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Abstract

Classical and constructive natural deduction can be formulated using exactly
the same introduction and elimination rules, with the difference between them
expressed using a structural rule.
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1 Introduction

Lets assume that the meaning of a logical constant is determined by the rules that govern
its use. Lets also agree that intuitionistic' and classical logic give different meanings to the
logical constants.

Think of your favourite natural deduction system for intuitionistic logic. Now extend it
to handle classical logic. Where does the difference lie? If you added this rule:

A
—— DN
A

then you might think that the difference between classical and constructive logic lies in the
meaning of repeated negations.
On the other hand, if you added this rule:

TND

AV -A

you might think that the meanings of disjunction and negation both have to change.
But if you added this rule:

ZANENEY)
C C
C

then you might think that the difference just lies in a change to the meaning of negation.
Then again, you might add this rule:

Peirce

(ADB)DA)DA

In which case you might think that it is implication which has changed its meaning.
But, of course the, first two rules now add this theorem

F(ADB)DA)DA
which mentions only D, and the last rule adds this theorem
F(A&B)V-AV-B

which omits only D. So, for classical logic it seems plainly false to assert that the rules for a
connective govern its meaning. It also seems hard to hold only one connective responsible
for the shift in meaning between classical and constructive logic. We need to look bit closer.

2 Dummett, Prawitz and intuitionistic logic

Michael Dummett [3, 4, 7, 6] and Dag Prawitz [15] amongst others, have developed a proof-
theoretic explanation of the meanings of the logical constants, essentially based on the as-
sertion by Gentzen:[9]:

1We use ‘intuitionistic’ and “constructive’ identically.



The introductions represent, as it were, the ‘definitions” of the symbols con-
cerned, and the eliminations are no more, in the final analysis, than the con-
sequences of these definitions.

We must take care with ‘the final analysis’, as Prior’s tonk [16] reminds us. This con-
nective has a perfectly good introduction rules but has a discordant elimination rule. We
respond to the challenge of tonk by following the observation of Belnap [1]:

we are not defining our connectives ab initio, but rather in terms of an antecedently
given context of deducibility, concerning which we have some definite notions.

The emphasis is in the original. We need to say something about the antecedently given con-
text of deducibility. We use a theory of judgements based on that given by Martin-Lof, and
developed by him in the context of intuitionistic type theory [12, 13]. The only judgement
form we will use is:

A has a proof

or, alternatively,
A is true.

In addition to dealing with categorical judgements we will also have hypothetical judge-
ments, like:

A

B
This hypothetical judgement tells us that the judgement of B follows from and assump-
tion, the judgement of A. It is important to notice that assumptions are judgements, and can
themselves be hypothetical judgements. We are, perhaps, not used to seeing hypothetical
hypotheses in propositional logic, but they are used in type theory in the rules for ITand W

types and for universes [14].
We can combine and create judgements using inference rules.

2.1 Structural rules

Inference rules which do not mention any of the logical constants can be called structural
rules, by analogy with the structural rules of the sequent calculus. Even at this point in
the development of the theory we have a notion of the validity of a rule. For example, we
probably want to accept this rule:

A B
A

Given a judgement of A (resting on some assumptions, which remain implicit), and a judge-
ment of B (again, resting on some implicit assumptions), we can judge A (resting on all the
assumptions the judgements which either A or B rest on).

We almost certainly want to reject this rule:

B



Given a judgement of of B (resting on some assumptions), we can judge A (resting on the
assumptions B rests on).
We might have to think a little about this rule:

4]

A B
B

Given a judgement of A (resting on some assumptions), and a judgement of B (resting on
some assumptions, perhaps including the judgement of A), we can judge B (resting on all
the assumptions the judgement of A rests and all the assumptions, except A, that B rests
on).

There is no reason why we cannot have hypothetical judgements in structural rules. It
may be worth pondering whether the following rule is valid:

2.2 Introduction rules

If we are to treat the introduction rules as definitional we need to be able to formulate some
idea of what the form of these rules is, and we need to be able to give (necessarily informal)
explanations of the introduction rules. The informal explanations come from the Brouwer-
Heyting-Kolmogorov (BHK) explanation [10, 11]. The form required [6] for the introduction
rules to be suitable for use in explaining the meaning of the connectives is that each rule:

e is only an introduction rule, and does not also act as an elimination rule;?
e introduces only one occurence of one constant;
e the conclusion is the most complex formula in the rule.

The rules that we find in Gentzen all follow this pattern:

4] :
: A B
b 1 ———«&I
A>S B A&B
A B
\al \l

AV B AVB

There is no immediate evidence for L, and hence no introduction rule of the appropriate
form.

