m, S ` PrT#m(p�q),
(ii) �(x) binumerates the set of axioms of T in S .

Proof. Let X be the set of all the sentences � such that S ` PrT#m(p�q) for some m.
By lemma 12.9, there is a �1!-formula 
(x) such that for all sentences �,

if �2X, then S ` 
(p�q),(4)

if � =2X, then S + : 
(p�q) is �1-conservative over S.(5)

Let �(x) and �(x) be primitive recursive formulas de�ning the sets of axioms of T
and S , respectively. Applying self-reference, we de�ne �(x) by

�(x) � �(x)^8y; z 6x(Prf�(y; [Pr�(z)])! 
(z)):

To prove (i), suppose S `mPr�(p�q). Clearly S ` p�q 6 �m (unless we have some
pathological G�odel numbering) and thus S +: 
(p�q) ` 8x(�(x)! �# �m(x)), where
�# �m(x) denotes �(x) ^ x 6 �m. Hence S + : 
(p�q) ` Pr�(p�q)! Pr�# �m(p�q) and,
since S `mPr�(p�q) and � is primitive recursive,

S + : 
(p�q) ` PrT#m(p�q):(6)
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Suppose � =2X . Then, by (5) and (6) (as PrT#m(p�q) 2�1!), S `PrT#m(p�q), and
(i) is proved.

If x is not the code of an axiom of T , then S ` : �(�x) and thus S ` : �(�x). If x
is a code an axiom of T , then S ` �(�x), and to show that s ` �(�x) it is enough to
show that for all y; z (6 x), S ` Prf�(�y; [Pr�(�z)])! 
(�z).

This is obvious if y is not the code of an S -proof of Pr�(�z). And if S `y Pr�(�z),
then, by (i), z codes an element of X , whence, by (4), 
(�z). Hence (ii). a

In the sequel we will use the following convention: �i is � if i= 0, and is :� if
i= 1.

12.11. Lemma. (Scott [1962]) (PA ` :) Suppose S is a superarithmetic theory and
�(x) is a �1!-formula. There is then a formula �(x) such that for all (arithmetically
de�ned) functions g; h :! !f0; 1g, if the set Sg = S + f�(�n)g(n) j n 2! g is consistent,
then so is the set Sg;h = Sg + f�(�n)

h(n) j n 2 !g.

Proof. Let �(x) be a primitive recursive formula de�ning the set of axioms of S .
We de�ne the formula �(x) by:

�(x)_9y6x
�
(x= [�(y)]^True([�(y)]))_ (x= [: �(y)]^:True([�(y)]))

�
:

Explanation: Let t : ! !f0; 1g be such that t(n) = 0 i� �(�n) is true, and let
S+ = S + f�(�n)t(n) j n 2!g. Then the formula �(x) expresses that x is the code
of an axiom of S+. It is easy to see that

for each function g : ! ! f0; 1g, �(x) binumerates the set of axioms(7)

Sg = S + f�(�n)g(n) jn2!g in Sg. Consequently, Prf�(x; y) binumerates

the relation \... is an Sg-proof of ..." in Sg.

(for, roughly speaking, Sg thinks that S
+ = Sg).

Let Seq(s; l) be a primitive recursive formula expressing that s is the code
of a f0; 1g-valued sequence of length l (i.e., of a function: M !f0; 1g, where
M = f0; : : : ; l� 1g if l > 0, and M = ; if l = 0). Let Conj(s; u) be a term for
the primitive recursive function that assigns to each pair (s; u), of which s codes
a �nite (possibly empty) f0; 1g-valued sequence f = hf(0); : : : ; f(m)i and u codes
a formula � which contains exactly one free variable, the code of the conjunction
�(�0)f(0) ^ : : : ^ �( �m)f(m) . Now, applying self-reference, we construct a formula �(x)
such that

PA ` �(x) $ 8y 8s
�
Seq(s; x)^Prf�(y;Conj(s; p�q)

�
! [�(x)])!(8)

9t< y 9s0(Seq(s0; x)^Prf�(t;Conj(s
0; p�q)

�
! [: �(x)]))

�
:

The formula �(x) asserts that, if �(�x) is proved by some extension of S+ of the type
S+ +��(�0) ^ : : : ^ � �(x� 1) (where � means the presence or absence of : ), then
there is a shorter proof of : �(�x) in some extension of S+ of the same type.



510 G. Japaridze and D. de Jongh

Assume that the set Sg = S + f�(�n)g(n) j n 2!g is consistent. Let U0 = fSgg and
Ul+1 = fR + �(�l); R + : �(�l) jR 2Ulg. To prove the lemma it su�ces to show by
induction on l that each R 2Ul is consistent. The only element Sg of U0 is consistent
by our assumption. Suppose there is a theory in Ul+1 which is inconsistent. Then
there is a theory in Ul which proves �(�l) or : �(�l). Let then k be the smallest number
such that, for some R 2Ul and i 2 f0; 1g, we have R`k �(�l)

i. More precisely, k is
the smallest number such that, for some f0; 1g-valued sequence f of length l and
some i 2 f0; 1g, we have Sg `k

^
f�(�n)f(n) j 0 6 n< lg! �(�l)i , and R is the theory

Sg +
^
f�(�n)f(n) j 06 n< lg.

Below we employ, without explicit mention, proposition (7), the primitive
recursiveness of Seq(:; :), Conj(:; :), and the fact that the number of f0; 1g-valued
sequences of length l is �nite.

Case 1: i= 0. Then

Sg `Seq(pfq; �l)^Prf�(�k;Conj(pfq; p�q)
�
! [�(�l)]):(9)

By our choice of k, there is no number t< k and no f0; 1g-valued sequence f 0 of
length l such that Sg`k

^
f�(�n)f

0(n) j 06 n< lg!: �(�l). Therefore we also have:

Sg `:9t< �k 9s0(Seq(s0; �l)^Prf�(t;Conj(s
0; p�q)

�
! [: �(�l)])):(10)

Now, (9) and (10) imply by (8) that Sg ` : �(�l), whence the theory R is inconsistent,
which is in contradiction with the induction hypothesis.

Case 2: i= 1. Then Sg ` Seq(pf q; �l) ^Prf�(�k;Conj(pf q; p�q)
�
! [: �(�l)]),

whence

Sg `8y> �k 8s 9t< y 9s0(Seq(s0; �l)^Prf�(t;Conj(s
0; p�q)

�
! [: �(�l)])):(11)

By our choice of k, for each y 6 k and any f0; 1g-valued sequence f 0 of length l,
Sg 0 y

^
f�(�n)f

0(n) j 06 n< lg! �(�l), whence

Sg `8y6 �k 8s: (Seq(s; �l)^Prf�(y;Conj(s; p�q)
�
! [�(�l)])):(12)

Now, (11) and (12) immediately imply by (8) that R is inconsistent, which is in
contradiction with the induction hypothesis. a

12.12. Lemma. (Lindstr�om [1984]) (PA ` :) Suppose T and S are super-
arithmetic theories, �(x) binumerates the set of axioms of T in S , and S `Con�.
There is then an interpretation t of T in S such that, for any sentence �,
S ` t� ) S ` Pr�(p�q).

Proof. Assume the conditions of the lemma and let us �x an enumeration f	ngn2!
of all arithmetic sentences. Consider the following recursive de�nition, where X is
any subset of !:

�n =

8><
>:

	n, if (a) T `
^
f�m jm<ng!	n, or

(b) T 0

^
f�m jm<ng!:	n and n2X;

:	n, otherwise:

(13)
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(If n = 0,
^
f�m jm< ng is identi�ed with �0 = �0.)

Let �(x) be the formula given by lemma 12.11 for �(x) = Pr�(x). Next, let �(x; y)
be a formalization of the result of converting (13) into an explicit de�nition in the
usual way using Pr�(x) and �(x) to represent the predicates \T ` : : :" and \: : : 2X",
respectively, and let �(x) be 9y �(x; y). Obviously, S `Con� and S `Compl� ,
whence by lemma 12.6(b), there is a translation t such that for each sentence �,
S ` t�$ Pr�(p�q); clearly we also have PA ` Pr�(p�q)$ �(p�q) and thus

S ` t�$ �(p�q):(14)

Suppose now S 0 Pr�(p�q). To complete the proof we must show that S 0 t�. Let
g :!!f0; 1g be such that g(p�q) = 1 and

S +Yg is consistent,(15)

where Yg = fPr�(�n)g(n) j n 2!g. Next we de�ne �0
n as follows:

�0
n =

8>>>><
>>>>:

	n, if (a) Pr�(p
^
f�0

m jm<ng!	nq)2Yg; or

(b) Pr�(p
^
f�0

m jm<ng!:	nq) =2Yg and

Pr�(p
^
f�0

m jm<ng^	n!�q) =2Yg;

:	n, otherwise.

Let h :!!f0; 1g be such that

h(n)= 0 i� Pr�(p
^
f�0

m jm<ng^	n!�q) =2Yg;

and let Yg;h =Yg [ f�(�n)
h(n) j n 2!g. Then, by lemma 12.11 and the choice of � ,

(15) implies that

S +Yg;h is consistent.(16)

By induction on n we can easily check that S +Yg;h ` �(p�
0
n
q; �n), whence

S +Yg;h `�(p�
0
n
q):(17)

We now show by induction on n that for every n,

Pr�(p
^
f�0

m jm < ng!�q) =2Yg:(18)

Observe that f� j Pr�(p�q) 2Ygg is closed under logical deduction. If n= 0, (18)
holds by our choice of Yg . Suppose (18) holds for n= k.

Case 1: �0
k =	k . Then either (a) Pr�(p

^
f�0

m jm< kg!	kq) 2Yg , or (b)

Pr�(p
^
f�0

m jm< k + 1g! �q) =2Yg . The subcase (b) just means that (18) holds
for n= k+1, and the subcase (a) together with the induction hypothesis also implies
(18) for n= k + 1.

Case 2: �0
k = :	k . Then Pr�(p

^
f�0

m jm < kg ^	k! �q) 2Yg , for otherwise

Pr�(p
^
f�0

m jm < kg!:	kq) =2Yg and so �0
k = 	k . But then (18) for n= k + 1

easily follows from the induction hypothesis. This proves (18).
Finally, in view of (18), it follows that for some k, �0

k = :�. Hence, by
(17), S +Yg;h ` �(p:�q); clearly the latter implies S +Yg;h ` Pr�(p:�q) and,
(as S `Con�) S +Yg;h ` :Pr�(p�q), whence, by (16), S 0 Pr�(p�q), and by (14),
S 0 t�. The proof of lemma 12.12 is complete. a
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12.13. Theorem. (Japaridze [1993]) (PA ` :) For superarithmetic theories T and
S the following are equivalent:

(i) S is cointerpretable in T ,
(ii) for all � and m, if S ` PrT #m(p�q), then T ` �,
(iii) S is �1-conservative over T .

