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Abstract. We present a sound and complete tableau calculus for the
class of regular grammar logics. Our tableau rules use a special feature
called automaton-labelled formulae, which are similar to formulae of au-
tomaton propositional dynamic logic. Our calculus is cut-free and has
the analytic superformula property so it gives a decision procedure. We
show that the known EXPTIME upper bound for regular grammar log-
ics can be obtained using our tableau calculus. We also give an effective
Craig interpolation lemma for regular grammar logics using our calculus.

1 Introduction

Multimodal logics (and their description logic cousins) are useful in many ar-
eas of computer science: for example, multimodal logics are used in knowledge
representation by interpreting [i]ϕ as “agent i knows/believes that ϕ is true”
[7, 15, 1]. Grammar logics are normal multimodal logics characterised by “inclu-
sion” axioms like [t1] . . . [th]ϕ ⊃ [s1] . . . [sk]ϕ, where [ti] and [sj ] are modalities
indexed by members ti and sj from some fixed set of indices. Thus [1][2]ϕ→ [1]ϕ
captures “if agent one knows that agent two knows ϕ, then agent one knows ϕ”.

Inclusion axioms correspond in a strict sense to grammar rules of the form
t1t2 . . . th → s1s2 . . . sk when the index set is treated as a set of atomic words and
juxtaposition is treated as word composition. Various refinements ask whether
the corresponding grammar is left or right linear, or whether the language gen-
erated by the corresponding grammar is regular, context-free etc.

Grammar logics were introduced by Fariñas del Cerro and Penttonen in [8]
and have been studied widely [3, 4, 20, 11, 5]. Baldoni et al. [3] gave a prefixed
tableau calculus for grammar logics and used it to show that the general satisfia-
bility problem of right linear grammar logics is decidable and the general satisfia-
bility problem of context-free grammar logics is undecidable. But the techniques
of Baldoni et al. cannot be easily extended to regular grammar logics.

While trying to understand why the decidability proof by Baldoni et al.

[3, 2] cannot be naturally extended to left linear grammars, Demri [4] observed
that although right linear grammars generate the same class of languages as



left linear grammars, this correspondence is not useful at the level of regular
grammar logics. By using a transformation into the satisfiability problem for
propositional dynamic logic (PDL), Demri was able to prove that the general
satisfiability problem of regular grammar logics is EXPTIME-complete and that
the general satisfiability problem of linear grammar logics is undecidable. In [5],
Demri and de Nivelle gave a translation of the satisfiability problem for grammar
logics with converse into the two-variable guarded fragment GF2 of first-order
logic, and showed that the general satisfiability problem for regular grammar
logics with converse is in EXPTIME. The relationship between grammar logics
and description logics was considered, among others, in [11, 20].

Thus, various methods have been required to obtain complexity results and
decision procedures for regular grammar logics. We show that it is possible to give
a (non-prefixed) tableau calculus which is a decision procedure for the whole class
of regular grammar logics, and which also gives an estimate of the complexity of
these logics. Efficient tableaux for propositional multimodal (description) logics
are highly competitive with translation methods, so it is not at all obvious that
the translation into GF2 from [5] is the best method for deciding these logics.

The naive way to encode inclusion axioms in a non-prefixed tableau calculus is
to add a rule like ([t]) shown below at left. But such rules cannot lead to a general

decision procedure because there are well-known examples like transitivity [t]ϕ ⊃
[t][t]ϕ, whose analogous rule is shown below at right, which immediately cause
an infinite branch by adding [t][t]ϕ, and then [t][t][t]ϕ, and so on:

([t])
X ; [t]ϕ

X ; [t]ϕ; [s1][s2] . . . [sk]ϕ
(4t)

X ; [t]ϕ

X ; [t]ϕ; [t][t]ϕ

Our calculus uses a special feature called automaton-labelled formulae, which
are similar to formulae of APDL [10]. Informally, whenever a formula [t]ϕ is true
at a tableau node w, we add an automaton labelled formula that tracks the
modal transitions from w. If a sequence of transitions leads to a tableau node u,
and this sequence corresponds to a word s1s2 . . . sk recognised by the automaton
labelled formula, then we add the formula ϕ to u. This captures the effect of the
rule ([t]) above left in a tractable manner since the influence of [t]ϕ being true at
w can be computed directly from the content of the automaton labelled formulae
in node u. Our tableau calculus is sound, complete, cut-free and has the analytic
superformula property, so it is a decision procedure. As usual for tableau calculi,
it allows efficient implementation and good complexity estimation.

In Section 2, we define regular grammar logics and automaton-labelled for-
mulae. In Section 3, we present our tableau calculus for regular grammar logics,
and prove it sound. In Section 4, we prove it complete. In Section 5, we prove
that the general satisfiability problem of regular grammar logics is in EXPTIME
by using our tableau rules in a systematic way. In Section 6, we use our calculus
to prove effective Craig interpolation for regular grammar logics. Further work
and concluding remarks are in Section 7. The Appendix contains an example.

Acknowledgements: We are grateful to Pietro Abate, Stéphane Demri, Mar-
cus Kracht and an anonymous reviewer for their helpful comments and pointers.
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2 Preliminaries

2.1 Definitions for Multimodal Logics

Our modal language is built from two disjoint sets: MOD is a finite set of
modal indices and PROP is a set of primitive propositions. We use p and q
for elements of PROP and use t and s for elements of MOD. Formulae of our
primitive language are recursively defined using the BNF grammar below:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ ⊃ ϕ | [t]ϕ | 〈t〉ϕ

A Kripke frame is a tuple 〈W, τ, {Rt | t ∈ MOD}〉, where W is a nonempty
set of possible worlds, τ ∈ W is the current world, and each Rt is a binary
relation on W , called the accessibility relation for [t] and 〈t〉. If Rt(w, u) holds
then we say that the world u is accessible from the world w via Rt.

