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7 A Glimpse at Veblen Hierarchies

What have we accomplished in section 6.5? If one examines carefully the proofs of proposi-
tions 6.23, 6.24, 6.27, 6.28, 6.31, 6.35, and definition 6.21, one discovers that the conditions
that make everything go through are the fact that α 7→ ωα is a normal function ϕ such that
0 < ϕ(0). This suggests the following generalization.

Definition 7.1 Given any normal function ϕ such that 0 < ϕ(0), mimicking definition
6.21, we define the hierarchy {ϕ0

α}α∈O of functions such that,

• ϕ0
0 = ϕ, and for every α > 0,

• ϕ0
α enumerates the set {η | ϕ0

β(η) = η, for all β < α} of common fixed points of the
functions ϕ0

β for all β < α.

We have what is called a Veblen hierarchy (a concept due to Veblen [53]), and according
to our previous remark, the following properties hold.

Theorem 7.2 (Veblen Hierarchy theorem) Denoting each function ϕ0
α as ϕ0(α,−), each

ϕ0(α,−) is a normal function, and the function ϕ0(−, 0) : α 7→ ϕ0(α, 0) is also a normal
function such that 0 < ϕ0(0, 0).

But since ϕ0(−, 0) satisfies the conditions for building a Veblen hierarchy, we can
iterate the process just described in definition 7.1. For this, following Larry Miller [34], it
is convenient to define an operator ∆1 on normal functions, the 1-diagonalization operator ,
defined as follows.

Given a normal function ϕ such that 0 < ϕ(0), ∆1(ϕ) is the normal function enumer-
ating the fixed points of ϕ0(−, 0).

Note that in a single step, ∆1 performs the Ω iterations producing the Veblen hierarchy
{ϕ0

α}α<Ω! (where Ω denotes the first uncountable ordinal, i.e., the order type of O). Using
the operator ∆1, we can define a sequence {ϕ1

β}β<Ω of normal functions, and so, a sequence
of Veblen hierarchies – or a doubly indexed sequence of normal functions – {ϕ1

β(γ,−)}β,γ<Ω

defined as follows:

• ϕ1
0 = ϕ,

• ϕ1
β′ = ∆1(ϕ1

β), and

• ϕ1
β is the normal function enumerating

⋂
γ<β range(ϕ

1
γ), for a limit ordinal β.

But β 7→ ϕ1
β(0) (also denoted ϕ1(−, 0)) is also a normal function such that 0 < ϕ1

0(0).
Hence, we can define an operator ∆2 enumerating the fixed points of β 7→ ϕ1

β(0), and build
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a hierarchy. But we can iterate the operator ∆ into the transfinite! This leads to the
following definition.

Definition 7.3 Given a normal function ϕ such that 0 < ϕ(0), we define by simultaneous
induction the Ω-indexed sequence {∆α}α<Ω of diagonalization operators and the doubly
Ω-indexed sequence {ϕα

β}α,β<Ω of normal functions as follows.

• ∆0(ψ) enumerates the fixed points of the normal function ψ;

• ∆α′(ϕ) = ∆0(ϕα(−, 0)) enumerates the fixed points of ϕα(−, 0) : β 7→ ϕα
β(0);

• ∆α(ϕ) enumerates
⋂

γ<α range(∆γ(ϕ)), for a limit ordinal α;

• ϕα
0 = ϕ;

• ϕα
β′ = ∆α(ϕα

β);

• ϕα
β enumerates

⋂
γ<β range(ϕ

α
γ ), for a limit ordinal β.

It is convenient to keep track of the diagonalization level (the index α) and the number
of iterations of diagonalizations of level α (the index β) by using indices beyond Ω. Indeed,
using the families {ϕα

β}α,β<Ω and the representation of the ordinals in base Ω, it is possible
to extend our original Ω-indexed hierarchy {ϕ(β,−)}β<Ω (dropping the superscript 0 in
ϕ0) to an ΩΩ-indexed hierarchy {ϕ(δ,−)}δ<ΩΩ . Let us first consider the simple case where
α = 1.

Using the fact that every ordinal δ < Ω2 is uniquely expressed as δ = Ωβ1+β2 for some
ordinals β1, β2 < Ω, we can extend the Ω-indexed hierarchy {ϕ(β,−)}β<Ω to an Ω2-indexed
hierarchy {ϕ(δ,−)}δ<Ω2 as follows. For any β1, β2 < Ω, we let

ϕ(Ωβ1 + β2,−) = (ϕ1
β1

)0β2
.

With this convention applied to the function ω(−) : α 7→ ωα and the Ω2-indexed se-
quence {ω(δ,−)}δ<Ω2 , note that ω1

1 = ∆1(ω(−)) = ∆0(ω0(−, 0)) is denoted by ω(Ω,−),
and ω(Ω, 0) = Γ0 denotes the least fixed point of ω0(−, 0). Similarly, ω2

1 = ∆2(ω(−)) =
∆0(ω1(−, 0)) is denoted by ω(Ω2,−), and ω(Ω2, 0) denotes the least fixed point of ω1(−, 0).