Since we identify - A with A D L, the — introduction rule is produced from the O intro-
duction rule by identifying B with L:

2A rule which allows us to derive A & B from a derivation of B & A acts as both an introduction and an
elimination rule for &.
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None of the rules that we presented in Section 1 are of the appropriate form, and so
cannot be taken as ‘primitive” rules.

3 More general elimination rules

Given the introduction rule or rules for a logical constant we can construct the elimination
rule for it in a systematic way. To do this we follow the arguments familiar from Martin-
Lof’s Type Theory [12, 14]. Type theory is an extensible theory, in the sense that we are
free to add new types. In the computer science applications of type theory this is a normal
activity, as we wish to use lists, trees and so on. Although we don’t normally think of
logic as extensible in the same way, thanks to the Curry-Howard “propositions-as-types’
analogy [2], we can treat type theory as a logic. So we have a systematic way to present
the rules for the logical constants too. The elimination rules that we get are harmonious,
and give us a normalisation property for derivations. We generate the elimination rule in
the following way. Suppose there are n introduction rules for #4; ... A,. The conclusion of
the # elimination rules will be some arbitrary proposition C. There will be n 4 1 premisses:
one is a derivation of #A; ... A,, and the other n are derivations of C which may use the
premisses of each of the introduction rules. For V there are two introduction rules, one
when we have a derivation of the left disjunct and one when we have a derivation of the
right. Hence the V elimination rule will have three premisses:

1. a derivation of AV B
2. a derivation of C from A
3. a derivation of C from B

The conclusion will be C and the conclusion will not rely on the use of A in the second
premiss or B in the third. Hence we get this familiar rule:

AVB C C

The elimination rule for & is:

A&B C
C

If we let C be A or B in this rule, and appeal to a structural rule, we can recover the more
familiar rules.
The L elimination rule is simply:



1
C
The D elimination rule follows the same pattern as the other elimination rules, and looks
rather different from Modus Ponens. It will have two premisses:

1. aderivationof A D B

2. aderivation of C which may use the premiss to the O introduction rule, that is a deriva-
tion of B from A

4] B]

ASB C
C
This rule discharges a hypothetical judgement, so it may look unfamiliar. It is however
exactly the rule we get by appealing to the Curry-Howard isomorphism and treating O as

non-dependent I, using the rules give in [14], so it is not as radical as it seems. Another D
elimination rule is given by Dyckhoff [8]:

DE

B

ASB A C
C

The rule D E’ can be recovered from D E. Suppose we have a derivation of A. Now, given
a derivation of A and a derivation of B from A, we can construct a derivation of B. So, given
a derivation of A the second premiss of O E becomes a derivation of C, given a derivation of
B. Hence adding a derivation of A as an extra premiss to O E allows us to justify Dyckhoff’s
rule.

Modus Ponens can be justified using D E’ by identifying B and C:

O F

B

ADB A B
B
The third premiss is trivial, and we recover the familiar rule.
Negation is defined as before.
The introduction and elimination rules that we have presented are all the rules that need
which mention logical constants in order to define intuitionistic propositional logic. They

are also all the rules that need which mention logical constants in order to define classical
propositional logic.

4 Peirce’s Law as a structural rule

We gave Peirce’s Law above. We know that intuitionistic logic augmented with Pierce’s
Law gives classical logic. Lets take a closer look at what judgement the classical logician
accepts in accepting the validity of Pierce’s Law that the intuitionist rejects. We know that
the system of rules we gave before is normalising, so we know that if there is a proof of
Pierce’s Law then there is a normal proof. So the final step is O introduction:



(ASB)> A

A

Ol
((ADB)DA)DA
The premiss will be justified using O elimination:
[[ADB]--- A
[((ADB)DA] A
O E

A

((ADB)DA)DADI

If we have a derivation of A D B, then we could have a normal proof.
A

B A

ADB

[(A> B) > A A
A
(ADB)DA)DA

DE

DI

The second premiss is a derivation of A relying on a derivation of A relying on a deriva-
tion of B relying on a derivation of A. In other words, accepting the validity of Pierce’s Law
is just accepting the validity of the structural rule + which we presented above.

5 Comments and conclusions

We have managed to isolate the difference between classical and constructive logic in a nat-
ural deduction rule which does not mention any connective. This reflects the situation in the
sequent calculus where the difference between Gentzen’s systems L] and LK is expressed
independently of any of the connectives.

The introduction and elimination rules deal with local properties of proofs: it is gener-
ally our experience that classical and constructive logicians really do agree about the local
properties of proofs, but that classical logicians make some extra global stipulation, such
demanding to be able to judge every proposition either true or false.

It is also pleasant to absolve any individual connective of the blame for classical logic.

We can also present natural deduction systems for some intermediate logics using struc-
tural rules. For example, adding;:

to intuitionistic logic gives us Godel-Dumett logic.
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