A Kripke model is a tuple 〈W, τ, {Rt | t ∈ MOD}, h〉, where 〈W, τ, {Rt | t ∈
MOD}〉 is a Kripke frame and h is a function mapping worlds to sets of primitive
propositions. For w ∈ W , the set of primitive propositions “true” at w is h(w).

A model graph is a tuple 〈W, τ, {Rt | t ∈ MOD}, H〉, where 〈W, τ, {Rt | t ∈
MOD}〉 is a Kripke frame and H is a function mapping worlds to formula sets.
We sometimes treat model graphs as models with H restricted to PROP .

Given a Kripke model M = 〈W, τ, {Rt | t ∈ MOD}, h〉 and a world w ∈ W ,
the satisfaction relation |= is defined as usual for the classical connectives with
two extra clauses for the modalities as below:

M,w |= [t]ϕ iff ∀v ∈W.Rt(w, v) implies M, v |= ϕ
M,w |= 〈t〉ϕ iff ∃v ∈W.Rt(w, v) and M, v |= ϕ.

We say that ϕ is satisfied at w in M if M,w |= ϕ. We say that ϕ is satisfied

in M and call M a model of ϕ if M, τ |= ϕ.
If we consider only Kripke models, with no restrictions on Rt, we obtain a

normal multimodal logic with a standard Hilbert-style axiomatisation Kn.
Note: We now assume that formulae are in negation normal form, where ⊃ is

translated away and ¬ occurs only directly before primitive propositions. Every
formula ϕ has a logically equivalent formula ϕ′ which is in negation normal form.

2.2 Regular Grammar Logics

Recall that a finite automaton A is a tuple 〈Σ,Q, I, δ, F 〉, whereΣ is the alphabet
(for our case, Σ = MOD), Q is a finite set of states, I ⊆ Q is the set of initial
states, δ ⊆ Q×Σ×Q is the transition relation, and F ⊆ Q is the set of accepting
states. A run of A on a word s1 . . . sk is a finite sequence of states q0, q1, . . . , qk
such that q0 ∈ I and δ(qi−1, si, qi) holds for every 1 ≤ i ≤ k. It is an accepting

run if qk ∈ F . We say that A accepts word w if there exists an accepting run of
A on w. The set of all words accepted/recognised by A is denoted by L(A).

Given two binary relations R1 and R2 over W , their relational composition
R1 ◦R2 = {(x, y) | ∃y ∈W.R1(x, y) & R2(y, z)} is also a binary relation over W .
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A grammar logic is a multimodal logic extending Kn with “inclusion axioms”
of the form [t1] . . . [th]ϕ ⊃ [s1] . . . [sk]ϕ, where {t1, . . . th, s1, . . . sk} ⊆ MOD.
Each inclusion axiom corresponds to the restriction Rs1 ◦. . .◦Rsk

⊆ Rt1 ◦. . .◦Rth

on accessibility relations where the corresponding side stands for the identity
relation if k = 0 or h = 0. For a grammar logic L, the L-frame restrictions are
the set of all such corresponding restrictions. A Kripke model is an L-model if its
frame satisfies all L-frame restrictions. A formula ϕ is L-satisfiable if there exists
an L-model satisfying it. A formula ϕ is L-valid if it is satisfied in all L-models.

An inclusion axiom [t1] . . . [th]ϕ ⊃ [s1] . . . [sk]ϕ can also be seen as the gram-
mar rule t1 . . . th → s1 . . . sk where the corresponding side stands for the empty
word if k = 0 or h = 0. Thus the inclusion axioms of a grammar logic L capture
a grammar G(L). Here we do not distinguish terminal symbols and nonterminal
symbols. G(L) is context-free if its rules are of the form t→ s1 . . . sk, and is reg-

ular if it is context-free and for every t ∈ MOD there exists a finite automaton
At that recognises the words derivable from t using G(L).

A regular grammar logic L is a grammar logic whose inclusion axioms cor-
respond to grammar rules that collectively capture a regular grammar G(L). A
regular language is traditionally specified either by a regular expression or by
a left/right linear grammar or by a finite automaton. The first two forms can
be transformed in PTIME to an equivalent finite automaton that is at most
polynomially larger. But there is no syntactic way to specify the class of regular
(context-free) grammars, and checking whether a context-free grammar gener-
ates a regular language is undecidable (see, e.g., [14]). Hence, we cannot compute
these automata if we are given an arbitrary regular grammar logic. We therefore
assume that for each t ∈ MOD we are given an automaton At recognising the
words derivable from t using G(L). These are the automata specifying L.

Lemma 1. Let L be a regular grammar logic and let {At | t ∈ MOD} be the

automata specifying L. Then the following conditions are equivalent:

(i) the word s1 . . . sk is accepted by At

(ii) the formula [t]ϕ ⊃ [s1] . . . [sk]ϕ is L-valid
(iii) the inclusion Rs1◦. . .◦Rsk

⊆ Rt is a consequence of the L-frame restrictions.

Proof. The equivalence (ii) ⇔ (iii) is well-known from correspondence theory
[19]. The implication (i) ⇒ (ii) follows by induction on the length of the deriva-
tion of s1 . . . sk from t by the grammar G(L), using substitution, the K-axiom
[t](ϕ ⊃ ψ) ⊃ ([t]ϕ ⊃ [t]ψ) and the modal necessitation rule ϕ/[t]ϕ. The im-
plication (iii) ⇒ (i) follows by induction on the length of the derivation of
Rs1 ◦ . . . ◦Rsk

⊆ Rt from the L-frame restrictions. See also [3, 4] for details.