In general, since every ordinal δ < ΩΩ is uniquely expressed as

δ = Ωα1β1 + · · ·+ Ωαnβn

for some ordinals αn < . . . < α1 < Ω and β1, . . . , βn < Ω, we can regard the multiply
Ω-indexed sequence

{(· · · (ϕα1
β1

) · · ·)αn

βn
)}αn<...<α1<Ω,β1,...,βn<Ω
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as an ΩΩ-indexed sequence {ϕ(δ,−)}δ<ΩΩ , if we put

ϕ(Ωα1β1 + · · ·+ Ωαnβn,−) = (· · · (ϕα1
β1

) · · ·)αn

βn
).

Hence, a constructive ordinal notation system for the ordinals less than ϕ(ΩΩ, 0), the least
fixed point of δ 7→ ϕ(δ, 0) (δ < ΩΩ), can be obtained using the families

{(· · · (ϕα1
β1

) · · ·)αn

βn
)}αn<...<αn<Ω,β1,...,βn<Ω.

It is possible to go farther using Bachmann-Isles hierarchies, but we are already quite dizzy,
and refer the reader to Larry Miller’s paper [34]. Readers interested in the topic of ordinal
notations should consult the very nice expository articles by Crossley and Bridge Kister [5],
Miller [34], and Pohlers [42], and for deeper results, Schütte [46] and Pohlers [41].

8 Normal Form For the Ordinals < Γ0

One of the most remarkable properties of Γ0 is that the ordinals less than Γ0 can be
represented in terms of the functions + and ϕ. First, we need the following lemma.

Lemma 8.1 Given an additive principal ordinal γ, if γ = ϕ(α, β), with α ≤ γ and β < γ,
then α < γ iff γ is not strongly critical.

Proof . By proposition 6.31, we have γ ≤ ϕ(γ, 0). By proposition 6.28, since α ≤ γ and
β < γ ≤ ϕ(γ, 0), we have γ = ϕ(α, β) < ϕ(γ, 0) iff α < γ. By proposition 6.34 and
proposition 6.31, γ is not critical iff γ < ϕ(γ, 0), iff α < γ from above.

We can now prove the fundamental normal form representation theorem for the ordi-
nals less than Γ0.

Theorem 8.2 For every ordinal α such that 0 < α < Γ0, there exist unique ordinals
α1, . . . , αn, β1, . . . , βn, n ≥ 1, with αi, βi < ϕ(αi, βi) ≤ α, 1 ≤ i ≤ n, such that

(1) α = ϕ(α1, β1) + · · ·+ ϕ(αn, βn), and

(2) ϕ(α1, β1) ≥ . . . ≥ ϕ(αn, βn).

Proof . Using the Cantor Normal Form for the (countable) ordinals (proposition 6.20), there
are unique ordinals η1 ≥ . . . ≥ ηn, n ≥ 1, such that

α = ωη1 + · · ·+ ωηn .

Each ordinal ωηi is an additive principal ordinal, and let γi = ωηi . By Proposition 6.32, for
every additive principal ordinal γi, there exist unique αi, βi ∈ O such that, αi ≤ γi, βi < γi,
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and γi = ϕ(αi, βi). Since for each ordinal γi, we have γi ≤ α < Γ0, and Γ0 is the least
strongly critical ordinal, by proposition 8.1, αi < γi. Since γi ≤ α, αi < γi, and βi < γi, we
have αi < α and βi < α. Property (2) follows from the fact that η1 ≥ . . . ≥ ηn implies that
γ1 ≥ . . . ≥ γn (since γi = ωηi).

We need a few more properties of the ordinals less than Γ0 before we establish the
connection between Γ0 and Kruskal’s theorem.

Lemma 8.3 For all α, β < Γ0, if α ≤ β, then

α ≤ β ≤ β + α ≤ ϕ(β, α),

and if α ≤ β and β < ϕ(α, β), then

β + α ≤ ϕ(α, β) ≤ ϕ(β, α).

Proof . That α ≤ β ≤ β+α is easy to show. If α = 0, since by proposition 6.31, β ≤ ϕ(β, 0),
we have β + 0 = β ≤ ϕ(β, 0). If 0 < α = β, we have shown earlier that α < ϕ(α, α) (in the
proof of proposition 6.32), and since ϕ(α, α) is an additive principal ordinal, we also have
α+α < ϕ(α, α). If 0 < α < β, by proposition 6.29, we have β ≤ ϕ(0, β), and by proposition
6.31, we have β ≤ ϕ(β, 0). By strict monotonicity of ϕβ , since α > 0, we have β < ϕ(β, α).
Hence, α < β < ϕ(β, α). By proposition 6.28, ϕ(0, β) < ϕ(β, α), since β < ϕ(β, α). Hence,

β + α ≤ ϕ(0, β) + ϕ(β, α) = ϕ(β, α),

since ϕ(0, β) < ϕ(β, α) and ϕ(β, α) is an additive principal ordinal.

