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Natural Deduction: Motivation

Frege, Russel, Hilbert Predicate calculus and type
theory as formal basis for mathematics

Gentzen ND as intuitive formulation of predicate calculus;
introduction and elimination rules for each logical connective

The formalization of logical deduction, especially as it has been developed by
Frege, Russel, and Hilbert, is rather far removed from the forms of deduction
used in practice in mathematical proofs. ...In contrast | intended first to set
up a formal system which comes as close as possible to actual reasoning.
The result was a calculus of natural deduction (NJ for intuitionist, NK for

classical predicate logic). [Gentzen: Investigations into logical deduction]
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Reading

F. Pfenning: Automated Theorem Proving, Course at
Carnegie Mellon University. Draft. 1999.

A.S. Troelstra and H. Schwichtenberg: Basic Proof
Theory. Cambridge. 2nd Edition 2000.

John Byrnes: Proof Search and Normal Forms in Natural
Deduction. PhD Thesis. Carnegie Mellon University.
1999.

... many more books on Proof Theory ...
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Sequent Calculus: Motivation

Gentzen had a pure technical motivation for sequent calculus
Same theorems as natural deduction

Prove of the Hauptsatz (all sequent proofs can be found
with a simple strategy)

Corollary: Consistency of formal system(s)
The Hauptsatz says that every purely logical proof can be reduced to a defi-
nite, though not unique, normal form. Perhaps we may express the essential
properties of such a normal proof by saying: it is not roundabout. ...
In order to be able to prove the Hauptsatz in a convenient form, | had to
provide a logical calculus especially for the purpose. For this the natural

calculus proved unsuitable.  [Gentzen: Investigations into logical deduction]
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Sequent Calculus: Introduction

Sequent calculus exposes many details of fine
structure of proofs in a very clear manner. Therefore it is well
suited to serve as a basic representation formalism for
many automation oriented search procedures

Backward: tableaux, connection methods, matrix
methods, some forms of resolution

Forward: classical resolution, inverse method

Don’t be afraid of the many variants of sequent calculi.

Choose the one that is most suited for you.
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Natural Deduction Rules la

A B ANB ANB

Conjunction: ArB M A N\ 5 NEr
Disjunction:
[Al:  [B];

_A B AVB C  C . .12
Avs Yl avs V- = VE!

[Alx

1i°> ;1 A=B A
Implication: A=-B ! B =E

_ L
Truth and Falsehood: T I C LE
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Natural Deduction

Natural deduction rules operate on proof trees.

Example:
Dl D2 D1 D1
A B AANB ANB
Conjunction: ArB M TA M B b
The presentation on the next slides treats the proof tree
aspects implicit.
Example:
A B AANB AANB
Conjunction: ArB M A N B B
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Natural Deduction Rules lla

[A:]l
Negation: ﬁ - ﬁAL A _g
Universal Quantif.: % 2 {\.foﬁ VE
[{a*/fﬂ}A]
Existential Quantif.: {gf;A =L - AC ¢ dF

*. parameter a must be new in context
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Natural Deduction Rules llla

For classical logic choose one of the following

Excluded Middle Av-A XM
Double Negation A
A

—

Proof by Contradiction A ¢
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Natural Deduction Proofs

[Al: [A]
ANA

A= (ANA)

A= (A= (AANA))

NI
= ]2
=1

(A A B,

[AABL AE, A v/}El

B " CVA /\[r
BA(CVA)

(AAB)= BA(CvVA) =
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Natural Deduction

Structural properties

Exchange hypotheses order is irrelevant
Weakening hypothesis need not be used
Contraction hypotheses can be used more than once
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Natural Deduction with Contexts

Idea: Localizing hypotheses; explicit representation of the
available assumptions for each formula occurrence in a ND

proof:
r-A

' is a multiset of the (uncanceled) assumptions on which
formula A depends. T is called context.