Example 1. Let MOD = {1, . . . ,m} for a fixed m. Consider the grammar logic
with the inclusion axioms [i]ϕ ⊃ [j][i]ϕ for any i, j ∈ MOD and [i]ϕ ⊃ [j]ϕ if
i > j. This is a regular grammar logic because the set of words derivable from i
using the corresponding grammar is {1, . . . ,m}∗.{1, . . . , i}. This set is recognised
by the automaton Ai = 〈MOD, {p, q}, {p}, δi, {q}〉 with δi = {(p, j, p) | 1 ≤ j ≤
m} ∪ {(p, j, q) | 1 ≤ j ≤ i}. Note that the corresponding grammar is not “linear”
in that at most one symbol in the right hand side of a rule can be nonterminal.
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2.3 Automaton-Labelled Formulae

If A is a finite automaton, Q is a subset of the states of A, and ϕ is a formula
in the primitive language then (A,Q) : ϕ is an automaton-labelled formula.

Fix a regular grammar logic L and let {At = 〈MOD, Qt, It, δt, Ft〉 | t ∈
MOD} be the automata specifying L. Let δt(Q, s) = {q′ | ∃q ∈ Q.(q, s, q′) ∈ δt}
be the states which can be reached from Q via an s-transition using At. The
intuitions of automaton labelled formulae are as follows:

Tagging: A formula of the form [t]ϕ in a world u is represented by (At, It) : ϕ.
Tracking: If (At, Q) : ϕ occurs at u and R(u, v) holds then we add the formula

(At, δt(Q, s)) : ϕ to v. In particular, if (At, It) : ϕ appears in world u and
Rs(u, v) holds then we add (At, δt(It, s)) : ϕ to the world v.

Acceptance: If (At, Q) : ϕ occurs at u and Q contains an accepting state of At,
then we add ϕ to u.

The formal semantics of automaton-labelled formulae are defined as fol-
lows. Let ε be the empty word and define δ̃t(Q, ε) = Q and δ̃t(Q, s1 . . . sk) =

δ̃t(δt(Q, s1), s2 . . . sk). If M is a Kripke model, w is a world of M , and At =
〈MOD, Qt, It, δt, Ft〉 is an automaton, then M,w |= (At, Q) : ϕ iff there ex-
ist worlds w0, . . . , wk = w (of M) and indices s1, . . . , sk ∈ MOD such that

M,w0 |= [t]ϕ, Rsi
(wi−1, wi) holds for 1 ≤ i ≤ k, and δ̃t(It, s1 . . . sk) = Q.

Pictorially: M,w |= (At, Q) : ϕ iff

w0
s1

// w1
s2

// · · · wk−1
sk

// wk = w

[t]ϕ δ̃(It, s1) · · · δ̃(It, s1 . . . sk−1) δ̃(It, s1 . . . sk) = Q

We can see the soundness of these definitions by the following inter-derivable
sequence of validities of multimodal tense logic which use the residuation prop-
erties of 〈s〉−1 and [s] shown at right where 〈s〉−1 is the converse of 〈s〉:

[t]ϕ ⊃ [s1][s2] . . . [sk]ϕ

〈s1〉
−1[t]ϕ ⊃ [s2] . . . [sk]ϕ

. . .

〈sk〉−1 . . . 〈s1〉−1[t]ϕ ⊃ ϕ

ϕ ⊃ [s]ψ

〈s〉−1ϕ ⊃ ψ

That is, if we want to ensure that [t]ϕ ⊃ [s1][s2] . . . [sk]ϕ is valid, then it
suffices to ensure that 〈sk〉

−1 . . . 〈s1〉
−1[t]ϕ ⊃ ϕ is valid instead. But converse

modalities are not part of our official language so we use the occurrence of [t]ϕ
at w0 to start an automaton At which tracks the following constraint: ϕ must
be true at any world w reachable from w0 by the path/word s1 . . . sk.

Our automaton-labelled formulae are similar to formulae of automaton
propositional dynamic logic (APDL) [10]. A formula involving automata in
APDL is of the form [A]ϕ, where A is a finite automata with one initial state
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and one accepting state. An automaton labelled formula like our (At, Q) : ϕ with
Q = {q1, q2, . . . , qk} can be simulated by the APDL formula [B1]ϕ ∨ . . . ∨ [Bk]ϕ
where each Bi is the automaton At restricted to start at the initial state qi. Thus
our formulation uses a more compact representation in which APDL formulae
that differ only in their initial state are grouped together. Moreover, we do not
treat different “states” of an automaton as different automata. Our compact
representation not only saves memory but also increases efficiency of deduction.

From now on, by a formula we mean either a formula in the primitive lan-
guage (as defined in Section 2.1) or an automaton-labelled formula.

2.4 Definitions for Tableau Calculi

As in our previous works on tableau calculi [9, 17], our tableau formulation trace
their roots to Hintikka via [18]. A tableau rule σ consists of a numerator N
above the line and a (finite) list of denominators D1, D2, . . . , Dk (below the
line) separated by vertical bars. The numerator is a finite formula set, and so is
each denominator. As we shall see later, each rule is read downwards as “if the
numerator is L-satisfiable, then so is one of the denominators”. The numerator of
each tableau rule contains one or more distinguished formulae called the principal

formulae. A tableau calculus CL for a logic L is a finite set of tableau rules.