Now assume α ≤ β and β < ϕ(α, β). If α = 0, since by proposition 6.29, β ≤ ϕ(0, β),
we have β+0 = β ≤ ϕ(0, β). If 0 < α = β, the proof is identical to the proof of the previous
case. If 0 < α < β, then by proposition 6.28, ϕ(0, β) < ϕ(α, β), since β < ϕ(α, β). We can
also show that α < ϕ(α, β) as in the previous case (since β > 0), and we have

β + α ≤ ϕ(0, β) + ϕ(α, β) = ϕ(α, β),

since ϕ(0, β) < ϕ(α, β) and ϕ(α, β) is an additive principal ordinal. The fact that ϕ(α, β) ≤
ϕ(β, α) if α ≤ β was shown in proposition 6.31.

It should be noted that if α ≤ β, when β = ϕ(α, β) (which happens when β ∈ Cr(α′)),
the inequality β + α ≤ ϕ(α, β) is incorrect . This minor point noted at the very end of
Simpson’s paper [47, page 117] is overlooked in one of Smoryński’s papers [51, page 394].
In the next section, we will correct Smoryński’s defective proof (Simpson’s proof is also
defective, but he gives a glimpse of a “repair” at the very end of his paper, page 117).

By theorem 8.2, the ordinals less than Γ0 can be defined recursively as follows.
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Lemma 8.4 For every ordinal γ < Γ0, either

(1) γ = 0, or

(2) γ = β + α, for some ordinals α, β < γ such that α ≤ β, or

(3) γ = ϕ(α, β), for some ordinals α, β < γ.

Proof . The proof follows immediately from theorem 8.2 by induction on n in the decompo-
sition γ = ϕ(α1, β1) + · · ·+ ϕ(αn, βn).

In case (3), we cannot guarantee that α ≤ β, and we have to consider the three
subcases α < β, α = β, and α > β. Actually, we can reduce these three cases to two if we
replace < by ≤.

This recursive representation of the ordinals < Γ0 is the essence of the connection
between Γ0 and Kruskal’s theorem explored in section 9.

Lemma 8.4 shows that every ordinal α < Γ0 can be represented in terms of 0, +, and ϕ,
but this representation has some undesirable properties, namely that different notations can
represent the same ordinal. In particular, for some α ≤ β < Γ0, we may have β = ϕ(α, β)
(which happens when β ∈ Cr(α′)). For example, ε0 = ϕ(0, ε0) (since ε0 = ϕ(1, 0)). It
would be desirable to have a representation similar to that given by lemma 8.2, but for a
function ψ such that α < ψ(α, β) and β < ψ(α, β), for all α, β < Γ0. Such a representation
is possible, as shown in Schütte [46, Section 13.7, page 84-92]. The key point is to consider
ordinals γ that are maximal α-critical , that is, maximal with respect to the property of
belonging to some Cr(α).

Definition 8.5 An ordinal γ ∈ O is maximal α-critical iff γ ∈ Cr(α) and γ /∈ Cr(β) for
all β > α.

By proposition 6.22 and proposition 6.23, γ ∈ Cr(α) iff ϕβ(γ) = γ for all β < α.
Thus, γ is maximal α-critical iff ϕα(γ) 6= γ. However, because ϕα is the ordering function
of Cr(α), we know from proposition 6.9 that δ ≤ ϕα(δ) for all δ, and so, γ is maximal
α-critical iff γ = ϕα(β) for some β < γ. It follows from proposition 6.32 that for every
principal additive number γ, there is some α ≤ γ such that γ is maximal α-critical.

Definition 8.6 The function ψα is defined as the ordering function of the maximal α-
critical ordinals.

We also define ψ(α, β) by letting ψ(α, β) = ψα(β). It is possible to give a definition
of ψ in terms of ϕ, as shown in Schütte [46].
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Lemma 8.7 The function ψ defined such that

ψ(α, β) =


ϕ(α, β + 1), if β = β0 + n and ϕ(α, β0) = β0,

for some β0 and n ∈ N;
ϕ(α, β), otherwise.

is the ordering function of the maximal α-critical ordinals for every α.

We list the following properties of ψ without proof, referring the reader to Schütte
[46] for details.

Lemma 8.8 For every additive principal number γ, there are unique α, β ≤ γ such that
γ = ψ(α, β).

Lemma 8.9 (1) If γ = ψ(α, β), then α < γ iff γ is not strongly critical.

(2) β < ψ(α, β) for all α, β.

Lemma 8.10 ψ(α1, β1) < ψ(α2, β2) holds iff either

(1) α1 < α2 and β1 < ψ(α2, β2), or

(2) α1 = α2 and β1 < β2, or

(3) α2 < α1 and ψ(α1, β1) ≤ β2.

It should be noted that the set of maximal α-critical ordinals is unbounded, but it is
not closed, because the function ψα is not continuous. However, this is not a problem for
representing the ordinals less than Γ0.

Since Γ0 is the least strongly critical ordinal, by lemma 8.9, we have the following
corollary.

Lemm 8.11 For all α, β < Γ0, we have

(1) α < ψ(α, β), and

(2) β < ψ(α, β).

Using lemma 8.8, we can prove another version of the normal form theorem 8.2 for
the ordinal less than Γ0, using ψ instead of ϕ.