Proof. (i))(ii): Suppose t= h�; �i is a cointerpretation of S in T , and also
S `PrT #m(p�q), i.e., S `Pr(p

^
T #m! �q), where

^
T #m is the conjunction of all

axioms of T #m. Then, by lemma 12.5, S `Pr(p9x �(x)! t(
^
T #m! �)q), which

implies, since S is essentially re
exive, S `9x �(x)! t(
^
T #m! �). Therefore,

S ` t (9x(x= x)! (
^
T #m! �)), whence (as t is a cointerpretation of S in T )

T ` 9x(x= x)! (
^
T #m! �), and T ` �.

(ii))(i): Let us �x the formula � from lemma 12.10. By clause (ii) of that
lemma, � binumerates the set of axioms of T in S . Then, by lemma 12.11, there is a
translation t such that for all sentences �,

if S+Con� ` t�, then S + Con� `Pr�(p�q).(19)

We claim that if condition (ii) of theorem 12.13 holds, then t is a cointerpretation of
S in T . Indeed, suppose S ` t�. Then, by (19), S +Con� ` Pr�(p�q); on the other
hand, we clearly have S + :Con� ` Pr�(p�q). Consequently, S ` Pr�(p�q). Then,
by lemma 12.10(i), S ` PrT#m(p�q) for some m, which together with the condition
(ii) of our theorem, implies that T ` �.

(ii))(iii): Assume (ii). Suppose � is a �1-sentence and S ` �. Let m be such
that T #m contains Robinson's arithmetic. Then S ` PrT#m(p�q), whence, by (ii),
T ` �.

(iii))(ii): Suppose S is �1-conservative over T and S `PrT#m(p�q). Since
PrT#m(p�q) is a �1-sentence, it follows that T `PrT#m(p�q) and T , being essentially
re
exive, proves �. a

12.14. Theorem. (Lindstr�om [1984])(PA ` :) A superarithmetic theory T is
faithfully interpretable in a superarithmetic theory S i� T is �1-conservative over S
and S is �1-conservative over T .

Proof. In view of theorems 12.7 and 12.13, the direction ()) is straightforward. To
prove ((), suppose T is �1-conservative over S and S is �1-conservative over T .
Then by theorems 12.7 and 12.13, we have:

for all m, S `Cont#m,(20)
for all m and �, if S `Prt#m(p�q), then T `�.(21)

Let � be the formula from lemma 12.10, and let �(x) be the formula �(x) ^Con�#x .
Then (arguing as in the proof of theorem 12.7(ii))(i)), (20) implies that �(x) binu-
merates the set of axioms of T in S and S `Con�. Consequently, by lemma 12.10,
there is an interpretation t of T in S such that

for all �, S ` t� =) S `Pr�(p�q).(22)
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To show that t is also a cointerpretation of S in T , suppose S ` t�. Then,
by (22), S `Pr�(p�q). It is obvious that PA`Pr�(p�q)! Pr�(p�q). Then, by
lemma 12.10(i), S ` PrT#m(p�q) for some m, whence, by (21), T ` �. a

12.15. Finitely axiomatized theories

In the case of �nitely axiomatized theories the interpretability relations have other
interesting characterizations. E.g., a theorem due to Harvey Friedman (improved
by Visser [1990]) establishes that for �nitely axiomatized sequential theories T and
S , T is interpretable in S if and only if the weak theory I�0 +EXP proves that the
consistency of S (with respect to cutfree proofs) implies the consistency of T (with
respect to cutfree proofs).

12.16. Feasible interpretability

Visser introduced the notion of feasible interpretability. A theory T is feasibly
interpretable in a theory T 0 i� there is a translation t from the language of T into
the language of T 0 and a polynomial function P (x) such that for any � and x, if
T `x�, then T 0 `�P (x) t�. In a similar manner we can de�ne the notion of feasible
�1-conservativity: T is feasibly �1-conservative over S i� there is a polynomial P (x)
such that for any x and �1-sentence �, if T `x�, then S `�P (x)�. Verbrugge [1993b]
showed that theorem 12.7(i),(iii) continues to hold when \interpretable" and \�1-
conservative" are replaced by \feasibly interpretable" and \feasibly �1-conservative".

The main di�erence between interpretability and feasible interpretability appears
when one estimates the arithmetic complexity of the two relations: the relation of
interpretability between extensions of arithmetic by �nite sets of additional axioms is
�2-complete (this is originally due to Solovay), whereas the relation of feasible inter-
pretability between such theories turns out to be �2-complete (Verbrugge [1993b]).

13. Axiomatization, semantics, modal completeness of ILM

The idea of interpretability logics arose in Visser [1990] in which they were al-
ready developed to a large extent. The modal completeness with respect to the
Kripke-semantics due to Veltman was, for the most important systems, proved in de
Jongh and Veltman [1990]. Realizing that one cannot cover the concept as well
as provability, since interpretability has a more in�nitary character, one has to
choose primitives of course, and, somewhat surprisingly, it turns out that choosing
a binary connective is much more rewarding than choosing a unary connective. The
arithmetic realization of A�B in a theory T will be that T plus the realization of
B is interpretable in T plus the realization of A (T plus A interprets T plus B),
or, alternatively (and, as we have seen, in the case of PA equivalently), that T plus
the realization of B is �1-conservative over T plus the interpretation of A. The
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unary pendant \T interprets T plus A" is much less expressive and was studied in de
Rijke [1992]. For a recent complete overview, see Visser [1997].

We �rst introduce a basic interpretability logic IL: it contains, besides the usual
axiom 2(2A!A)! 2A for the provability logic L and its rules, modus ponens
and necessitation, the axioms:

(1) 2(A!B)! (A�B),
(2) (A�B) ^ (B�C)! (A�C),
(3) (A�C) ^ (B�C)! (A _B�C),
(4) (A�B)! (}A!}B),
(5) }A�A.

With respect to priority of parentheses � is treated as ! . Furthermore, in this
section, we will consider the extension ILM= IL +M of IL where M is the axiom
(A�B)! (A ^ 2C�B ^ 2C). We will write ` IL and `ILM for derivability in IL
and ILM, but sometimes we may leave o� the subscript. As will be proved further on,
the logic ILM is the logic of �1-conservativity of PA, and therefore also, as shown
in the previous section, its interpretability logic. We will not treat here the logic ILP
which arises by extending IL by the scheme (A�B)! 2(A�B) that axiomatizes
the interpretability logic of the most common �nitely axiomatizable theories (Visser
[1990], using a modal completeness result of de Jongh and Veltman [1990]).

13.1. Lemma.
(a) `IL2:A! (A�B),
(b) `ILA _}A�A,
(c) `ILA�A ^ 2:A.

Proof. The parts (a) and (b) are easy. For part (c) use lemma 2.1(j) to obtain
`LA! (A ^ 2:A) _}(A ^ 2:A). Then use the necessitation rule, axiom (1), part
(b) and axiom (2). a

13.2. Corollary.
(a) The formulas A�B, A ^ 2:A�B and A�B ^ 2:B are IL-equivalent.
(b) The formulas A�? and 2:A are IL-equivalent.

Proof. (a) By lemma 13.1(c) and its converse, which is derivable from axiom (1),
and transitivity of � (axiom (2)).

(b) The direction from right to left follows from lemma 13.1(a). The other
direction is obtained by using axiom (4) with ? for B , lemma 2.1(i) and transitivity
of � . a

13.3. De�nition. An IL-frame (also Veltman-frame) is an L-frame hW;Ri with,
for each w 2W; an additional relation Sw , which has the following properties:

(i) Sw is a relation on w" = fw0 2W j wRw0g,
(ii) Sw is re
exive and transitive,
(iii) if w0; w00 2w" and w0Rw00, then w0Sww

00.

We may write S for fSwjw 2Wg.
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13.4. De�nition. An IL-model is given by an IL-frame hW;R; Si combined with
a forcing relation 
 with the clauses:

u 
2A() 8v(uR v ) v 
A),

u 
A�B () 8v(uR v and v 
A) 9w(vSuw and w 
B)).

13.5. De�nition.

1. If F is a frame, then we write F �A i� F = hW;R; Si and w 
A for every

w 2W and every 
 on F .

2. If K is a class of frames, we write K �A i� F �A for each F 2K.

3. KM, the class of ILM-frames, is the class of IL-frames satisfying

(iv) if uSw v R z , then uR z .

4. An ILM-model is an IL-model on an ILM-frame.

The scheme M characterizes (see section 2) the class of frames KM; that is the content
of part (b) of the next soundness lemma.

13.6. Lemma. For all IL-frames F,

(a) For each A, if `ILA; then F �A:

(b) F � ILM i� F 2KM:

(c) For each A, if ` ILMA; then KM �A:

As before, in the case of L; we work inside a so-called adequate set. It is convenient to
use the fact that 2 is de�nable in IL in terms of � : 2A is IL-equivalent to :A�?
(corollary 13.2(b)). This means that we can, in constructing countermodels, restrict
our attention to formulas that do not contain 2 . The entire following discussion will
be based on the presumption the formulas discussed do not contain 2 .

The other side of the coin is that this will allow us to use 2 as a de�ned symbol.
The most convenient way to this turns out to be the following: }A will be an
abbreviation of : (A�?) and 2A will then abbreviate the formula �}�A (i.e.,
�A�?). We need to adapt the concept of adequate set to the new situation.

13.7. De�nition. An adequate set of formulas is a set � that satis�es the following
conditions:

1. � is closed under taking subformulas,

2. if A 2�; then �A 2�;

3. ?�? 2�;

4. A�B 2� if A is an antecedent or succedent of some �-formula in �, and so
is B .

13.8. Lemma. If � is an adequate set, then A�B 2� i� both }A and }B are in
� (and in case � contains no doubly negated formulas) i� both 2�A and 2�B are
in �.
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It is obvious that each formula is contained in a �nite adequate set. In proving
completeness we can of course restrict our attention to formulas without double
negations, and will therefore be able to use adequate sets with formulas without
double negations, so that we can apply the last part of lemma 13.8. We will write
ILS if our remarks apply to both IL and ILM.

13.9. De�nition. Let � and � be maximal ILS-consistent subsets of some
�nite adequate �: Then �<� () for each 2A 2�; 2A;A 2�; and, for some
2A =2�; 2A 2�: In this case we say that � is a successor of � (see the proof for L
of theorem 2.4).

13.10. De�nition. Let � and � be maximal ILS-consistent subsets of some
given adequate �. Then � is a C -critical successor of � (�< C �) i�

(i) �<�;
(ii) �A;2�A 2� for each A such that A� C 2 �.