A CL-tableau for X is a tree with root X whose nodes carry finite formula
sets obtained from their parent nodes by instantiating a tableau rule with the
proviso that if a child s carries a set Z and Z has already appeared on the branch
from the root to s then s is an end node.

Let ∆ be a set of tableau rules. We say that Y is obtainable from X by

applications of rules from ∆ if there exists a tableau for X which uses only rules
from ∆ and has a node that carries Y . A branch in a tableau is closed if its end
node carries only ⊥. A tableau is closed if every one of its branches is closed. A
tableau is open if it is not closed. A finite formula set X in the primitive language
is said to be CL-consistent if every CL-tableau for X is open. If there is a closed
CL-tableau for X then we say that X is CL-inconsistent.

A tableau calculus CL is sound if for all finite formula sets X in the primitive
language, X is L-satisfiable implies X is CL-consistent. It is complete if for all
finite formula sets X in the primitive language, X is CL-consistent implies X
is L-satisfiable. Let σ be a rule of CL. We say that σ is sound w.r.t. L if for
every instance σ′ of σ, if the numerator of σ′ is L-satisfiable then so is one of
the denominators of σ′. Any CL containing only rules sound w.r.t. L is sound.

3 A Tableau Calculus for Regular Grammar Logics

Fix a regular grammar logic L and let {At = 〈MOD, Qt, It, δt, Ft〉 | t ∈ MOD}
be the automata specifying L. Recall that formulae are in negation normal form.
We use X for a formula set, and semicolon to separate elements of a formula
set. We have deliberately used “s.t.” for “such that” in the set notation of the
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(⊥)
X; p;¬p

⊥ (∧)
X;ϕ ∧ ψ
X;ϕ;ψ

(∨)
X;ϕ ∨ ψ
X;ϕ | X;ψ

(label)
X; [t]ϕ

X; (At, It):ϕ
(add)

X; (At, Q):ϕ
X; (At, Q):ϕ;ϕ

if Q ∩ Ft 6= ∅

(trans)
X; 〈t〉ϕ

{(As, δs(Q, t)):ψ s.t. (As, Q):ψ ∈ X};ϕ

Fig. 1. Tableau Rules

denominator of the (trans)-rule because we use colon in automaton-labelled for-
mulae and the alternative | indicates a branching rule! The tableau calculus CL

is given in Figure 1. The first five rules are static rules, and the last rule is a
transitional rule. An example is in the appendix.

A tableau calculus CL has the analytic superformula property iff to every
finite set X we can assign a finite set X∗

CL which contains all formulae that may
appear in any tableau for X . We write Sf(ϕ) for the set of all subformulae of ϕ,
and Sf(X) for the set

⋃
ϕ∈X Sf(ϕ)∪{⊥}. Our calculus has the analytic superfor-

mula property, with X∗
CL = Sf(X)∪{(At, Q):ϕ s.t. [t]ϕ ∈ Sf(X) and Q ⊆ Qt}.

Lemma 2. The tableau calculus CL is sound.

Proof. We show that CL contains only rules sound w.r.t. L as follows. Suppose
that the numerator of the considered rule is satisfied at a world w in a model
M = 〈W, τ, {Rt | t ∈ MOD}, h〉. We have to show that at least one of the
denominators of the rule is also satisfiable. For the static rules, we show that
some denominator is satisfied at w itself. For the transitional rule (trans), we
show that its denominator is satisfied at some world reachable from w via Rt.

(⊥), (∧), (∨): These cases are obvious.
(label): If M,w |= X ; [t]ϕ then M,w |= (At, It):ϕ by definition.
(add): Suppose that M,w |= X ; (At, Q):ϕ and Q ∩ Ft 6= ∅. By definition, there

exist worlds w0, . . . , wk−1, wk = w and indices s1, . . . , sk ∈ MOD such that

M,w0 |= [t]ϕ, andRsi
(wi−1, wi) holds for 1 ≤ i ≤ k, and δ̃t(It, s1 . . . sk) = Q.

Since Q ∩ Ft 6= ∅, the word s1 . . . sk is accepted by At. By Lemma 1, it
follows that M,w0 |= [s1] . . . [sk]ϕ. Since w = wk and Rsi

(wi−1, wi) holds
for 1 ≤ i ≤ k, we must have M,w |= ϕ.

(trans): Suppose that M,w |= X ; 〈t〉ϕ. Then there exists some u such that
Rt(w, u) holds and M,u |= ϕ. For each (As, Q): ψ ∈ X , we have M,w |=
(As, Q):ψ, and by the semantics of automaton-labelled formulae, it follows
that M,u |= (As, δs(Q, t)):ψ. Hence, the denominator is satisfied at u.

4 Completeness

We prove completeness of our calculus via model graphs following [18, 9, 16, 17]
by giving an algorithm that accepts a finite CL-consistent formula set X in the
primitive language and constructs an L-model graph (defined in Section 4.2) for
X that satisfies every one of its formulae at the appropriate world.
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4.1 Saturation

In the rules (∧), (∨), (label) the principal formula does not occur in the denomi-
nators. For any of these rules δ, let δ′ denote the rule obtained from δ by adding
the principal formula to each of the denominators. Let SCL denote the set of
static rules of CL with (∧), (∨), (label) replaced by (∧′), (∨′), (label

′). For every
rule of SCL, except (⊥), the numerator is included in each of the denominators.

For a finite CL-consistent formula set X , a formula set Y is called a CL-

saturation of X if Y is a maximal CL-consistent set obtainable from X by ap-
plications of the rules of SCL. A set X is closed w.r.t. a tableau rule if applying
that rule to X gives back X as one of the denominators.