Example proof in context notation:

AjFA AFA
A, A HANA
AiFA= (ANA)
FA= (A= (AANA))

Al
=T,
=1
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Natural Deduction with Contexts

Another Idea: Consider sets of assumptions instead of
multisets.

r-=A

' is now a set of (uncanceled) assumptions on which formula
A depends.

Example proof:

A-FA AF-A
A-FANA
A-A=(ANA)

FA= (A= (ANA))

N
=1

=1
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Natural Deduction Rules Ib

Hypotheses: A, AFA
Conjunction:
'-A I'-B I'-AAB '-AAB
r-asB M Tra M TTeB AP
F-A r-B
Disjunction: rrAve 't TrAave V-
r-AvB TA-C P,BFCvE
r-cC "
I'AFB .y TFA=B TrA .
Implication: T'HA =B r-B
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Natural Deduction with Contexts

Structural properties to ensure
Exchange (hypotheses order is irrelevant)

I'B,AFC
A BFC
Weakening (hypothesis need not be used)
r-c
LAFC
Contraction (hypotheses can be used more than once)
IAAFC
TAFC
Natural Deduction Rules IIb
_ re.Ll
Truth and Falsehood: 'ET B r-cC 15
LAFL ; [E-A THA o
Negation: LH—=A 'L -
F{a"/a}A ~ THVe A
. . I VE
Universal Quantif.: ['FVz A L' {t/z}A

Existential Quantif.:

L+ {t/z}A F'Fde. A T, {a*/z}AFC
TF s A L TFC =

*. parameter a must be new in context
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Natural Deduction Rules lllb

For classical logic add:
I,-AF L

r-A Le

Proof by Contradiction:

Calculemus Autumn School, Pisa, Sep 2002

Intercalating Natural Deductions

New annotations:

A 1 : A is obtained by an introduction derivation

A | : A is extracted from a hypothesis by an elimination
derivation

Example:

TA=B] ThLA]
ThkBJ

T ALB*
TA=BT
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Intercalation

Idea (Prawitz, Sieg & Scheines, Byrnes & Sieg):
Detour free proofs: strictly use introduction rules bottom up
(from proposed theorem to hypothesis) and elimination rules
top down (from assumptions to proposed theorem). When
they meet in the middle we have found a proof in normal form.

Assumptions
. elimination : :
d A B
meet i
T . | ANB AE,
. introduction
Goal
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ND Intercalation Rules |

Hypotheses: OLAAK A

Conjunction:

T'kAt TkB1
T AAB T

Tl AAB
T B

T Bt
rAvBT VI

- AAB|
TAJ
I'ic A?

T.AvB1 !

ANE,

AE

Disjunction:

gAVB| TIARCt I,BRCT

r-Ct Ey

Implication:

I Al B+
TA=B1

TA=B] TkA]
T B
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ND Intercalation Rules Il

The L4
Truth and Falsehood: CkT1 'k CH
TVA L L1 Tik~A) TRAtT
Thk-At Th L1 -
Universal Quantif.:
[ {a*/z}A 1
[ Ve, A7
Existential Quantif.:

T b {t/z}A 1
Tl drn A1

TI 1K

Negation:

T Ve A |
e {t/z}A |

VE

Ffedze. Al T {a*/z}A C1T
TFC1 =

*. parameter a must be new in context
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Intercalation and ND

Normal form proofs

Assumptions

. elimination
1 I'ic Al
uaranteed b ——— Meet
7 meet g y ThAT
. introduction
Goal _
... proofs without detour . ..
T At

To model all ND proofs add T Ay 'oundabout
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ND Intercalation Rules llI

For classical logic add:

T, —Afk L1

TAT

Proof by Contradiction:
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Example Proofs

In normal form

MAQLMAQL .
MAQLQJ r
MAQL Q1T MY

MAQLQVST !
cMAQ) = (QVS)T

With detour

MAQLQT MAQ:LM?
MAQLQAMT N
MAQL QAM | roundabout

MAQLQL P
M A QhE Q T meet
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Soundness and Completeness

Let = denote the intercalation calculus with rule
roundabout and k. the calculus without this rule.