13.11. Lemma. If �< C � and �<�, then �< C �.

13.12. Lemma. Suppose � is maximal ILS-consistent in � and : (B�C) 2 �.
Then there exists a C -critical successor � of �, maximal ILS-consistent in �, such
that B 2�:

Proof. Let �; �; B and C satisfy the conditions of the lemma. Take � to be a
maximal ILS-consistent extension of

fD;2Dj2D 2 �g[f2�A;�AjA�C 2 �g[fB;2�Bg:

Note �rst that the adequacy of � ensures that all the formulas in � are indeed
available, and second that such a �, if it exists, is a C -critical successor of �. (It
is a successor, because 2�B IL-implies B�C and, hence, cannot be a member
of �.) To prove that such a � exists it is su�cient to prove that the above set is
IL-consistent. Suppose not. Then there exist A1; : : : ; Am and D1; : : : ; Dk with

D1; : : : ; Dk;2D1; : : : ;2Dk;:A1; : : ::Am;2:A1; : : : ;2:Am; B;2:B `?

or equivalently

D1; : : : ; Dk;2D1; : : : ;2Dk `B ^ 2:B!A1 _ : : : _Am _}(A1 _ : : : _Am):

Applying what we know of L gives

2D1; : : : ;2Dk `2(B ^ 2:B!A1 _ : : : _Am _}(A1 _ : : : _Am)):

Axiom (1) then implies

2D1; : : : ;2Dk `B ^ 2:B�A1 _ : : : _Am _}(A1 _ : : : _Am):
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From lemmas and axiom (2) it follows then that

2D1; : : : ;2Dk `B�A1 _ : : : _Am:

Given that A1�C; : : : ; Am�C 2�, we also have, by using axiom (3) that
�`A1 _ : : : _Am�C . So, �nally, we obtain �`B�C which contradicts the
consistency of �. a

13.13. Lemma. Let B�C 2�. Then, if there exists an E-critical successor � of
� with B 2�, there also exists an E-critical successor �0 of � with C;2:C 2�0.

Proof. Suppose B; C; E; � and � satisfy the assumptions of the lemma and there
is no such �0 . Then there would be 2D1; : : : ;2Dn 2�, and F1�E; : : : ; Fk�E 2�
such that

D1; : : : ; Dn;2D1; : : : ;2Dn;:F1; : : : ;:Fk;2:F1; : : : ;2:Fk; C;2:C `?

and, therefore,

D1; : : : ; Dn;2D1; : : : ;2Dn `C ^ 2:C! F1 _ : : : _ Fk _}(F1 _ : : : _ Fk);

which as before implies �`B�E . Since B and E are respectively an antecedent and
a succedent of some � -formula in �, the adequacy conditions imply then that this
can be strengthened to B�E 2�. As � is supposed to be an E -critical successor of
�, this implies �B 2� and we have arrived at a contradiction. a

13.14. Theorem. (Completeness and decidability of IL) If 0 ILA, then there is a
�nite IL-model K such that K 2 A.

Proof. Take some �nite adequate set � containing A, and let � be a maximal
IL-consistent subset of � containing �A. The intuitive idea of the construction of
the model is to divide the set of successors of each constructed world w, starting
with �, into di�erent parts, each part containing the E -critical successors w for some
� -succedent E in the adequate set. For occurrences of the same maximal consistent
set in di�erent parts we use distinct copies. The Sw are de�ned to be the universal
relation inside each part consisting of the E -critical successors for some E , but to be
such as to make no other connections between worlds. Then lemmas 13.12 and 13.13
give the theorem rather straightforwardly. With some care this program can be
executed, but we take a slightly more complicated road that points the way to the
completeness proof for ILM where the straightforward manner does not work.

Set W� to be the smallest set of pairs h�; � i with � a maximal consistent
subset of � and � a �nite sequence of formulas from � that satisfy the following
requirements:

(i) �<� or � =�,
(ii) � is a �nite sequence of formulas from �, the length of which does not exceed

the depth of � minus the depth of �. (So, e.g. � is only paired o� with the
empty sequence.)
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It is clear that W� is �nite, since, for any �, if �0 is a successor of �, then �0

has fewer successors than �. We de�ne R on W� by wRw0 i� (w)0 < (w0)0 and
(w)1 � (w0)1. The required properties check out easily. Let uSwv apply if (I) and
(II) hold (writing � for concatenation):

(I) u; v 2w",
(II) either (w)1 = (u)1 � (v)1, or (u)1 = (w)1 � hCi � � and (v)1 = (w)1 � hCi � � 0

for some C; �; � 0, and if in the latter case (u)0 is a C -critical successor of
(w)0, then so is (v)0.

Let us check that under this de�nition the Sw will have the properties (i){(iii)
required by de�nition 13.3:

(i) That Sw is a relation on w" is instantaneous.
(ii) Re
exivity and transistivity of Sw are also easy to check.
(iii) If w0; w00 2w" and w0Rw00, then (I) is immediate. For (II) it su�ces to recall

that successors of C -critical successors are C -critical (lemma 13.11).

Finally, we de�ne w 
p i� p 2 (w)0. We will now prove that, for each B 2� and
w 2W�, w 
B i� B 2 (w)0, by induction on the length of B . Of course, the
connectives are trivial, so it su�ces to prove that

B�C 2 (w)0()8u(wRu ^B 2 (u)0!9v(uSw v ^C 2 (v)0)):

(= : Suppose B�C =2 (w)0. Then : (B�C) 2 (w)0. We have to show that, for some
u with wRu, B 2 (u)0 and 8v (uSwv!�C 2 (v)0). Let � with (w)0 < C � be as
given by lemma 13.12, and take u to be h�; (w)1�hCii. It is clear that u ful�lls the
requirements.
=) : Suppose B�C 2 (w)0. Consider any u such that B 2 (u)0 and wRu, and
�rst assume (u)1 = (w)1�hEi� � and (u)0 is an E -critical successor of (w)0. By
lemma 13.13 we can �nd an E -critical successor �0 of (w)0 with C 2�0 . It is clear
that v = h�0; (w)1�hEii is a member of W� and ful�lls all the requirements to make
uSwv.

If (u)1 = (w)1�hEi� � but (u)0 is not an E -critical successor of (w)0, then we �nd
a successor �0 of (w)0 with C 2�0 by using axiom (4) instead of lemma 13.13. Again
it is clear that v = h�0; (w)1�hEii is a member ofW� and ful�lls all the requirements
to make uSwv. The �nal case is that (u)1 = (w)1. In that case also we apply axiom
(4) to obtain �0 with C 2�0 and take v = h�0; (w)1i. a

13.15. Theorem. (Completeness and decidability of ILM) If 0 ILMA, then there
is a �nite ILM-model K such that K 2 A.

The main problem in the proof of this theorem is the following. To apply the
characteristic axiom (A�B)! (A ^ 2C�B ^ 2C) we seem to be forced to add the
succedent of this formula to the adequate set whenever we have the antecedent. A
straightforward de�nition of adequate set for the case of ILM would therefore lead
adequate sets to be always in�nite, which is of course unacceptable. After some
searching we are lead to the following de�nition.



The Logic of Provability 519

13.16. De�nition. An ILM-adequate set � is an adequate set that satis�es the
additional condition:

if B�C;2D 2�, then there is in � a formula B0�C 0 such that

B0 is ILM-equivalent to B ^ 2D and C 0 to C ^ 2D.

Even though we require only equivalents to be present in � it is of course no longer
evident that each �nite set of formulas is contained in a �nite ILM-adequate set,
since each newly constructed B ^ 2D gives rise to a new 2-formula: B ^ 2D�?.
But we will show that this is nevertheless true. To make it easier on ourselves we
assume that in our formula A all antecedents and succedents of � -formulas have the
form B ^ 2�B , except for ?. In view of corollary 13.2(a) this is not an essential
restriction. (The restriction is not really necessary, see Berarducci [1990].)

13.17. Lemma. Each formula A is contained in an ILM-adequate set � that
contains only a �nite number of ILM-equivalence classes.

Proof. Let � be the smallest IL-adequate set containing A. Let 	 be the set
of antecedents and succedents of � -formulas in � including ?. We obtain 	� by
closing 	 o� under the operation that forms D ^E from each formula D in the class
and each formula E that, either is a 2-formula in �, or is of the form 2�F for some
F in the class. The claim is that 	� contains only a �nite number of equivalence
classes. Given that claim we can construct a �nite ILM-adequate set by joining to �
the subformulas of a �nite set of representatives of all equivalence classes in 	�, and
�nally adding all the interpretability formulas combining two members of this �nite
set of representatives.

It remains to prove the claim. This will be done by induction on the cardinality
of 	. If that cardinality is 1 (i.e., 	 = f?g), the result is obvious. So, we can assume
that the cardinality is larger than 1. We note that each element of 	� is of the form
B ^ 2� B ^ 2C1 ^ : : : ^ 2Ck , with B ^ 2� B from 	. That 2� B is a member
of this conjunction means that in the Ci's all occurrences of B ^ 2�B can be
replaced by ?. Also one will recognize that B ^ 2�B will only be thrown in by the
operation into the Ci in conjuncts of the form :(B ^ 2�B ^ :::). Replacing those
occurrences of B ^ 2�B by ? means that one can drop the whole conjunct and keep
an equivalent formula. If one drops all those conjuncts containing B ^ 2�B , then
the resulting formula is of the form B ^ 2� B ^ 2D1 ^ : : : ^ 2Dm with B ^ 2�B
not (relevantly) occurring in the Di . This means that the Di have been constructed
from the 2-formulas in � and the other elements of 	. Thus, by the induction
hypothesis, there are only a �nite number of such Di (up to equivalence) and
hence only a �nite number of equivalence classes of elements of 	� that start with
B ^ 2�B . The same holds for each of the other elements of 	, so that the resulting
set is �nite. a

Proof of theorem 13.15. Take some �nite ILM-adequate set � containing A and
some maximal consistent subset � of � containing �A. We de�ne both W� and R
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as in the previous proof. This time, however, we let uSwv apply if (I) holds as well
as (II0) and (III),

(II0) (u)1 � (v)1 , and if (u)1 = (w)1 � hCi � � and (v)1 = (w)1 � hCi � � 0 for some
C; �; � 0, and (u)0 is a C -critical successor of (w)0, then so is (v)0.

(III) each 2A 2 (u)0 is also a member of (v)0,

That under this de�nition the Sw will have the properties (i){(iii) is shown in
almost the same manner as before; that the Sw has the property (iv) required by
de�nition 13.5 is shown as follows:

Suppose that h�0; � 0iSwh�
00; � 00iR h�0; �i. Wemust show h�0; � 0iR h�0; �i. That

� 0 � �, is immediate. That �0
< �0, follows from �00

< �0 combined with the fact that,
by (III), 2-formulas are preserved from �0 to �00 .

Naturally, we again de�ne w 
p i� p 2 (w)0, and it will be su�cient to prove that,
for each D 2�, w 
D i� D 2 (w)0. The only interesting case is the one that D is
B� C , i.e., we have to show that

B� C 2 (w)0()8u(wRu^B 2 (u)0!9v(uSwv ^C 2 (v)0).