Lemma 3. Let X be a finite CL-consistent formula set and Y a CL-saturation

of X. Then X ⊆ Y ⊆ X∗
CL and Y is closed w.r.t. the rules of SCL. Furthermore,

there is an effective procedure that, given a finite CL-consistent formula set X,

constructs some CL-saturation of X.

Proof. It is clear that X ⊆ Y ⊆ X∗
CL. Observe that if a rule of SCL is ap-

plicable to Y , then one of the corresponding instances of the denominators is
CL-consistent. Since Y is a CL-saturation, Y is closed w.r.t. the rules of SCL.

We construct a CL-saturation of X as follows: let Y = X ; while there is some
rule δ of SCL applicable to Y such that one of its corresponding denominator
instance Z is CL-consistent and strictly contains Y , set Y = Z. At each iteration,
Y ⊂ Z ⊆ X∗

CL. Hence the above process always terminates. It is clear that the
resulting set Y is a CL-saturation of X .

4.2 Proving Completeness via Model Graphs

A model graph is an L-model graph if its frame is an L-frame. An L-model graph
〈W, τ, {Rt | t ∈ MOD}, H〉 is saturated if every w ∈W satisfies:

And: if ϕ ∧ ψ ∈ H(w) then {ϕ, ψ} ⊆ H(w);
Or: if ϕ ∨ ψ ∈ H(w) then ϕ ∈ H(w) or ψ ∈ H(w);
Box: if [t]ϕ ∈ H(w) and Rt(w, u) holds then ϕ ∈ H(u);
Dia: if 〈t〉ϕ ∈ H(w) then there exists a u ∈W such that Rt(w, u) and ϕ ∈ H(u).

A saturated model graph is consistent if no world contains ⊥, and no world
contains {p,¬p}. Our model graphs merely denote a data structure, while Raut-
enberg’s model graphs are required to be saturated and consistent.

Lemma 4. If M = 〈W, τ, {Rt | t ∈ MOD}, H〉 is a consistent saturated L-model

graph, then M satisfies all formulae of H(τ) which are in the primitive language.

Proof. By proving ϕ ∈ H(w) implies M,w |= ϕ by induction on the length of ϕ.

Given a finite CL-consistent set X in the primitive language, we construct a
consistent saturated L-model graph M = 〈W, τ, {Rt | t ∈ MOD}, H〉 such that
X ⊆ H(τ), thereby giving an L-model for X .
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4.3 Constructing Model Graphs

In the following algorithm, the worlds of the constructed model graph are marked
either as unresolved or as resolved.

Algorithm 1

Input: a finite CL-consistent set X of formulae in the primitive language.
Output: an L-model graph M = 〈W, τ, {Rt | t ∈ MOD}, H〉 satisfying X .

1. Let W = {τ}, H(τ) be a CL-saturation of X , and R′
t = ∅ for all t ∈ MOD.

Mark τ as unresolved.
2. While there are unresolved worlds, take one, say w, and do the following:

(a) For every formula 〈t〉ϕ in H(w):
i. Let Y = {(As, δs(Q, t)):ψ s.t. (As, Q):ψ ∈ H(w)}∪{ϕ} be the result

of applying rule (trans) to H(w), and let Z be a CL-saturation of Y .
ii. If ∃u ∈W on the path from the root to w with H(u) = Z, then add

the pair (w, u) to R′
t. Otherwise, add a new world wϕ with content Z

to W , mark it as unresolved, and add the pair (w,wϕ) to R′
t.

(b) Mark w as resolved.
3. Let Rt be the least extension of R′

t for t ∈ MOD such that 〈W, τ, {Rt | t ∈
MOD}〉 is an L-frame.

This algorithm always terminates: eventually, for every w, either w contains
no 〈t〉-formulae, or there exists an ancestor with H(u) = Z at Step 2(a)ii because
all CL-saturated sets are drawn from the finite and fixed set X∗

CL.

Lemma 5. Suppose Rt(w, u) holds via Step 3. Then there exist w0, . . . , wk in

M with w0 = w, wk = u, and indices s1, . . . , sk ∈ MOD such that R′
si

(wi−1, wi)
holds for 1 ≤ i ≤ k, and Rs1◦. . .◦Rsk

⊆ Rt follows from the L-frame restrictions.

Proof. By induction on number of inferences in derivingRt(w, u) when extending
R′

s to Rs for s ∈ MOD, with L-frame restrictions of the form Rt1 ◦. . .◦Rth
⊆ Rs.

4.4 Completeness Proof

Lemma 6. Let X be a finite CL-consistent set of formulae in the primitive lan-

guage and M = 〈W, τ, {Rt | t ∈ MOD}, H〉 be the model graph for X constructed

by Algorithm 1. Then M is a consistent saturated L-model graph satisfying X.

Proof. It is clear thatM is an L-model graph and for any w ∈W , the set H(w) is
CL-consistent. We want to show that M is a saturated model graph. It suffices to
show that, for every w, u ∈W , if [t]ϕ ∈ H(w) and Rt(w, u) holds then ϕ ∈ H(u).
Suppose that [t]ϕ ∈ H(w) and Rt(w, u) holds. By Lemma 5, there exist worlds
w0, . . . , wk with w0 = w, wk = u and indices s1, . . . , sk ∈ MOD such that
R′

si
(wi−1, wi) holds for 1 ≤ i ≤ k and Rs1 ◦ . . .◦Rsk

⊆ Rt is a consequence of the
L-frame restrictions. Since H(w) is a CL-saturation, we have that (At, It):ϕ ∈

H(w). By Step 2a of Algorithm 1, (At, δ̃t(It, s1 . . . si)):ϕ ∈ H(wi) for 1 ≤ i ≤ k.