Theorem 8.12 For every ordinal α such that 0 < α < Γ0, there exist unique ordinals
α1, . . . , αn, β1, . . . , βn, n ≥ 1, with αi, βi < ψ(αi, βi) ≤ α, 1 ≤ i ≤ n, such that

(1) α = ψ(α1, β1) + · · ·+ ψ(αn, βn), and
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(2) ψ(α1, β1) ≥ . . . ≥ ψ(αn, βn).

The advantage of the reprentation given by theorem 8.12 is that it is now possible
to design a system of notations where distinct notations represent distinct ordinals, and
ψ satisfies the subterm property of lemma 8.11. Such a notation system will be given in
section 11.

9 Kruskal’s Theorem and Γ0

The connection between Γ0 and Kruskal’s theorem lies in the fact that there is a close
relationship between the embedding relation � on trees (definition 4.11) and the well-
ordering ≤ on O(Γ0) (recall that O(Γ0) is the set of all ordinals < Γ0).

We shall restrict our attention to tree domains, or equivalently assume that the set of
labels contains a single symbol. Let T denote the set of all finite tree domains, which, for
brevity are also called trees. In this case, by a previous remark, it is easy to show that � is
a partial order. We shall exhibit a function h : T → O(Γ0) from the set of finite trees to the
set of ordinals less that Γ0, and show that h is (1). surjective, and (2). preserves order, that
is, if s � t, then h(s) ≤ h(t) (where � is the embedding relation defined in definition 4.11).
It will follow that Kruskal’s theorem (theorem 4.12) implies that O(Γ0) is well-ordered by
≤, or put slightly differently, Kruskal’s theorem implies the validity of transfinite induction
on Γ0. In turn, the provability of transfinite induction on large ordinals is known to be
proof-theoretically significant. As first shown by Gentzen, one can prove the consistency of
logical theories using transfinite induction on large ordinals. As a consequence, Kruskal’s
theorem in not provable in fairly strong logical theories, in particular some second-order
theories for which transfinite induction up to Γ0 is not provable.

We now give the definition of the function h mentioned above. In view of the recursive
characterization of the ordinals < Γ0, it is relatively simple to define a surjective function
from T to O(Γ0). However, making h order-preserving is more tricky. As a matter of
fact, this is why lemma 8.3 is needed, but beware! Simpson defines a function h using
five recursive cases, but points out at the end of his paper that there is a problem, due
to the failure of the inequality β + α ≤ ϕ(α, β) [47, page 117]. Actually, a definition with
fewer cases can be given, and Smoryński defines a function h using four recursive cases [51].
Unfortunately, Smoryński’s definition also makes use of the erroneous inequality [51, page
394]. We give what we believe to be a repaired version of Smoryński’s definition of h (using
five recursive cases).

Remark . We do not know whether a definition using the function ψ of the previous
section can be given. Certainly a surjective function can be defined using ψ, but the difficult
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part is to insure monotonicity.

Definition 9.1 The function h : T → O(Γ0) from the set of finite trees to the set of
ordinals less that Γ0 is defined recursively as follows:

(0) h(t) = 0, when t is the one-node tree.

(1) h(t) = h(t/1), if rank(t) = 1, i.e, the root of t has only one successor.

(2) h(t) = β + α, if rank(t) = 2, where α is the least element of {h(t/1), h(t/2)} and β is
the largest.

(3) h(t) = ϕ(α, β), if rank(t) = 3, where α ≤ β are the two largest elements of the set
{h(t/1), h(t/2), h(t/3)}, and β < ϕ(α, β).

(4) h(t) = β + α, if rank(t) = 3, where α ≤ β are the two largest elements of the set
{h(t/1), h(t/2), h(t/3)}, and β = ϕ(α, β).

(5) h(t) = ϕ(β, α), if rank(t) ≥ 4, where α ≤ β are the two largest elements of the set
{h(t/1), h(t/2), . . . , h(t/k)}, with k = rank(t).

The following important theorem holds.

Theorem 9.2 The function h : T → O(Γ0) is surjective and monotonic, that is, for every
two finite tree s, t, if s � t, then h(s) ≤ h(t).

Proof (sketch). The fact that h is surjective follows directly from the recursive definition
shown in lemma 8.4. Note that clause (1) and (4) are not needed for showing that h is a
surjection, but they are needed to ensure that h is well defined and preserves order. By
clause (0), h(t) = 0, for the one-node tree t. Clause (2) is used when γ = β + α, with
α, β < γ and α ≤ β. Clause (3) is used when γ = ϕ(α, β) with α, β < γ and α ≤ β, and
clause (5) is used when γ = ϕ(β, α) with α, β < γ and α ≤ β.