(= : Basically as in the proof for IL.

=) : Assume that B� C 2 (w)0, and that u is such that wRu and B 2 (u)0.
Let f2D1; : : : ;2Dng be the set of 2-formulas in (u)0. By axiom M (see proposi-
tion 2.1(d)) and the adequacy of �, (w)0 will contain a formulaB

0�C 0 with B0 and C 0

respectively ILM-equivalent to B ^ 2D1 ^ : : : ^ 2Dn and C ^ 2D1 ^ : : : ^ 2Dn.

Let us just treat the case that (u)1 = (w)1 � hEi � � and (u)0 is an E -critical
successor of (w)0. (The other cases are easy, given our experience with IL.) We
can �nd, by lemma 13.13, with (w)0, (u)0 and B0� C 0 as input, an E -critical
successor �0 of (w)0 with both C and 2D 2�0 for each 2D 2 (u)0. It su�ces to
take v = h�0; (u)1i. Given that each 2-formula in (u)0 appears also in �0, the depth
of �0 cannot be larger than the depth of (u)0. Therefore, v 2W� and v ful�lls all
requirements. a

Visser (see Berarducci [1990]) showed that, from the models constructed in the
above proof, one can construct models with an S relation that is independent of the
world w (see also de�nition 15.4). These models may have to be in�nite however. The
�rst arithmetic completeness proofs used these models instead of the �nite models
constructed in the above proof, but we will not introduce them in this section, since
our arithmetic completeness proof (section 14) uses the �nite models directly.

The �xed point theorem of L can be extended to IL and hence to ILM and ILP
(de Jongh and Visser [1991]).

14. Arithmetic completeness of ILM

We �x a theory T containing I�1. For safety we assume that T is in the language
of arithmetic and T is sound, i.e., all its axioms are true (in the standard model
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of arithmetic), although in fact it is easy to adjust our proof of the completeness
theorem to the weaker condition of �1-soundness of T .

14.1. De�nition. The de�nition of a realization given in section 1 is extended
to the language of ILM by stipulating that (A�B)� =Conserv(pA�q; pB�q), where
Conserv(pA�q; pB�q) is an intensional formalization (see Chapter II of this Hand-
book) of \T +B� is �1-conservative over T + A�".

If T =PA, then, in view of theorem 12.7, the interpretability and �1-
conservativity relations over its �nite extensions are the \same" in all reasonable
senses, so we can take Conserv(pA�q; pB�q) to be a formalization of \T + B� is
interpretable in T + A�". Below we prove the completeness of ILM as the logic
of �1-conservativity over T and thus at the same time the completeness of ILM
as the logic of interpretability over T =PA. The fact that ILM is the logic of
interpretability over PA was proven more or less simultaneously and independently
by Berarducci [1990] and Shavrukov [1988]. Later, H�ajek and Montagna [1990,1992]
proved that ILM is the logic of �1-conservativity over T = I�1 and stronger theories.

14.2. Theorem. ` ILMA i� for every realization �, T `A�.

Proof. The (=)) part can be veri�ed by induction on ILM proofs. Since the
soundness of L is already known, we only need to verify that if D is an instance of
one of the additional 6 axiom schemata of ILM, then, for any realization � , T `D�.
All the arguments below are easily formalizable in T :

Axiom (1): 2(A!B)! (A�B). If T `A!B , then clearly T +B� is
conservative over T +A� .

Axiom (2): (A�B) ^ (B�C)! (A�C). Evidently, the relation of conservativ-
ity is transitive.

Axiom (3): (A�C) ^ (B�C)!A _B�C . It is easy to see that if T + C� is
(�1-) conservative over T +A� and T +B�, then so is it over T +A� _B� .

Axiom (4): (A�B)! (}A!}B). Clearly, if T +B� is �1-conservative over
T +A� and T +A� is consistent, then so is T +B� .

Axiom (5): }A�A. Suppose � is a �1!-sentence provable in T +A�. We need
to show, arguing in T + (}A)� , that then � is true. Indeed, suppose T +A� is
consistent. Then it cannot prove a false �1!-sentence (by �1!-completeness), and
hence � must be true.

Axiom (M): (A�B)! (A ^ 2C�B ^ 2C). Suppose T +B� is �1-conservative
over T +A� and � is a �1!-sentence provable in T +B� ^ (2C)�. Then T +B�

proves (2C)�! �. But the latter is a �1-sentence and therefore it is also proved by
T +A� . Hence, T +A� ^ (2C)� ` �.

The following proof of the ((=) part of the theorem is taken from Japaridze
[1994b] and has considerable similarity to proofs given in Japaridze [1992,1993] and
Zambella [1992]. Just as in Japaridze [1992,1993], the Solovay function is de�ned
in terms of regular witnesses rather than provability in �nite subtheories (as in
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Berarducci [1990], Shavrukov [1988], Zambella [1992]). Disregarding this di�erence,
the function is almost the same as the one given in Zambella [1992], for both proofs,
unlike the ones in Berarducci [1990] and Shavrukov [1988], employ �nite ILM-models
rather than in�nite Visser-models.

Suppose 0ILM A. Then, by theorem 13.15, there is a �nite ILM-model
hW;R; fSwgw 2W ; 
i in which A is not valid. We may assume that W = f1; : : : ; lg,
1 is the root of the model in the sense that 1Rw for all 1 6= w 2W , and 1 1A. We
de�ne a new frame hW 0; R0; fS 0

wgw2W 0i:

W 0 =W [ f0g,

R0 =R [ f(0; w) j w 2Wg.

S 0
0 = S1 [ f(1; w) j w 2Wg and for each w 2W , S 0

w = Sw .

Observe that hW 0; R0; fS 0
wgw2W 0i is a �nite ILM-frame.

Just as in section 3, we are going to embed this frame into T by means of a
Solovay style function g :!!W 0 and sentences Limw for w 2W 0 which assert that
w is the limit of g. This function will be de�ned in such a way that the following
basic lemma holds:

14.3. Lemma.
(a) T proves that g has a limit in W 0, i.e., T `

_
fLimr j r 2W

0g,
(b) If w 6= u, then T ` : (Limw ^ Limu),
(c) If wR0 u, then T + Limw proves that T 0 :Limu,
(d) If w 6= 0 and not wR0 u, then T + Limw proves that T ` :Limu,
(e) If uS 0

wv, then T +Limw proves that T +Limv is �1-conservative over T +Limu,
(f) Suppose wR0 u and V is a subset of W 0 such that for no v 2 V , uSwv;

then T + Limw proves that T +
_
fLimv j v 2 V g is not �1-conservative over

T +Limu,
(g) Lim0 is true,
(h) For each i 2W 0, Limi is consistent with T .

To deduce the main thesis from this lemma, we de�ne a realization � by setting
for each propositional letter p,

p�=
_
fLimr j r 2W; r 
pg:

14.4. Lemma. For any w 2W and any ILM-formula B,

(a) if w 
B, then T + Limw `B
�;

(b) if w 1B, then T +Limw ` :B
�.

Proof. By induction on the complexity of B . The cases when B is atomic or has
the form 2C are handled just as in the proof of lemma 3.3, so we consider only the
case when B =C1� C2.

Assume w 2W . Then we can always write wRx and xSw y instead of wR0 x
and xS 0

w y. Let �i = fr jwR r; r 
Cig (i= 1; 2). First we establish that for both
i= 1; 2,
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(*) T + Limw proves that T `C�
i $

_
fLimr j r 2 �ig.

Indeed, argue in T + Limw .
Since each r 2�i forces Ci, we have by the induction hypothesis for clause (a)

that for each such r, T ` Limr!C�
i , whence T `

_
fLimr j r 2 �ig!C�

i . Next,

according to lemma 14.3(a), T `
_
fLimr j r 2W 0g and, according to lemma 14.3(d),

T disproves every Limr with not wRr; consequently, T `
_
fLimr jwRrg; at the

same time, by the induction hypothesis for clause (b), C�
i implies in T the negation

of each Limr with r 1Ci. We conclude that T ` C�
i !

_
fLimr jwR r; r 
Cig, i.e.,

T ` C�
i !

_
fLimr j r 2 �ig. Thus, (*) is proved. Now continue:

(a) Suppose w 
C1� C2. Argue in T +Limw . By (*), to prove that T +C�
2

is �1-conservative over T +C�
1 , it is enough to show that T +

_
fLimr j r 2�2g

is �1-conservative over T +
_
fLimr j r 2�1g. Consider an arbitrary u 2�1 (the

case with empty �1 is trivial, for any theory is conservative over T +?). Since
w 
C1� C2 , there is v 2�2 such that uSw v. Then, by lemma 14.3(e), T + Limv is
�1-conservative over T +Limu. Then so is T +

_
fLimr j r 2�2g (which is weaker

than T + Limv). Thus, for each u 2 �1, T +
_
fLimr j r 2�2g is �1-conservative

over T + Limu. Clearly this implies that T +
_
fLimr j r 2�2g is �1-conservative

over T +
_
fLimr j r 2�1g.

(b) Suppose w 1C1� C2. Let us then �x an element u of �1 such that uSw v for
no v 2�2 . Argue in T + Limw .

By lemma 14.3(f), T +
_
fLimr j r 2�2g is not �1-conservative over T + Limu.

Then, neither is it �1-conservative over T +
_
fLimr j r 2�1g (which is weaker than

T +Limu). This means by (*) that T +C�
2 is not �1-conservative over T +C�

1 . a

Now we can pass to the desired conclusion: since 1 1A, lemma 14.4 gives
T ` Lim1!:A� , whence T 0 :Lim1 ) T 0A�. But we do have T 0 :Lim1 ac-
cording to lemma 14.3(h). This ends the proof of theorem 14.2. a

Our remaining duty is to de�ne the function g and to prove lemma 14.3. The
recursion theorem enables us to de�ne this function simultaneously with the sentences
Limw (for each w 2W 0), which, as we have mentioned already, assert that w is the
limit of g, and the formulas �wu(y) (for each pair (w; u) with wR

0u), which we de�ne
by

�wu(y) � 9 t> y (g(t) = �u ^ 8z(y 6 z < t! g(z) = �w)).

14.5. De�nition. (function g)
We de�ne g(0) = 0.

Assume that g(y) has already been de�ned for every y 6 x, and let g(x) =w.
Then g(x+ 1) is de�ned as follows:

(1) Suppose wR0u, n 6 x and for all z with n 6 z 6 x we have g(z) = w. Then, if
`xLimu!:�wu(�n), we de�ne g(x+ 1) = u.

(2) Else, suppose m 6 x, � is a �1 !-sentence and the following holds:
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(a) � has a regular counterwitness which is 6 x,
(b) `m Limu! �,
(c) wSg(m) u,
(d) m is the least number for which such � and u exist, i.e., there are no m0

<m,
world u0 and �1!-sentence �

0 satisfying the conditions (a){(c) with m0 , u0 and �0

substituted for m, u and �.
Then we de�ne g(x+ 1) = u.