Thus (At, δ̃t(It, s1 . . . sk)):ϕ ∈ H(u). Since Rs1 ◦. . .◦Rsk
⊆ Rt is a consequence of

the L-frame restrictions, by Lemma 1, the word s1 . . . sk is accepted by At. Hence
δ̃t(It, s1 . . . sk)∩Ft 6= ∅. It follows that ϕ ∈ H(u), since H(u) is a CL-saturation.
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The following theorem follows from Lemmas 2 and 6.

Theorem 1. The tableau calculus CL is sound and complete.

5 Complexity

The satisfiability problem of a logic L is to check the L-satisfiability of an input
formula ϕ. The general satisfiability problem of a class C of logics is to check
L-satisfiability of an input formula ϕ in an input logic L ∈ C.

Demri [4] proved that the general satisfiability problem of regular grammar
logics is EXPTIME-complete by a transformation into satisfiability for PDL. We
now obtain the upper bound EXPTIME using our tableaux calculus.

We need a rule (∪) to coalesce (At, Q):ϕ and (At, Q
′):ϕ into (At, Q ∪Q′):ϕ

(∪)
X ; (At, Q):ϕ ; (At, Q

′):ϕ

X ; (At, Q ∪Q′):ϕ

Observe that X ; (At, Q): ϕ; (At, Q
′): ϕ is CL-consistent iff X ; (At, Q ∪ Q′): ϕ is

CL-consistent. This follows from the facts that δt(Q, s)∪δt(Q
′, s) = δt(Q∪Q′, s)

and ((Q ∩ Ft 6= ∅) ∨ (Q′ ∩ Ft 6= ∅)) ≡ ((Q ∪ Q′) ∩ Ft 6= ∅). Thus, rule (∪) can
be added to CL as a static rule, and used whenever possible without affecting
soundness and completeness. Let CLu be CL plus (∪).

Allowing (∪) requires a change in the semantics of automaton-labelled formu-
lae to: if M is a Kripke model, w is a world of M , and At = 〈MOD, Qt, It, δt, Ft〉
is an automaton, then M,w |= (At, Q) : ϕ iff for every q ∈ Q there exist
worlds w0, . . . , wk−1, wk = w (of M) and indices s1, . . . , sk ∈ MOD such that

M,w0 |= [t]ϕ, andRsi
(wi−1, wi) holds for 1 ≤ i ≤ k, and q ∈ δ̃t(It, s1 . . . sk) ⊆ Q.

Let L be a regular logic and X a finite formula set in the primitive language.
Let n be the sum of the sizes of the formulae in X and the sizes of the automata
specifying L. To check whether X is L-satisfiable we can search for a closed
CLu-tableau for X , or equivalently, examine an and-or tree for X constructed
by using Algorithm 1 to apply our CLu-tableau rules in a systematic way. In such
a tree, and-branching is caused by all possible applications of rule (trans), while
or-branching is caused by an application of rule (∨). The other CLu-tableau
rules, including (∪), are applied locally for each node whenever possible.

There are at most O(n) unlabelled subformulae of X , and at most 2O(n)

different labels. By using the rule (∪) whenever possible, each subformula of X
occurs in a node with at most two labels, so a node contains at most 2n i.e. O(n)

labelled formulae. Hence there are at most (2O(n))O(n) = 2O(n2) different nodes.

Without the rule (∪), there are at most 22O(n)

different nodes, which breaks
EXPTIME worst-case complexity, so the (∪) rule is absolutely essential. But it
is not necessary for the satisfiability problem of a fixed logic.

Algorithm 1 terminates in general because it checks for repeated ancestors:
this check is built into the definition of an end-node, and also in Step 2(a)ii. Thus
the same node can appear on multiple branches. In the worst case, Algorithm 1

therefore requires 22O(n2)

time. We therefore refine it into Algorithm 2 below:
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Algorithm 2

Input: a finite set X of formulae in the primitive language.
Output: a finite graph G = (V,E)

1. Let G =< V,E >=< {X}, ∅ >, and mark X as unresolved.
2. While V contains unresolved nodes, take one, say n, and do:

(a) If (∪) is applicable to n then apply it to obtain denominator d1

(b) Else if any static rule of CL is applicable to n then apply it to obtain
denominator(s) d1 (and possibly d2)

(c) Else, for every formula 〈t〉ϕi in n, let di = {(As, δs(Q, t)):ψi s.t. (As, Q):
ψi ∈ n} ∪ {ϕi} be the denominator obtained by applying (trans) to n

(d) Mark n as resolved (n is an or/and node if the applied rule is/isn’t (∨))
(e) For every denominator d = d1, · · · , dk:

i. If some proxy c ∈ V has c = d, then add the edge (n, c) to E
ii. Else add d to V , add (n, d) to E, and mark d as unresolved.

Algorithm 2 builds an and-or graphG monotonically by “caching” previously
seen nodes (but not their open/closed status). The graph G contains a node d
for every applicable static rule denominator, not just their CL-saturation as in
Algorithm 1. Each node appears only once because repetitions are represented
by “cross-tree” edges to their first occurrence, so G has at most 2O(n2) nodes.

We now make passes of the and-or graph G, marking nodes as false in a
monotonic way. In the first pass we mark the node containing ⊥, if it exists, since
false captures inconsistency. In each subsequent pass we mark any unmarked or-
node with two false-marked children, and mark any unmarked and-node with at
least one false-marked child. We stop making passes when some pass marks no
node. Otherwise, we must terminate after 2O(n2) passes since the root must then
be marked with false. Note that once a node is marked with false this mark is
never erased. Finally, mark all non-false nodes with true giving graph Gf .