The proof that if s � t, then h(s) ≤ h(t) proceeds by cases, using induction on
trees, corollary 6.30, and lemma 8.3. The only delicate case arises when rank(s) = 2,
rank(t) = 3, and, assuming that h(t/1) ≥ h(t/2) ≥ h(t/3) and h(s/1) ≥ h(s/2), we have
h(t/1) = ϕ(h(t/2), h(t/1)), s/1 � t/1 and s/2 � t/2. By the induction hypothesis, h(s/1) ≤
h(t/1) and h(s/2) ≤ h(t/2), and since h(s) = h(s/1) + h(s/2) and h(t) = h(t/1) + h(t/2),
we have h(s) ≤ h(t). If h(t/1) < ϕ(h(t/2), h(t/1)), then h(t) = ϕ(h(t/2), h(t/1)), and by
proposition 8.3, h(s) = h(s/1) + h(s/2) ≤ h(t/1) + h(t/2) ≤ ϕ(h(t/2), h(t/1)) = h(t). The
other cases are left to the reader.

Theorem 9.2 implies that there exist total orderings of order type Γ0 extending the
partial order � on (finite) trees. DeJongh and Parikh [6] proved that the maximum (sup)



10 The Subsystems ACA0, ATR0, Π1
1-CA0, of Second-Order Arithmetic 45

of all the total extensions is attained, and they computed the maximum for certain of the
(Higman) orderings. The ordinals associated with various orderings on trees arising in the
theory of rewriting systems have been investigated by Dershowitz and Okada [9], Okada
and Takeuti [38], and Okada [37, 39, 40].

Theorem 9.2 also has the following important corollary.

Lemma 9.3 Kruskal’s theorem implies that O(Γ0) is well-ordered by ≤.

Proof . Assume that there is some infinite sequence (αi)i≥1 of ordinals in O(Γ0) such that
αi+1 < αi for all i ≥ 1. By theorem 9.2, since h is surjective, there is an infinite sequence of
trees (ti)i≥1 such that h(ti) = αi for all i ≥ 1. By Kruskal’s theorem (theorem 4.12), there
exist i, j > 0 such that i < j and ti � tj . By theorem 9.2, we have αi = h(ti) ≤ h(tj) = αj ,
contradicting the fact that αj < αi. Hence, O(Γ0) is well-ordered by ≤.

Let us denote by WO(Γ0) the property that O(Γ0) is well-ordered by ≤, and by
WQO(T ) the property that the embedding relation � is a wqo on the set T of finite trees.
WQO(T ) is a formal statement of Kruskal’s theorem.

For every formal system S, if the proof that (WQO(T ) ⊃ WO(Γ0)) (given in lemma
9.3) can be formalized in S and WO(Γ0) is not provable in S, then WQO(T ) is not provable
in S. In the next section, we briefly describe some subsystems of 2nd-order arithmetic in
which Kruskal’s theorem and its miniature versions are not provable.

10 The Subsystems ACA0, ATR0, Π1
1-CA0, of Second-Order Arith-

metic

Harvey Friedman has shown that WO(Γ0) is not provable in some relatively strong sub-
systems of 2nd-order arithmetic, and therefore, Kruskal’s theorem is not provable in such
systems. Friedman also proved similar results for some finite (first-order) miniaturizations
of Kruskal’s theorem. In particular, these first-order versions of Kruskal’s theorem are not
provable in Peano’s arithmetic, since transfinite induction up to ε0 is not provable in Peano’s
arithmetic, due to a result of Gentzen. We now provide some details on these subsystems
of 2nd-order arithmetic.

Second-order arithmetic can be formulated over a two-sorted language with number
variables (m,n, . . .) and set variables (X,Y, . . .) . We define numerical terms as terms built
up from number variables, the constant symbols 0, 1, and the function symbols + (addition)
and · (multiplication). An atomic formula is either of the form t1

.= t2, or t1 < t2, or t1 ∈ X,
where t1 and t2 are numerical terms. A formula is built up from atomic formulae using
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∧,∨,⊃,≡,¬, number quantifiers ∀n,∃n, and set quantifiers ∀X,∃X. We say that a formula
is arithmetical iff it does not contain set quantifiers.

All systems of second-order arithmetic under consideration include standard axioms
stating that 〈N, 0, 1,+, ·, <〉 is an ordered semi-ring. The real power of a system of second-
order arithmetic is given by the form of its induction axioms, and the form of its compre-
hension axioms.

For the systems under consideration, the induction axiom is

[0 ∈ X ∧ ∀m(m ∈ X ⊃ m+ 1 ∈ X)] ⊃ ∀n(n ∈ X),

where X is a set variable. This form of induction is often called restricted induction, in
contrast with the principle of full induction stated as

[ϕ(0) ∧ ∀m(ϕ(m) ⊃ ϕ(m+ 1))] ⊃ ∀nϕ(n),

where ϕ is an arbitrary 2nd-order formula. Apparently, Friedman initiated the study of
subsystems of 2nd-order arithmetic with restricted induction (this explains the subscript 0
after the name of the systems ACA, ATR, or Π1

1-CA).

The system Π1
∞-CA0, also known as Z2, or second-order arithmetic, has comprehen-

sion axioms of the form
∃X∀n(n ∈ X ≡ ϕ(n)),

where ϕ is any 2nd-order formula ϕ in which X is not free. This is a very powerful form of
comprehension axioms. Susbystems of Z2 are obtained by restricting the class of formulae
for which comprehension axioms hold.