(3) In all remaining cases g(x+ 1) = g(x).

It is not hard to see that g is primitive recursive. Before we start proving lemma 14.3,
let us agree on some jargon and prove two auxiliary lemmas. When the transfer from
w = g(x) to u= g(x+ 1) is determined by de�nition 14.5(1), we say that at the
moment x+ 1 the function g makes (or we make) an R0-move from the world w to
the world u. If this transfer is determined by de�nition 14.5(2), then we say that
an S 0-transfer takes place and call the number m from de�nition 14.5(2) the rank of
this S 0-transfer. Sometimes the S 0-transfer leads to a new world, but `mostly' it does
not, i.e., (u=)g(x+ 1) = g(x)(=w), and then it is not a move in the proper sense.
Those S 0-transfers which lead to a new world we call S 0-moves. As for R0-transfers,
they (by irre
exivity of R0) always lead to a new world, so we always say \R0-move"
instead of \R0-transfer".

In these terms, the formula �wu(n) asserts that starting at or before the moment
n and until some moment t, we stay at the world w without moving and then, at the
moment t, we move directly to u.

Intuitively, we make an R0-move from w to some u with wR0u in the following
situation: since some moment n and up to the present we have been staying at world
w, and just now we have reached evidence that T + Limu thinks that the �rst (proper)
move which happens after passing moment n (and thus our next move) cannot lead
directly to the world u; then, to spite this belief of T + Limu , we immediately move
to u.

And the conditions for an S 0-transfer from w to u can be described as follows: we
are staying at the world w and by the present moment we have reached evidence that
T + Limu proves a false �1 !-sentence �. This evidence consists of two components:
(1) a regular counterwitness, which indicates that � is false, and (2) the rank m of
the transfer, which indicates that T +Limu `�. Then, as soon as wSg(m) u, the next
moment we must be at u (move to u, if u 6=w, and remain at w, if u=w); if there
are several possibilities for such a transfer, we choose the one with the least rank.
An additional necessary condition for an S 0-transfer is that in the given situation an
R0-move is impossible; R0-moves have priority over S 0-moves.

Note that the condition for an R0-move here is weaker than for the function h
de�ned in section 3: T only needs to prove Limu!:�wu(�n). This feature will play
a crucial role in the veri�cation of 14.3(f).

14.6. Lemma. (T ` :) For each natural number m and each w 2W 0, T + Limw

proves that no S 0-transfer to w can have rank less than m.
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Proof. Indeed, \the rank of an S 0-transfer is <m" means that T + Limw proves
a false (i.e., one with a regular counterwitness) �1 !-sentence � and the code of this
proof (i.e., of the T -proof of Limw! �) is smaller than m. But the number of all
�1 !-sentences with such short proofs is �nite, and as T +Limw proves each of them,
it also proves that none of these sentences has a regular counterwitness (recall our
assumptions about the formula Regwit(x; y) from section 12). a

14.7. Lemma. (T ` :) If g(x)R0w, then for all y 6 x, g(y)R0w.

Proof. Suppose g(x)R0w and y 6 x. We proceed by induction on n= x� y. If
y = x, we are done. Suppose now g(y + 1)R0w. If g(y) = g(y + 1), we are done. If
not, then at the moment y + 1 the function makes either an R0-move or an S 0-move.
In the �rst case we have g(y)R0 g(y + 1) and, by transitivity of R0 , g(y)R0w; in the
second case we have g(y)S 0

v g(y + 1) for some v, and the desired thesis then follows
from property (iv) of ILM-frames (de�nition 13.4). a

Proof of lemma 14.3. In each case below, except in (g) and (h), we reason in T .
(a): First observe that there exists some z such that for all z0 > z , not

g(z0)R0 g(z0 + 1). Indeed, suppose this is not the case. Then, by lemma 14.7,
for all z , there is z0 with g(z)R0 g(z0). This means that there is an in�nite (or
\su�ciently long") chain w1R

0w2R
0 � � � , which is impossible because W 0 is �nite and

R0 is transitive and irre
exive.
So, let us �x this number z . Then we never make an R0-move after the moment z .

We claim that S 0-moves can also take place at most a �nite number of times (whence
it follows that g has a limit and this limit is, of course, one of the elements of W 0).

Indeed, let x+ 1 be an arbitrary moment after z at which we make an S 0-move,
and let m be the rank of this move. That is, for some �1!-sentence � with a
6 x regular counterwitness, we have `mLimu! � and wSg(m)u, where w = g(x)
and u= g(x+ 1). Suppose we make the next S 0-move, with rank m0, at some
moment x0 + 1, x0 > x, from the world u to a world v, v 6= u. Since Sg(m) is
re
exive, conditions (a)-(c) of de�nition 14.5(2) hold for x0; u; u; �;m in the roles of
x; w; u; �;m, respectively, and then, according to condition (d) of de�nition 14.5(2),
the only reason for moving to v instead of u | instead of remaining at u, that is |
could be that m>m0 (the case m=m0 is ruled out because Limu 6= Limv). Similarly,
the rank m00 of the following S 0-move will be less than m0 , etc. Thus, consecutive
S 0-moves without an R0-move between them have decreasing ranks. Therefore,
S 0-moves can take place at most m times after passing x.

(b): Clearly g cannot have two di�erent limits w and u.
(c): Assume w is the limit of g and wR0 u. Let n be such that for all x > n,

g(x) =w. We need to show that T 0 :Limu. Deny this. Then T `Limu!:�wu(�n)
and, since every provable formula has arbitrary long proofs, there is x > n such
that `x Limu!:�wu(�n); but then, according to de�nition 14.5(1), we must have
g(x+ 1) = u, which, as u 6=w (by irre
exivity of R0), is a contradiction.

(d): Assume w 6= 0, w is the limit of g and not wR0 u. If u=w, then (since
w 6= 0) there is x such that g(x) = v 6= u and g(x+ 1) = u. This means that at the
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moment x+ 1 we make either an R0-move or an S 0-move. In the �rst case we have
T `Limu!:�vu(�n) for some n for which, as it is easy to see, the �1 !-sentence
�vu(�n) is true, whence, by �1 !-completeness, T `:Limu. And if an S 0-move is
taken, then again T `:Limu because T +Limu proves a false (with a 6 x regular
counterwitness) �1!-sentence.

Next, suppose u 6=w. Let us �x a number z with g(z) = w. Since g is primitive
recursive, T proves that g(z) =w. Now argue in T + Limu: since u is the limit
of g and g(z) =w 6= u, there is a number x with x > z such that g(x) 6= u and
g(x+ 1) = u. Since not (w = )g(z)R0 u, we have by lemma 14.7 that

(*) for each y with z 6 y 6 x, not g(y)R0 u.

In particular, not g(x)R0 u and the transfer from g(x) to g(x+ 1)( = u) can have
been determined only by de�nition 14.5(2). Then (*) together with the property (i)
of IL-frames and de�nition14.5(2c), implies that the rank of this S 0-move is less than
z , which, by lemma 14.6, is a contradiction. Thus, T +Limu is inconsistent, i.e.,
T ` :Limu.

(e): Assume uS 0
w v 6= u (the case v = u is trivial). Suppose w is the limit of g,

� is a �1-sentence and T `zLimv ! �. We may suppose that � 2�1 ! and that z is
su�ciently large, namely, g(z) = w. Fix this z . We need to show that T +Limu ` �.

Argue in T + Limu. Suppose not �. Then there is a regular counterwitness c
for �. Let us �x a number x> z; c such that g(x) = g(x+ 1) = u (as u is the limit
of g, such a number exists). Then, according to de�nition 14.5, the only reason for
g(x+ 1) = u 6= v can be that we make an S 0-transfer from u to u and the rank of this
transfer is less than z , which, by lemma 14.6, is not the case. Conclusion: � (is true).

(f): Assume w is the limit of g, wR0 u , V �W 0 and for each v 2 V , not uS 0
w v.

Let n be such that for all z > n, g(z) = w. By primitive recursiveness of g, T proves
that g(n) =w. By de�nition 14.5(1), T + Limu 0 :�wu(�n). So, as :�wu(�n) is a
�1-sentence, in order to prove that T +

_
fLimv j v 2 V g is not �1-conservative over

T + Limu, it is enough to show that for each v 2 V , T + Limv ` :�wu(�n). Let us �x
any v 2 V . According to our assumption, not uS 0

w v and, by re
exivity of S
0
w , u 6= v.

Argue in T + Limv . Suppose, for a contradiction, that �wu(n) holds, i.e., there
is t> n such that g(t) = u and for all z with n 6 z < t, g(z) = w. As v is the limit
of g and v 6= u, there is t0 > t such that g(t0 � 1) 6= v and at the moment t0 we arrive
at v to stay there for ever. Let then x0 < : : : < xk be all the moments in the interval
[t; t0] at which R0- or S 0-moves take place, and let u0 = g(x0); : : : ; uk = g(xk). Thus
t= x0 , t

0 = xk , u= u0, v = uk and u0; : : : ; uk is the route of g after departing from
w (at the moment t).

Now let j be the least number among 1; : : : ; k such that for all j 6 i 6 k, not
u0R

0 ui. Note that such a j does exist because at least j = k satis�es the condition
(otherwise, if (u= ) u0R

0 uk ( = v), property (iv) of ILM-frames would imply uS 0
w v).

Note also that, for each i with j 6 i6 k, the move to ui cannot be an R0-move.
Otherwise, we must have ui�1R

0 ui, whence, by lemma 14.7, u0R
0 ui, which is

impossible for i> j .
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Thus, from the moment xj onwards, each move is an S 0-move. Moreover, for
each i with j 6 i6 k, the rank of the S 0-move to ui is less than x0 . Indeed, suppose,
for such an i, the rank of the S 0-move to ui is m for m > x0 . We have g(m) = ue for
some e with 06 e6 k and, by de�nition 14.5(2c), we should have ui�1S

0
ue
ui, and by

property (i) of IL-frames, ueR
0ui, whence, as above, lemma 14.7 gives that u0R

0 ui,
which is impossible for i > j . On the other hand, since consecutive S 0-moves decrease
the rank (as we noted in the proof of (a) above), and since the rank of the S 0-move
to uk cannot be less than n (lemma 14.6), we conclude: for each i with j 6 i6 k,
the rank of the S 0-move to ui is in the interval [n; x0� 1]. But the value of g in this
interval is w, and by de�nition 14.5(2c) this means that uj�1 S

0
w uj S

0
w : : : S

0
w uk . At

the same time, we have either u0 = uj�1 or u0R
0 uj�1. In both cases we then have

u0 S
0
w uj�1 (in the �rst case by re
exivity of S 0

w and in the second case by property
(iii) of IL-frames), whence, by transitivity of S 0

w , u0 S
0
w uk , i.e., uS

0
w v, which is a

contradiction. Conclusion: T +Limv ` :�wu(�n).
(g): By (a), as T is sound, one of the Limw for w 2W 0 is true. Since for no w

do we have wR0w, (d) means that each Limw , except Lim0 , implies in T its own
T -disprovability and therefore is false. Consequently, Lim0 is true.