Theorem 1 (Soundness):
IfTHE A1 thenT - A,

Theorem 2 (Completeness):
IfT'~AthenT t A 1.

Is normal form proof search also complete?:
fT"'E A1 thenT' k. A1 7?

We will investigate this question within the
sequent calculus.
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Sequent Calculus Rules |

Initial Sequents: T, A — A A "™ (A atomic)
Conjunction:
A,B— A '—AA T'— AB
T.AAB— A" r—AAAB B
Implication
r—AA I'B=—A NA—=— AB

A=B-— A =L P:>AA:>B:>R

TR

Truth and Falsehood TI',1 — A — = AT
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From ND to Sequent Calculus

Normal form ND proofs Sequent proofs

Assumptions

. elim
i — initial
4 TUSEL 1 n sequents
: intro . elim : intro
Goal Assumptions Goal

Sequents pair <I", A> of finite lists, multisets, or sets of
formulas; notation: ' —= A
Intuitive: a kind of implication, A “follows from” T"
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Sequent Calculus Rules Il

= AA
[,-A— A"

LA — A

Negation: I — A -A

Disjunction:

r— A AB
I' = A, AvB

NA—A I'B=—A
AVB — A

VL

Universal Quantification:
[,Vz. A {t/z}A — A
[WVr. A =— A

I = A, {a/z}A
= A Vz. A

VR

Existential Quantification:
I' {a/z2}A — A
I3z, A — A

' = A,dz. A, {t/z}A
= A,dz. A

Calculemus Autumn School, Pisa, Sep 2002



Example Proof

AB — CA "M

AB:>Bzmt AAB— C AN

AAB_— B/ AAB:sC\/AAg
AAB — BA(CVA)

— (AAB)=BA(CvA) &
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Sequent Calculus

Let —" denote the sequent calculus with cut-rule
and — the sequent calculus without the cut-rule.

Theorem 3 (Soundness)
@IfTr'= CthenT'k C 1.
O)IfI'="CthenT'E C1.

Theorem 4 (Completeness)
IfT"'E C1 then' —" C.
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Sequent Calculus: Cut-rule

To map natural deductions (in - and | ) to
sequent calculus derivations we add: called
cut-rule:

'—AA TA— A
I — A

Cut

The question whether normal form proof search ( ;)
Is complete corresponds to the question whether the
cut-rule can be eliminated (is admissible) in sequent
calculus.
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Gentzen’s Hauptsatz

Theorem 5 (Cut-Elimination): Cut-elimination

holds for the sequent calculus. In other words: The

cut rule is admissible in the sequent calculus.
IfT"— " CthenT — C

Proof non-trivial; main means: nested inductions

and case distinctions over rule applications

This result qualifies the sequent calculus as suitable
for automating proof search.
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Applications of Cut-Elimination

Theorem (Normalization for ND):
IfI'- CthenI' k. C 1.

Proof sketch:

Assume I' - C.

ThenI' . C 1 by completeness of . .
Then I' =" C by completeness of —" .
Then I' — C by cut-elimination.

Then T k. C 1 by soundness of — .
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Applications of Cut-Elimination

Theorem (Consistency of ND): There is no

natural deduction derivation + .

Proof sketch:

Assume there is a proof of ~ L.

Then —" 1 by completeness of —" and F .
But — | cannot be the conclusion of any
sequent rule.

Contradiction.
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What have we done?

Natural Deduction Intercalation Sequent Calculus

B r

ic

s

—

(with detours) (with roundabout) (with cut)

— | — — | —
— | — — | +— —

+ e -

(without detours) | (without roundabout) (without cut)
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Summary

We have illustrated the connection of
natural deduction and sequent calculus

normal form natural deductions and cut-free
sequent calculus.

Fact: Sequent calculus often employed as
meta-theory for specialized proof search calculi and
strategies.

Question: Can these calculi and strategies be
transformed to natural deduction proof search?
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