The system ACA0 is obtained by restricting the comprehension axioms to arithmetical
formulae in which X is not free (ACA stands for Arithmetical Comprehension Axioms). It
turns out that ACA0 is a conservative extension of (first-order) Peano Arithmetic (PA). A
weak form of König’s lemma is provable in ACA0, and a fairly smooth theory of continuous
functions and of sequential convergence can be developed. For example, Friedman proved
that the Bolzano/Weierstrass theorem (every bounded sequence of real numbers contains
a convergent subsequence) is provable in ACA0. In fact, Friedman proved the stronger
result that no set existence axioms weaker than those of ACA0 are sufficient to establish
the Bolzano/Weierstrass theorem. For details, the reader is referred to Simpson [48].

The system ATR0 contains axioms stating that arithmetical comprehension can be
iterated along any countable well ordering (ATR stands for Arithmetical Transfinite Recur-
sion). A precise formulation of the axiom ATR can be found in Friedman, McAloon, and
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Simpson [16] (see also Feferman [14]), but it is not essential here. The system ATR0 permits
a convenient development of a large part of ordinary mathematics, including, the theory of
continuous functions, the Riemann integral, the theory of countable fields, the topology of
complete separable metric spaces, the structure theory of separable Banach spaces, a good
theory of countable well orderings, Borel sets, analytic sets, and more.

The system Π1
1-CA0 is obtained by allowing comprehension axioms in which ϕ is any

Π1
1-formula in which X is not free. This is a system even stronger that ATR0, whose axioms

imply many mathematical results in the realm of algebra, analysis, classical descriptive set
theory, and countable combinatorics.

The systems ACA, ATR and Π1
1-CA allow full induction rather than restricted in-

duction. It might be interesting to mention that the least ordinals for which transfinite
induction cannot be proved in ACA0 and ATR0 are respectively ε0 and Γ0. Such an ordinal
has also be determined for Π1

1-CA0, but the notation system required to describe it is be-
yond the scope of this paper. In contrast, the least ordinals for which transfinite induction
cannot be proved in ACA and ATR are respectively εε0 and Γε0 .

We now return to the connections with Γ0 and Kruskal’s theorem. Friedman has
shown that WO(Γ0) is not provable in ATR0 (Friedman, McAloon, and Simpson [16]). He
also showed that (WQO(T ) ⊃ WO(Γ0)) is provable in ACA0. Since ACA0 is a subsystem
of ATR0, we conclude that WQO(T ) is not provable in ATR0. This is already quite re-
markable, considering that a large part of ordinary mathematics can be done in ATR0. But
Friedman also proved that the miniature version LWQO(T ) of Kruskal theorem given in
theorem 5.1 is not provable in ATR0, an even more remarkable result. The proof of this
last result is given in Simpson [47].

There is one more “tour de force” of Friedman that we have not mentioned! Harvey
Friedman has formulated an extension of the miniature version of Kruskal’s theorem (using a
gap condition), and proved that this version of Kruskal’s theorem is not provable in Π1

1-CA0.
The proof can be found in Simpson [47]. There are also some connections bewteen this last
version of Kruskal’s theorem and certain ordinal notations due to Takeuti known as ordinals
diagrams. These connections ae investigated in Okada and Takeuti [38], and Okada [39,
40].

11 A Brief Introduction to Term Orderings

This section is a brief introduction to term orderings. These orderings play an important
role in computer science, because they are the main tool for showing that sets of rewrite
rules are finite terminating (Noetherian). In turn, Noetherian sets of rewrite rules play a
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fundamental role in automated deduction in equational logic. Indeed, one of the major
techniques in equational logic is to complete a given set of equations E to produce an
equivalent set R of rewrite rules which has some “good” properties, namely to be confluent
and Noetherian. A number of procedures that attempt to produce such a set R of rewrite
rules from a set E of equations have been designed. The first such procedure is due to
Knuth and Bendix [27], but there are now many kinds of completion procedures. For more
details on completion procedures, we refer the reader to Dershowitz [11] and Bachmair [2].

There are many classes of term orderings, but an important class relevant to our con-
siderations is the class of simplification orderings, because Kruskal’s theorem can be used to
prove the well-foundedness of these orderings. For a comprehensive study of term orderings,
the reader is referred Dershowitz’s excellent survey [7] and to Dershowitz’s fundamental pa-
per [8].

Given a set of labels Σ, the notion of a tree was defined in definition 4.2. When
considering rewrite rules, we usually assume that Σ is a ranked alphabet, that is, that there
is a ranking function r : Σ→ N assigning a natural number r(f), the rank (or arity) of f ,
to every f ∈ Σ. We also have a countably infinite set X of variables, with r(x) = 0 for every
x ∈ X , and we let TΣ(X ) be the set of all trees (also called Σ-terms, or terms) t ∈ TΣ∪X

such that, for every tree address u ∈ dom(t), r(t(u)) = rank(t/u). In other words, the rank
of the label of u is equal to the rank of t/u (see definition 4.3), the number of immediate
successors of u.

Given a tree t, we let V ar(t) = {x ∈ X | ∃u ∈ dom(t), t(u) = x} denote the set of
variables occurring in t. A ground term t is a term such that V ar(t) = ∅.