(h): As 3.2(f). a

The proof of theorem 14.2 is complete. In de Jongh and Pianigiani [1998]
this theorem and its extension to an interpretability logic with witness comparison
formulas (H�ajek and Montagna [1992]) was applied to solve a conjecture of Guaspari
[1983]. This conjecture stated that those formulas of modal logic that under each
arithmetic realization are interpreted as �1-sentences are L-equivalent to disjunction
of 2-sentences (already proved in Visser [1995]), and those of modal logic extended
with witness comparison formulas are R-equivalent to disjunctions which contain
as their members conjunctions of witness comparison formulas and 2-formulas. A
companion paper is Beklemishev [1993a], in which it is shown that the realization
of other formulas, i.e., the ones that are not always realized as �1-sentences,
cannot be restricted to any particular class in the arithmetic hierarchy, thereby
improving Guaspari [1983]'s results as well.

Visser [1990] showed that ILP is the interpretability logic for all reasonable
�nitely axiomatizable theories that contain I�0 + SUPEXP. An open problem is the
axiomatization of the logic of the principles valid for interpretability in all reasonable
r.e. theories. Visser [1991] showed that this logic is not just the intersection of ILM
and ILP.

15. Tolerance logic and other interpretability logics

15.1. The logics of cointerpretability and faithful interpretability

Unlike interpretability, no modal axiomatization for the logic of cointerpretability
or faithful interpretability (over PA or any other reasonable theory) has been found
so far. Even the question of decidability of these logics remains open.
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However, the logics of weak interpretability and the more general relations of
tolerance and cotolerance (see section 11) have been studied thoroughly. Here is
a brief history of research in this �eld, which starts from some digression from the
subject.

15.2. The logic of the arithmetic hierarchy

Japaridze [1990b,1994a] introduced a decidable propositional logic HGL with
in�nitely many unary modal operators: 2;�1;�

+
1 ;�2;�

+
2 ; : : : and proved its

soundness and completeness with respect of the arithmetic interpretation where
2A is understood as a formalization of \A� is provable (in PA)", �nA as \A� is
(PA-equivalent to) a �n-sentence" and �+

nA as \A� is (PA-equivalent to) a Boolean
combination of �n-sentences". The logic has a reasonable axiomatization and Kripke
semantics.

15.3. The logic of tolerance and its fragments

Ignatiev [1990] (see Ignatiev [1993b]) strengthened the (2;�1)-fragment of
the logic of the arithmetic hierarchy by switching from the unary modal opera-
tor �1 to the more general binary operator �, where A�B is interpreted as
\there is a �1-sentence ' such that PA ` (A�! ') ^ ('!B�)" (for comparison:
the interpretation of �1A is nothing but \there is a �1-sentence ' such that
PA ` (A�! ') ^ ('!A�)"). He constructed a logic ELH in this language, called
\the logic of �1-interpolability", and proved its arithmetic completeness. Although
the author of the logic of �1-interpolability did not suspect this, he actually had
found the logic of weak interpretability over PA, because, as it is now easy to see
in view of corollary 12.8, the formula :(A�:B) expresses that PA+B� is weakly
interpretable in PA+ A� .

We know that weak interpretability is a special (binary) case of linear tolerance,
and the latter is a special (linear) case of tolerance of a tree of theories. Japaridze
[1992] gave an axiomatization of the logic TOL of linear tolerance over PA, and
Japaridze [1993] did the same for the logic TLR of the most general relation of
tolerance for trees.

All three logics ELH, TOL and TLR are decidable. Among them TOL has the
most elegant language, axiomatization and Kripke semantics, and although TOL is
just a fragment of TLR, here we are going to have a look only at this intermediate
logic.

The language of TOL contains the single variable-arity modal operator } : for
any n, if A1; : : : ; An are formulas, then so is }(A1; : : : ; An). This logic is de�ned as
classical logic plus the rule :A=:}(A) plus the following axiom schemata:

1. }( ~C;A; ~D)!}( ~C;A ^:B; ~D) _}( ~C;B; ~D),

2. }(A)!}(A ^:}(A)),
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3. }( ~C;A; ~D)!}( ~C; ~D),

4. }( ~C;A; ~D)!}( ~C;A;A; ~D),

5. }(A;}( ~C))!}(A ^}( ~C)),

6. }( ~C;}( ~D))!}( ~C; ~D).

(Here ~A stands for A1; : : : ; An for an arbitrary n> 0, }(hi) is identi�ed with >.)

15.4. De�nition. A Visser-frame (see Berarducci [1990]) is a triple hW;R; Si,
where hW;Ri is a Kripke-frame for L and S is a transitive, re
exive relation on W
such that R� S and, for all w; u; v 2 W , we have wSuRv =) wRv.

A TOL-model is a quadruple hW;R; S; 
i with hW;R; Si a Visser-frame com-
bined with a forcing relation 
 with the clause

w 
}(A1 : : : ; An) i� there are u1; : : : ; un with u1S : : : Sun such that,
for all i, wRui and ui 
Ai.

Such a model is said to be �nite, if W is �nite.

15.5. Theorem. (Japaridze [1992]) For any TOL-formula A, ` TOLA i� A is
valid in every TOL-model; the same is true if we consider only �nite TOL-models.

15.6. Theorem. (Japaridze [1992]) Let T be a sound superarithmetic theory,
and let, for � an arithmetic realization, (}(A1; : : : ; An))

� be interpreted as a natural
formalization of \the sequence T +A�

1; : : : ; T +A�
n is tolerant". Then, for any TOL-

formula A, ` TOLA i� for every realization �, T `A�.

With the arithmetic interpretation in mind, note that L is the fragment of TOL
in which the arity of } is restricted to 1. This is because consistency of A� with
T , expressed in L by }A, means nothing but tolerance of the one-element sequence
hT + A�i of theories, expressed in TOL by }(A).

As for cotolerance, one can easily show, using theorems 12.7 and 12.13
((i)()(iii)), that a sequence of superarithmetic theories is cotolerant i� the sequence
where the order of these theories is reversed is tolerant. Moreover, it was shown in
Japaridze [1993] that cotolerance | though not tolerance | for trees can also
be expressed in terms of linear tolerance. In particular, a tree of superarithmetic
theories is cotolerant i� one of its topological sortings is. Hence, given a tree Tr of
modal formulas, cotolerance of the corresponding tree of theories can be expressed in
TOL by }( ~A1) _ : : : _}( ~An), where ~A1; : : : ; ~An are all the reverse-order topological
sortings of Tr. Thus TOL, being the logic of linear tolerance, can, at the same time,
be viewed as the logic of (unrestricted) cotolerance over PA.

Just like tolerance, the notion of �-consistency (see de�nition 12.4) can be
generalized to �nite trees, including sequences as special cases of trees: a tree
Tr of theories is �-consistent i� there are consistent extensions of these theories, of
which each one is �-conservative over its predecessors in the tree.

Then the corollaries of theorems 12.7 and 12.13 generalize to the following:
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15.7. Theorem. (Japaridze [1993], PA ` ) For any �nite tree Tr of superarith-
metic theories,

(a) Tr is tolerant i� Tr is �1-consistent;

(b) Tr is cotolerant i� Tr is �1-consistent.

Just as in the case of ILM, in the arithmetic completeness theorems for TOL
and TLR, the requirement of superarithmeticity (essential re
exivity) of T can be
weakened to I�1 � T if we view these logics as logics of �1-consistency rather than
tolerance.

15.8. Truth interpretability logics

We want to �nish our discussion of propositional interpretability logics by noting
that the closure under modus ponens of the set of theorems of ILM, or any other
of the logics mentioned in this section, supplemented with the axiom 2A!A or
its equivalent, yields the logic (in case of ILM called ILM!) that describes all true
principles expressible in the corresponding modal language, just as this was shown
to be the case for L in section 3. The original sources usually contain proofs of both
versions of the arithmetic completeness theorems for these logics.

Stranneg�ard [1997] considers in�nite r.e. sets of modal formulas of interpretability
logic. He generalizes his theorem 5.3 for the speci�c case of interpretability over PA
to the following theorem.

15.9. Theorem. Let T be a well-speci�ed r.e. set of formulas of interpretability
logic. Then T is realistic i� it is consistent with ILM! .

As in the case of L (corollary 5.2), a stronger version of this theorem implies as
a corollary a uniform version of the arithmetic completeness of ILM with regard to
PA. For a further consequence, let us �rst note that the existence of Orey-sentences
in PA, i.e., arithmetic sentences A such that both PA +A and PA + :A are
interpretable in PA (�rst obtained by Orey [1961]), follows immediately from the
arithmetic completeness of ILM with regard to PA. In Stranneg�ard's terminology
this can be phrased as: Orey [1961] showed that the set f>�p;>�:pg is realistic.
Orey continued by asking what similar sets (such as f>�p, >�q, >�:(p ^ q),
:(>�:p), :(>�:q), :(>�p ^ q)g) are realistic. Let an Orey set be a set of modal
formulas of the form (:)(B�C), where B and C are Boolean formulas. Stranneg�ard
can then give the following answer to Orey's question.

15.10. Theorem. Let T be an r.e. Orey set. Then T is realistic i� it is consistent
with ILM! .
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16. Predicate provability logics

16.1. The predicate modal language and its arithmetic interpretation

The language of predicate provability logic is that of �rst order logic (without
identity or function symbols) together with the operator 2 . We assume that this
language uses the same individual variables as the arithmetic language. Throughout
this section T denotes a sound theory in the language of arithmetic containing PA.
We also assume that T satis�es the L�ob derivability conditions.

As in the previous sections, we want to regard each modal formula A(P1; :::; Pn)
as a schema of arithmetic formulas arising from A(P1; :::; Pn) by substitution of
arithmetic predicates P �

1 ; :::; P
�
n for the predicate letters P1; :::; Pn and replacing 2

by PrT (). However, some caution is necessary when we try to make this approach
precise. In particular, we need to forbid for P �

i to contain quanti�ers that bind
variables occurring in A.

16.2. De�nition. A realization for a predicate modal formula A is a function �

which assigns to each predicate symbol P of A an arithmetic formula P �(v1; : : : ; vn),
whose bound variables do not occur in A and whose free variables are just the �rst
n variables of the alphabetical list of the variables of the arithmetic language if n is
the arity of P . For any realization � for A, we de�ne A� by the following induction
on the complexity of A:

� in the atomic cases, (P (x1; : : : ; xn))
� = P �(x1; : : : ; xn),

� � commutes with quanti�ers and Boolean connectives:
(8xB)� = 8x(B�), (B!C)� =B�! C�, etc.,

� (2B)� =PrT [B
�].