Lemma 7. If node n ∈ Gf is marked false then n is CLu-inconsistent.

Proof. By induction on the number of passes needed to mark n with false.

Lemma 8. If a node n ∈ Gf is marked true then it is CLu-consistent.

Proof. An easy proof is to take the sub-graph Gn generated by n; replace each
sequence of true-marked static rule denominators by one true-marked node con-
taining their union, which represents their CLu-saturation; and turn the resulting
sub-graph into an L-frame by appropriately extending it as in Step 3 of Algo-
rithm 1. For each node x, putting p ∈ h(x) iff p ∈ x gives an L-model for n since:
all eventualities in a true-marked node are fulfilled by its children, and these are
guaranteed to be marked true; and each true-marked or-node has at least one
true-marked child. By the completeness of CLu, every CLu-tableau for n must
be open. A slightly trickier proof converts Gn into an and-or tree by mimicking
the rule applications from Gn but unwinding edges to non-ancestor-proxies by
making a copy of the proxy. This reproduces all CLu-tableaux for n constructible
by Algorithm 1 (sic) and each one is open by its construction.

Algorithm 2 and the creation of Gf runs in time (2O(n2))2 = 22.O(n2) and so
the general satisfiability problem of regular grammar logics is in EXPTIME.

11



(I⊥) Z > Z′; p;¬p (I⊥) Z; p p Z′;¬p

(I∧)
Z

ζ
Z

′;ϕ ∧ ψ

Z
ζ
Z

′;ϕ;ψ
(I∨)

Z
ζ ∧ ξ

Z
′;ϕ ∨ ψ

Z
ζ
Z

′;ϕ | Z
ξ
Z

′;ψ

(I label)
Z

ζ
Z

′; [t]ϕ

Z
ζ
Z

′; (At, It):ϕ
(Iadd)

Z
ζ
Z

′; (At, Q):ϕ

Z
ζ
Z

′; (At, Q):ϕ;ϕ
if Q ∩ Ft 6= ∅

(Itrans)
Z

[t]ζ
Z

′; 〈t〉ϕ

{(As, δs(Q, t)):ψ s.t. (As, Q):ψ ∈ Z}
ζ
{(As, δs(Q, t)):ψ s.t. (As, Q):ψ ∈ Z

′};ϕ

Fig. 2. Rules of the Calculus for Interpolation

6 Effective Interpolation

We say that ζ is an interpolation formula in L for the formula ϕ ⊃ ψ if all
primitive propositions of ζ are common to ϕ and ψ, and ϕ ⊃ ζ and ζ ⊃ ψ are
both L-valid. The Craig interpolation lemma for L states that if ϕ ⊃ ψ is L-valid,
then there exists an interpolation formula in L for ϕ ⊃ ψ. This lemma is effective
if the proof of the lemma actually constructs the interpolation formula.

Assume our language contains > with the usual semantics. We prove effective
Craig interpolation for all regular grammar logics using the method of [16].

Our tableau calculi are refutation calculi, so we use an indirect formulation
of interpolation. Given two sets X and Y of formulae, and using ζ to denote the
negation normal form of ¬ζ, we say that ζ is an interpolation formula w.r.t. CL

for the pair 〈X,Y 〉, and also thatX ζ Y is CL-valid, if: all primitive propositions
of ζ are common to X and Y , the formula ζ does not contain automaton-labelled
formulae, and the sets X ; ζ and ζ;Y are both CL-inconsistent. Since CL is sound
and complete, it follows that if ϕ ζ ψ is CL-valid, then ϕ ⊃ ζ and ζ ⊃ ψ are
both L-valid, and hence that ζ is an interpolation formula in L for ϕ ⊃ ψ.

We now show that for any finite formula sets X and Y , if X ;Y is CL-
inconsistent, then there exists an interpolation formula w.r.t. CL for the pair
〈X,Y 〉. It follows that the Craig interpolation lemma holds for L.

Observe that Y ϕ X is CL-valid iff X ϕ Y is CL-valid. We call Y ϕ X the
reverse form of X ϕ Y .

The rule (Iδ) below left is an interpolation rule if the inference step below
right is an instance of the tableau rule with name (δ):

(Iδ)
N ϕ N ′

D1
ϕ1 D′

1 | . . . | Dk
ϕk D′

k

N ;N ′

D1;D′
1 | . . . | Dk;D′

k

Provided that (δ) is a CL-tableau rule, the interpolation rule (Iδ) is CL-sound if
CL-validity of all D1

ϕ1 D′
1, . . . , Dk

ϕk D′
k implies CL-validity of N ϕ N ′.
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Figure 2 contains the interpolation rules obtained from the tableau rules for
regular grammar logics. Each tableau rule of CL except (I⊥) has one corre-
sponding interpolation rule. Rule (⊥) has an interpolation rule for each of its
two principal formulae but these rules have no denominator because it is not
necessary. Rule (∪) has no interpolation rule since it is just an optimisation rule.

Lemma 9. The above interpolation rules are CL-sound.