Definition 11.1 A set of rewrite rules is a binary relation R ⊆ TΣ(X )×TΣ(X ) such that
V ar(r) ⊆ V ar(l) whenever 〈l, r〉 ∈ R.

A rewrite rule 〈l, r〉 ∈ R is usually denoted as l→ r. The notions of tree replacement
and substitution are needed for the definition of the rewrite relation induced by a set of
rewrite rules.

Definition 11.2 Given two trees t1 and t2 and a tree address u in t1, the result of replacing
t2 at u in t1, denoted by t1[u← t2], is the function whose graph is the set of pairs

{(v, t1(v)) | v ∈ dom(t1), u is not a prefix of v} ∪ {(uv, t2(v)) | v ∈ dom(t2)}.

Definition 11.3 A substitution is a function σ : X → TΣ(X ), such that, σ(x) 6= x for only
finitely many x ∈ X . Since TΣ(X ) is the free Σ-algebra generated by X , every substitution
σ : X → TΣ(X ) has a unique homomorphic extension σ̂ : TΣ(X ) → TΣ(X ). In the sequel,
we will identify σ and its homomorphic extension σ̂, and denote σ̂(t) as t[σ].
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Definition 11.4 Given a substitution σ, the domain of σ is the set of variables D(σ) =
{x | σ(x) 6= x}. Given a substitution σ, if its domain is the set {x1, . . . , xn}, and if ti = σ(xi),
1 ≤ i ≤ n, then σ is also denoted by [t1/x1, . . . , tn/xn].

Definition 11.5 A substitution σ is a renaming iff σ(x) is a variable for every x ∈ D(σ),
and σ is injective. Let R ⊆ TΣ(X ) × TΣ(X ) be a set of rewrite rules. A rewrite rule
s → t is a variant of a rewrite rule u → v ∈ R iff there is some renaming ρ with domain
V ar(u) ∪ V ar(v) such that s = u[ρ] and t = v[ρ].

Definition 11.6 Let −→ be a binary relation −→ ⊆ TΣ(X )×TΣ(X ). (i) The relation −→
is monotonic (or stable under the algebra structure) iff for every two terms s, t and every
function symbol f ∈ Σ, if s −→ t then f(. . . , s, . . .) −→ f(. . . , t, . . .).

(ii) The relation −→ is stable (under substitution) if s −→ t implies s[σ] −→ t[σ] for
every substitution σ.

Definition 11.7 Let R ⊆ TΣ(X ) × TΣ(X ) be a set of rewrite rules. The relation −→R

over TΣ(X ) is defined as the smallest stable and monotonic relation that contains R. This
is the rewrite relation associated with R.

This relation is defined explicitly as follows: Given any two terms t1, t2 ∈ TΣ(X ), then

t1 −→R t2

iff there is some variant l → r of some rule in R, some tree address α in t1, and some
substitution σ, such that

t1/α = l[σ], and t2 = t1[α← r[σ]].

We say that a rewrite system R is Noetherian iff the relation −→R associated with R
is Noetherian.

Now, our goal is to describe some orderings that will allow us to prove that sets of
rewrite rules are Noetherian. First, it is convenient to introduce the concept of a strict
ordering.

Definition 11.8 A strict ordering (or strict order) ≺ on a set A is a transitive and
irreflexive relation (for all a, a 6≺ a.)

Given a preorder (or partial order) � on a set A, the strict ordering ≺ associated with
� is defined such that s ≺ t iff s � t and t 6� s. Conversely, given a strict ordering ≺,
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the partial ordering � associated with ≺ is defined such that s � t iff s ≺ t or s = t. The
converse of a strict ordering ≺ is denoted as �.

We now introduce the important concepts of simplification ordering, and reduction
ordering. Let Σ be a set of labels (in most cases, a ranked alphabet).

Definition 11.9 A strict order ≺ on TΣ satisfying conditions

(1) s ≺ f(. . . , s, . . .), and

(2) f(. . .) ≺ f(. . . , s, . . .),

is said to have the subterm property and the deletion property .

A simplification ordering ≺ is a strict ordering that is monotonic and has the subterm
and deletion property.1

A reduction ordering ≺ is a strict ordering that is monotonic, stable under substitution,
and such that � is well-founded.

With a slight abuse of language, we will also say that the converse � of a strict ordering
≺ is a simplification ordering (or a reduction ordering). The importance of term orderings
is shown by the next fundamental result.

Lemma 11.10 A set of rules R is Noetherian if and only if there exists a reduction
ordering � on TΣ(X ) such that l � r for every l→ r ∈ R.

Unfortunately, it is undecidable in general if an arbitrary system R is Noetherian
since it is possible to encode Turing machines using a system of two rewrite rules, and this
would imply the decidability of the halting problem (see Dershowitz [7]). The importance
of simplification orderings is shown by the next theorem.

Theorem 11.11 (Dershowitz) If Σ is finite, then every simplification ordering on TΣ is
well-founded.

Proof . This is a consequence of proposition 4.8, which uses Kruskal’s tree theorem.