For an explanation of the notation \[ ]" see notation 12.2. Observe from this that
A� always contains the same free variables as A. We say that an arithmetic formula
' is a realizational instance of a predicate modal formula A, if ' =A� for some
realization � for A.

The main task is to investigate the set of predicate modal formulas which express
valid principles of provability, i.e., all of whose realizational instances are provable,
or true in the standard model.

16.3. The situation here is not as smooth as in the propositional case, . . .

Having been encouraged by the impressive theorems of Solovay on the decidability
of propositional provability logic, one might expect that the valid principles captured
by the predicate modal language are also axiomatizable (decidability is ruled out of
course). However, the situation here is not as smooth as in the propositional case.
The �rst doubts about this were raised by Montagna [1984]. In fact, it turned out
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afterwards that we have very strong negative results, one of which is the following
theorem on nonarithmeticity of truth predicate logics of provability.

16.4. Theorem. (Art�emov [1985a]) Suppose T is recursively enumerable. Then
(for any choice of the provability predicate PrT ) the set Tr of predicate modal formulas
all of whose realizational instances are true, is not arithmetic.

It was later shown by Vardanyan [1986], and also by Boolos and McGee [1987]
that Tr is in fact �1-complete in the truth set of arithmetic.

Proof of theorem 16.4. We assume here that the arithmetic language contains
one two-place predicate letter E and two three-place predicate letters A and M ,
and does not contain any other predicate, functional or individual letters. Thus,
this language is a fragment of our predicate modal language. In the standard model
E(x; y), A(x; y; z) and M(x; y; z) are interpreted as the predicates x= y, x+ y = z
and x� y = z , respectively.

One variant of a well-known theorem of Tennenbaum (see e.g., Chapter 29 of
Boolos and Je�rey [1989]) asserts the existence of an arithmetic sentence � such
that:

(1) � is true (\true" here always means \true in the standard model"),

(2) any model of � , with domain !, E interpreted as the identity relation,
and A and M as recursive predicates, is isomorphic to the standard
model.

We assume that � conjunctively contains the axioms of Robinson's arithmetic Q,
including the identity axioms. Therefore, using standard factorization, we can pass
from any model D of � with domain ! and such that E , A and M are interpreted
as recursive predicates, to a model D0 which satis�es the conditions of (2) and which
is elementarily equivalent to D. Thus, (2) can be changed to the following:

(20) any model D of � , with domain ! and E , A and M interpreted
as recursive predicates, is elementarily equivalent to the standard model
(i.e., D � 
 i� 
 is true, for all sentences 
).

Let C be the formula

8x; y (2E(x; y)_ 2:E(x; y))^

8x; y; z (2A(x; y; z) _ 2:A(x; y; z)) ^
8x; y; z (2M(x; y; z) _ 2:M(x; y; z)).

The following lemma yields the algorithmic reducibility of the set of all true arithmetic
formulas (which, by Tarski's theorem, is nonarithmetic) to the set Tr, and this proves
the theorem.
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16.5. Lemma. For any arithmetic formula ', ' is true if and only if every
realizational instance of � ^C! ' is true.

Proof. =) : Suppose ' is true, � is a realization for � ^C! ' and �� ^C� is
true. We want to show that '� is also true. It is not hard to see that, since T is
consistent and recursively enumerable (this condition is essential!), the truth of C�

means that the relations de�ned on ! in the standard model by the formulas E�,
A� and M� are recursive. Let us de�ne a model D with domain ! such that, for all
k;m; n 2 !,

D �E(k;m) i� E�(k;m) is true,
D �A(k;m; n) i� A�(k;m; n) is true,
D �M(k;m; n) i� M�(k;m; n) is true.

Observe that for every arithmetic formula 
 (for which the realization � is legal), we
have D � 
 i� 
� is true. In particular D � � , and thus D satis�es the conditions of
(20), i.e., D is elementarily equivalent to the standard model, whence (as ' is true)
D � ', whence '� is true.
(= : Suppose ' is false. Let � be the trivial realization, i.e., such that
E�(x; y) =E(x; y), A�(x; y; z) =A(x; y; z), M�(x; y; z) =M(x; y; z). Then �� = � ,
'� = ' and therefore it su�ces to show that � ^C�! ' is false, i.e., that � ^C�

is true. But � is true by (1), and from the decidability in T of the relations x= y,
x+ y = z and x� y = z , it follows that C� is also true. a

Formalizing in arithmetic the idea employed in the above proof, Vardanyan [1986]
also proved that if T is recursively enumerable, then the set of predicate modal
formulas whose realizational instances are provable in T (or in PA) is not recursively
enumerable and is in fact �2-complete.

There is one perhaps even more unpleasant result which should also be mentioned
here. For recursively enumerable T , the answer to the question whether a predicate
modal formula expresses a valid provability principle, turns out to be dependent
on the choice of the formula PrT , that is, on the concrete way of formalization of
the predicate \x is the code of an axiom of T ", even if a set of axioms is �xed
(Art�emov [1986]). Note that the proofs of Solovay's theorems for propositional
provability logic are insensitive in this respect and actually the only requirement is
that the three L�ob-conditions must be satis�ed.

16.6. . . . but still not completely desperate

Against this gloomy background one still can succeed in obtaining positive results
in two directions. Firstly, although the predicate logic of provability in full generality
is not (recursively) axiomatizable, some natural fragments of it can be so and may
be stable with respect to the choice of the formula PrT .

And secondly, all the above-mentioned negative facts exclusively concern recur-
sively enumerable theories, and the proofs hopelessly fail as soon as this condition
is removed. There are however many examples of interesting and natural theories
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which are not recursively enumerable (e.g., the theories induced by !-provability or
the other strong concepts of provability mentioned in section 8), and it well might
be that the situation with their predicate provability logics is as nice as in the
propositional case.

The main positive result we are going to consider is the following: the \arith-
metic part" of Solovay's theorems, according to which the existence of a Kripke
countermodel (with a transitive and converse well-founded accessibility relation)
implies arithmetic nonvalidity of the formula, can be extended to the predicate level.
This gives us a method of establishing nonvalidity for a quite considerable class of
predicate modal formulas.

16.7. Kripke-models for the predicate modal language

A Kripke-frame for the predicate modal language is a system

M = hW;R; fDwgw2Wi;

where hW;Ri is a Kripke-frame in the sense of section 2, fDwgw2W are nonempty
sets (\domains of individuals") indexed by elements of W such that if wRu, then
Dw �Du, and a Kripke-model is a Kripke-frame together with a forcing relation 
 ,
which is now a relation between worlds w 2W and closed formulas with parameters
in Dw ; for the Boolean connectives and 2 , 
 behaves as described in section 2, and
we have only the following additional condition for the universal quanti�er:

� w 
8xA(x) i� w 
A(a) for all a 2Dw ,

and a similar one for the existential quanti�er. A formula is said to be valid in a
Kripke-model hW;R; fDwgw2W ; 
i, if A is forced at every world w 2W . Such a
model is said to be �nite if W as well as all Dw are �nite.

16.8. The predicate version of Solovay's theorems

For every predicate modal formula A, let REFL(A) denote the universal closure
of
^
f2B!B j 2B 2 Sbg, where Sb is the set of the subformulas of A.

16.9. Theorem. (Art�emov and Japaridze [1987,1990]). For any closed predicate
modal formula A,
(a) if A is not valid in some �nite Kripke-model with a transitive and converse
well-founded accessibility relation, then there exists a realization � for A such that
T 0 A�,
(b) if REFL(A)!A is not valid in such a model, then there exists a realization �

for A such that A� is false.

Proof. We prove here only clause (a), leaving (b) as an exercise for the reader. Some
details in this proof are in fact redundant if we want to prove only (a), but they are
of assistance in passing to a proof of (b).
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Assume that hW;R; fDwgw 2 W ; 
i is a model with the above-mentioned prop-
erties in which A is not valid. As before, without loss of generality we may suppose
that W = f1; : : : ; lg, 1 is the root and 1 1A. We suppose also that Dw � ! and
0 2Dw for each w 2W . Let us de�ne a model hW 0; R0; fD0

wgw2W 0; 
0i by setting

� W 0 =W [ f0g,

� R0 =R [ f(0; w) jw 2Wg,

� D0
0 =D1 and, for all w 2W , D0

w =Dw ,

� for any atomic formula P , 0 
0P i� 1 
P and, if w 2W , w 

0P i� w 
P .

We accept the de�nitions of the Solovay function h and the sentences Limw from
section 3 without any changes; the only additional step is the following:

For each a from D =
[
fDw j x 2Wg we de�ne an arithmetic formula 
a(x) with

only x free by setting


a(x)=
_
f9t6x( h(t)=h(x)=w^:9z< t(h(z)=w)^x= t+ a) j a2Dwg:

Thus, using the jargon from section 14, 
a(x) says that we have reached some world
w such that a 2Dw , at the moment x we are still at w, and exactly a moments have
passed since we moved to this world (we assume that the �rst \move", to the world
0, happened at the initial moment 0). We de�ne the predicates 
0a by

� for each 0 6= a 2D, 
0a(x) = 
a(x), and

� 
00(x) = 
0(x) _:
_
f
a(x) j a 2Dnf0gg.

(It is easy to check that the left disjunct of 
00(x) is redundant; it implies the right
disjunct.) Since we employ the same Solovay function h as in section 3, lemma 3.2
continues to hold. In addition, we need the following lemma:

16.10. Lemma.

(i) T ` : (
0a(x) ^ 

0
b(x)) for all a 6= b,

(ii) T ` Limw!
^
f9x 
0a(x) j a 2Dwg for all w 2W 0,

(iii) T ` Limw!8x(
_
f
0a(x) j a 2Dwg) for all w 2W 0.

Proof. (i): The formulas 
a(x) and 
b(x) for a 6= b are de�ned so that each disjunct
of 
a(x) is inconsistent with each disjunct of 
b(x). And the right disjunct of 
00(x),
by de�nition, is inconsistent with each 
a(x), a 6= 0.

(ii): Suppose a 2Dw and argue in T + Limw . Since w is the limit of h, there
is a moment t at which we arrive in w, and stay there for ever (more formally: we
have :9y < t (h(y) =w) and 8y > t (h(y) = w)). Then, by de�nition, 
a(t+ a) holds,
whence 
0a(t+ a) holds, whence 9x 
0a(x). And so for each a 2Dw .