Proof. We consider (Itrans) only, the others are similar. Let X = {(As, δs(Q, t)):
ψ s.t. (As, Q):ψ ∈ Z} and Y = {(As, δs(Q, t)):ψ s.t. (As, Q):ψ ∈ Z ′}. Suppose
that X ζ Y ;ϕ is CL-valid. Thus, both X ; ζ and ζ;Y ;ϕ are CL-inconsistent,

and have closed CL-tableaux. We show that Z [t]ζ Z ′; 〈t〉ϕ is CL-valid by giving

closed CL-tableaux for both Z; 〈t〉ζ and [t]ζ;Z ′; 〈t〉ϕ:

Z; 〈t〉ζ
(trans)

X ; ζ
(assumption)

⊥

[t]ζ;Z ′; 〈t〉ϕ
(label)

(At, It):ζ;Z
′; 〈t〉ϕ

(trans)
(At, δt(It, t)):ζ;Y ;ϕ

(add)
(At, δt(It, t)):ζ; ζ;Y ;ϕ

(wk)
ζ;Y ;ϕ

(assumption)
⊥

Applying (add) above right is justified because δt(It, t) ∩ Ft 6= ∅ since At

accepts word t. Also, the rule (wk) of weakening is obviously admissible.

These rules build the numerator’s interpolant from those of the denominators.
Using Lemma 9, and the technique of [16, Lemmas 13 and 14] we obtain:

Theorem 2. Regular grammar logics enjoy effective Craig interpolation.

7 Further Work and Conclusions

Our main contribution is a tableau calculus that forms a decision procedure
for the whole class of regular grammar logics. Our automaton-labelled formulae
are similar to formulae of APDL [10], but with a more compact representation
using sets of states instead of single states. We have shown that automaton-
labelled formulae work well with the traditional techniques of proving soundness
and completeness. Our calculus gives a simple estimate of the upper complexity
bound of regular grammar logics, and can be used to obtain effective Craig
interpolation for these logics. We have since found that Craig interpolation for
regular grammar logics follows from [13, Corollary B4.1] and [12].

The prefixed tableaux of Baldoni et al. give a decision procedure only for
right linear logics. A prefixed calculus that simulates our calculus would be less
efficient because it would repeatedly search the current branch for computation,
not just for loops as in our case. Moreover, it is well-known that loop checking
can be done efficiently using, e.g., a hash table. Finally, the transformation of
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Demri and de Nivelle into GF2 is based on states, but not sets of states, which
reduces efficiency. Also their resulting formula sets are much larger because they
keep a copy of the formulae defining an automaton At for each formula [t]ϕ,
whereas we can keep only t and Q for (At, Q) in (At, Q):ϕ. Similar observations
have been stated for formulae of APDL.

By propagating false “on the fly”, we believe we can prove global caching
sound for checking satisfiability in multimodal K with global assumptions i.e.
“checking ALC-satisfiability of a concept w.r.t. a TBox with general axioms” [6].
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Appendix: an example

Example 2. Let MOD = {0, 1, 2}. Consider the grammar logic L with the in-
clusion axioms [0]ϕ ⊃ ϕ and [i]ϕ ⊃ [j][k]ϕ if i = (j + k) mod 3. This is a
regular grammar logic because the corresponding grammar is regular. We have
Ai = 〈MOD,MOD, {0}, δ, {i}〉 for i ∈ MOD, where δ = {(j, k, l) | j, k, l ∈
{0, 1, 2} and l = (j + k) mod 3}.

We give a closed CL-tableau forX = {〈0〉p, [0](¬p∨〈1〉q), [1](¬q∨〈2〉r), [0]¬r},
in which principal formulae of nodes are underlined. The arrows stand for rule
applications and are annotated with the rule name. The labels Ri for i ∈ {0, 1, 2}
to the right of the arrows marked with (trans)-rule applications stand for the label
on the associated edges in the underlying model being explored by the tableau.

〈0〉p; [0](¬p ∨ 〈1〉q); [1](¬q ∨ 〈2〉r); [0]¬r

3 x (label)

��
〈0〉p; (A0, {0}): (¬p ∨ 〈1〉q); (A1, {0}): (¬q ∨ 〈2〉r); (A0, {0}):¬r

(trans) R0

��
p; (A0, {0}): (¬p ∨ 〈1〉q); (A1, {0}): (¬q ∨ 〈2〉r); (A0, {0}):¬r

(add)

��
p; (A0, {0}): (¬p ∨ 〈1〉q); ¬p ∨ 〈1〉q; (A1, {0}): (¬q ∨ 〈2〉r); (A0, {0}):¬r

(∨)

��

(∨)

ssff
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f

p; ¬p; . . .

(⊥)

��

p; 〈1〉q; (A0, {0}): (¬p ∨ 〈1〉q); (A1, {0}): (¬q ∨ 〈2〉r); (A0, {0}):¬r

(trans) R1

��

⊥ q; (A0, {1}): (¬p ∨ 〈1〉q); (A1, {1}): (¬q ∨ 〈2〉r); (A0, {1}):¬r

(add)

��
q; (A0, {1}): (¬p ∨ 〈1〉q); (A1, {1}): (¬q ∨ 〈2〉r); ¬q ∨ 〈2〉r; (A0, {1}):¬r

(∨)

ssff
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f

(∨)

��
q; ¬q; . . .

(⊥)

��

q; 〈2〉r; (A0, {1}): (¬p ∨ 〈1〉q); (A1, {1}): (¬q ∨ 〈2〉r); (A0, {1}):¬r

(trans) R2

��

⊥ r; (A0, {0}): (¬p ∨ 〈1〉q); (A1, {0}): (¬q ∨ 〈2〉r); (A0, {0}):¬r

(add)

��
r; (A0, {0}): (¬p ∨ 〈1〉q); (A1, {0}): (¬q ∨ 〈2〉r); (A0, {0}):¬r; ¬r

(⊥)

��
⊥
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