(iii): Argue in T + Limw . Consider an arbitrary number x. We must show that

0a(x) holds for some a 2Dw . The de�nition of h implies that, either h(x)R0 w, or
h(x) =w; in both cases we then have Dh(x) �Dw . Let t be the least number such
that h(t) = h(x), and let a= x� t. By de�nition, if a 2Dh(x) (and thus a 2Dw),
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then 
a(x) holds, whence 

0
a(x) holds and we are done; and if a =2Dh(x), then (the

right disjunct of) 
00(x) holds and we are also done, because 0 2Dw . a

We now de�ne a realization � . For each n-place predicate letter P , let P � be
_
fLimw ^


0
a1
(v1)^ : : : ^


0
an
(vn) j a1; : : : ; an 2Dw; w 


0P (a1; : : : ; an)g:

16.11. Lemma. Let B be a predicate modal formula with precisely x1; : : : ; xn free.
Then, for each w 2W and for all a1; : : : ; an 2Dw ,

(a) if w 

0(B(a1; : : : ; an), then T ` Limw ^ 


0
a1
(x1) ^ : : : ^ 


0
an
(xn)!B�;

(b) if w 1
0(B(a1; : : : ; an), then T ` Limw ^ 


0
a1
(x1) ^ : : : ^ 
0an(xn)!:B�.

Proof. We proceed by induction on the complexity of B . Suppose B(x1; : : : ; xn)
is atomic. If w 


0B(a1; : : : ; an), then Limw ^ 

0
a1
(x1) ^ : : : ^ 
0an(xn) is one of the

disjuncts of B� and the desired result is obvious. If w 1
0B(a1; : : : ; an), then that

formula is not a disjunct of B� and, according to lemma 3.2(b) and 16.10(i), it implies
in T the negations of all the disjuncts of B� .

Next suppose that B(x1; : : : ; xn) is 8y C(y; x1; : : : ; xn).
If w 
 8y C(y; a1; : : : ; an), then w 
C(b; a1; : : : ; an) for all b 2Dw . Then, by the
induction hypothesis, for all b 2Dw ,

T ` Limw ^ 

0
b(y)^ 


0
a1
(x1) ^ : : : ^ 


0
an
(xn)! (C(y; x1; : : : ; xn))

� .

Therefore,

T ` Limw ^
�_

f
0b(y) j b 2Dwg
�
^ 
0a1(x1) ^ : : : ^ 


0
an
(xn)! (C(y; x1; : : : ; xn))

�:

Note that there is no free occurrence of y in either Limw or 
0a1(x1) ^ : : : ^ 

0
an
(xn).

Universal quanti�cation over y gives

T ` Limw ^ 8y
�_

f
0b(y) j b 2Dwg
�
^ 
0a1(x1) ^ : : : ^ 


0
an
(xn)!

8y(C(y; x1; : : : ; xn))
�.

By lemma 16.10(iii), we can eliminate the conjunct 8y
�_

f
0b(y) j b 2Dwg
�
in the

antecedent of the above formula and conclude that

T `Limw ^

0
a1
(x1)^ : : : ^


0
an
(xn)!8y (C(y; x1; : : : ; xn))

�:

If on the other hand w 1 8y C(y; a1; : : : ; an), then there is b 2Dw such that
w 1C(b; a1; : : : ; an). By the induction hypothesis,

T `Limw ^

0
b(y)^


0
a1
(x1)^ : : : ^


0
an
(xn)!: (C(y; x1; : : : ; xn))

�:

Again, neither Limw nor 
0a1(x1) ^ : : : ^ 
0an(xn) contains y free, and existential
quanti�cation over y gives

T `Limw ^9y 

0
b(y)^


0
a1
(x1)^ : : : ^


0
an
(xn)!9y :(C(y; x1; : : : ; xn))

�:

According to lemma 16.10(ii), T ` Limw!9y 
0b(y). Therefore,

T `Limw ^

0
a1
(x1)^ : : : ^


0
an
(xn)!:(8y C(y; x1; : : : ; xn))

�:
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Finally, suppose that B is 2C . If w 
2C(a1; : : : ; an), then for each u such that
wR0u, we have u 
C(a1; : : : ; an) and, by the induction hypothesis,

T `Limu ^

0
a1
(x1)^ : : : ^


0
an
(xn)! (C(x1; : : : ; xn))

�:

Therefore,

T `
�_

fLimu jwR
0ug
�
^
0a1(x1)^ : : : ^


0
an
(xn)! (C(x1; : : : ; xn))

�;

and, by the �rst two L�ob conditions,

T `PrT [
�_

fLimu jwR
0ug
�
^ 
0a1(x1)^ : : : ^


0
an
(xn)]! (2C(x1; : : : ; xn))

�:

Observe that the formulas 
a(x) are primitive recursive and we have that
T ` 
a(x)! PrT [
a(x)]; together with lemma 3.2(d) this means that

T ` Limw ^ 

0
a1
(x1) ^ : : : ^ 
0an(xn)!

PrT [
�_

fLimu jwR
0ug
�
^ 
0a1(x1) ^ : : : ^ 


0
an
(xn)].

Thus, we get T ` Limw ^ 

0
a1
(x1) ^ : : : ^ 
0an(xn)! (2C(x1; : : : ; xn))

� .
If w 12C(a1; : : : ; an), then there is u such that wR0 u and u 1C(a1; : : : ; an). By

the induction hypothesis,

T `Limu ^

0
a1
(x1)^ : : : ^


0
an
(xn)!: (C(x1; : : : ; xn))

�:

Therefore,

T ` (C(x1; : : : ; xn))
�!: (Limu ^


0
a1
(x1)^ : : : ^


0
an
(xn));

T `PrT [(C(x1; : : : ; xn))
�]!PrT [: (Limu ^


0
a1
(x1)^ : : : ^


0
an
(xn))];

T `:PrT [: (Limu ^

0
a1
(x1)^ : : : ^


0
an
(xn))]!: (2C(x1; : : : ; xn))

�:

On the other hand, we have

T ` :PrT [:Limu] ^PrT [

0
a1
(x1) ^ : : : ^ 
0an(xn)]!

:PrT [: (Limu ^ 

0
a1
(x1) ^ : : : ^ 
0an(xn))]

(this is a realizational instance of the principle }p ^ 2q!}(p ^ q) which is provable
in K). According to lemma 3.2(c), and since T ` 
0a(x)! PrT [


0
a(x)], we have

T ` Limw ^ 

0
a1
(x1) ^ : : : ^ 
0an(xn)!

:PrT [:Limu] ^PrT [

0
a1
(x1) ^ : : : ^ 


0
an
(xn)].

Therefore, T ` Limw ^ 

0
a1
(x1) ^ : : : ^ 
0an(xn)!: (2C(x1; : : : ; xn))

� . a

To �nish the proof of theorem 16.9: since A is closed and 1 1A, we have by
lemma 16.11, T ` Lim1!:A�. By lemma 3.2(f), Lim1 is consistent with T , and
consequently T 0A� . a
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16.12. Further positive results

One of the applications of theorem 16.9 is the following. Consider the fragment
of our predicate modal language which arises by restricting the set of variables to
one single variable x. In this case, without loss of generality, we may assume that
every predicate letter is one-place. Since the variable x is �xed, it is convenient to
omit it in the expressions 8x, P (x), Q(x), : : : and simply write 8, p, q, : : : . In fact,
we then have a bimodal propositional language with the modal operators 2 and 8.
The modal logic Lq, introduced by Esakia [1988], is axiomatized by the following
schemata:

1. all propositional tautologies in the bimodal language,

2. the axioms of L for 2 ,

3. the axioms of S5 for 8, i.e.,

� 8(A!B)! (8A!8B),

� 8A!A,

� 9A!89A (9 abbreviates :8: ),

4. 2 8A!82A,

together with the rules modus ponens, A=2A and A=8A. For this logic (the language
of which is understood as a fragment of the predicate modal language) we have the
following modal completeness theorem:

16.13. Theorem. (Japaridze [1988a,1990a]) For any Lq-formula A, `Lq A
i� A is valid in all �nite predicate Kripke-models with a transitive and converse
well-founded accessibility relation.

In view of the evident arithmetic soundness of Lq, this modal completeness
theorem together with the above predicate version of Solovay's �rst theorem implies
the arithmetic completeness of Lq:

16.14. Corollary. For any Lq-formula A, `Lq A i� every realizational instance
of A is provable in T .

Japaridze [1988a,1990a] also introduced the bimodal version Sq of S and proved
that `Sq A i� every realizational instance of A is true. The axioms of Sq are all
theorems of Lq plus 2A!A, and the rules of inference are Modus Ponens and
A=8A.

Taking into account that we deal with a predicate language, the requirement of
�niteness of the models in theorem 16.9 is a very undesirable restriction however. In
Japaridze [1990a] a stronger variant of this theorem was given with the condition of
�niteness replaced by a weaker one. What we need instead of �niteness, is roughly
the following:
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(1) The relations w 2W , wRu, a 2Dw must be binumerable in T (see de�ni-
tion 12.1), and this fact must be provable in T .

(2) The relation 
 must be numerable in T and T must prove that fact. To
be more precise, 
 need not be de�ned for all worlds and all formulas, but only
for those which are needed to falsify the formula A in the root of the model (i.e.,
in some cases we may have neither w 
B nor w 
:B); T should just prove that

 behaves \properly", e.g., w 
B =) w 1:B , w 
B _C =) (w 
B or w 
C),
w 
: (B _C) =) (w 
:B and w 
:C), : : : .

(3) T also must \prove" that the relation R is transitive and converse well-
founded. Of course, well-foundedness is not expressible in the �rst order language,
and T should somehow simulate a proof of this property of R. This is the case if,
e.g., T proves the scheme of R-induction for the elements of W , i.e.,

T `8w 2W
�
8u(wRu!'(u))!'(w)

�
!8w 2W '(w):

We want to end this section by mentioning one last positive result. Let QL be the
logic which arises by adding to L (written in the predicate modal language) the
axioms and rules of the classical predicate calculus. Similarly, let QS be the closure
of S with respect to classical predicate logic.

16.15. Theorem. (Japaridze [1990a,1991]). Suppose T is strong enough to prove
all true �1-sentences, and A is a closed predicate modal formula which satis�es one
of the following conditions:

(i) no occurrence of a quanti�er is in the scope of some occurrence of 2 in A, or
(ii) no occurrence of 2 is in the scope of some other occurrence of 2 in A, or

(iii) A has the form 2
n?!B .

Then we have:

(a) `QL A i� all realizational instances of A are provable in T ,
(b) `QS A i� all realizational instances of A are true.

(Of course, clause (b) is trivial in case (iii).) The proof for the (ii) and (iii)-
fragments in Japaridze [1990a] is based on the above-mentioned strong variant of the
predicate version of Solovay's theorems. Both Vardanyan's and Art�emov's theorems
on nonenumerability and nonarithmeticity hold for the (i) and (ii)-fragments as well,
but this is not in contradiction with theorem 16.15. The point is that the use of
Tennenbaum's theorem in the proofs of these negative results is possible only on
assumption of the recursive enumerability of T , whereas no consistent theory which
proves all the true �1-sentences can be recursively enumerable. Thus there are no
immediate objections against the optimistic conjecture thatQL andQS are complete
for such strong theories without any restriction on the language.
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