In practice, we want theorem 11.11 to apply to simplification orderings on TΣ(X ), but
since X is infinite, there is a problem. However, we are saved because we usually only care
about terms arising in derivations.

1 When Σ is a ranked alphabet, the deletion property is superfluous.
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Definition 11.12 An ordering � is well-founded for derivations iff � ∩ ∗−→R is well-
founded for every finite rewrite system R.

Since V ar(r) ⊆ V ar(l) for every l→ r ∈ R, every derivation of a finite rewrite system
involves only finitely many symbols. Thus, as corollary of the above theorem we have:

Corollary 11.13 (Dershowitz) Every simplification ordering is well-founded for deriva-
tions.

Warning : There exists rewrite systems whose termination cannot be shown by any
total simplification ordering as shown by the following example.

Example 11.14

f(a)→ f(b)

g(b)→ g(a)

Next, we are going to describe two important classes of simplification orderings, the
recursive path ordering, and the lexicographic path ordering. But first, we need to review
the definitions of the lexicographic ordering and the multiset ordering.

Definition 11.15 Given n partially ordered sets (Si,≺i) (where each ≺i is a strict order,
n > 1), the lexicographic order ≺lex on the set S1 × · · · × Sn is defined as follows. Let
〈a1, . . . , an〉 and 〈b1, . . . , bn〉 be members of S1 × · · · × Sn. Then

〈a1, . . . , an〉 ≺lex 〈b1, . . . , bn〉

if and only if there exists some i, 1 ≤ i ≤ n, such that ai ≺i bi, and aj = bj for all j,
1 ≤ j < i.

We now turn to multiset orderings. Multiset orderings have been investigated by
Dershowitz and Manna [10], and Jouannaud and Lescanne [24].

Definition 11.16 Given a set A, a multiset over A is an unordered collection of elements
of A which may have multiple occurrences of identical elements. More formally, a multiset
over A is a function M : A → N (where N is the set of natural numbers) such that an
element a ∈ A has exactly n occurrences in M iff M(a) = n. In particular, a does not
belong to M when M(a) = 0, and we say that a ∈M iff M(a) > 0.

The union of two multisets M1 and M2, denoted by M1∪M2, is defined as the multiset
M such that for all a ∈ A, M(a) = M1(a) +M2(a).
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Let (S,≺) be a partially ordered set (where ≺ is a strict order), let M be some finite
multiset of objects from S, and finally let n, n′1, . . . , n

′
k ∈ S. Define the relation ⇐m on

finite multisets as
M ∪ {n′1, . . . , n′k} ⇐m M ∪ {n},

where k ≥ 0 and n′i ≺ n for all i, 1 ≤ i ≤ k.

The multiset ordering ≺M(S) is simply the transitive closure +⇐m.

In other words, N ′ ≺M(S) N iff N ′ is produced from a finite multiset N by removing
one or more elements and replacing them with any finite number of elements, each of which is
strictly smaller than at least one element removed. For example, {4, 4, 3, 3, 1} ≺ {5, 3, 1, 1},
where ≺ is the multiset ordering induced by the ordering < of the natural numbers.

It is easy to show that for any partially ordered set (S,�), we have associated partially
ordered sets (M(S),�M(S)) (where M(S) is the set of all finite multisets of members of S),
and (Sn,�lex) for n > 0. Furthermore � is total (respectively, well-founded) iff �lex (for
any n) is total (respectively, well-founded).

Using König’s lemma, we can also show the following useful result.

Lemma 11.17 If � is well-founded (respectively, total) on S, then �M(S) is well-founded
(respectively, total) on M(S).

There is an interesting connection between the multiset ordering and ordinal expo-
nentiation. Given a well ordering � on a set S, it is well know that there is a unique ordinal
α and a unique order-preserving bijection ϕ : S → α.

The connection is that (M(S),≺M(S)) is order-isomorphic to ωα. Indeed, the function
ψ:M(S)→ ωα defined such that ψ(∅) = 0, and

ψ({m1, . . . ,mk}) = ωϕ(m1) + · · ·+ ωϕ(mk),

where ϕ(m1) ≥ . . . ≥ ϕ(mk) is the nonincreasing sequence enumerating ϕ({m1, . . . ,mk}),2

is easily shown to be an order-isomorphism.

The lexicographic ordering and the multiset ordering can also be defined for preorders.
This generalization will be needed for defining rpo and lpo orderings based on preorders.

Definition 11.18 Given n preordered sets (Si,�i) (n > 1), the lexicographic preorder
�lex on the set S1 × · · · × Sn is defined as follows:

〈a1, . . . , an〉 �lex 〈b1, . . . , bn〉

2 In the theory of ordinals, the sum ωϕ(m1) + · · ·+ ωϕ(mk) is a natural sum.
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if and only if there exists some i, 1 ≤ i ≤ n, such that ai �i bi, and aj ≈j bj for all j,
1 ≤ j < i.3

Definition 11.19 Let (S,�) be a preordered set, let M be some finite multiset of objects
from S, and finally let n, n′1, . . . , n

′
k ∈ S. Define the relation ⇐m on finite multisets as

M ∪ {n′1, . . . , n′k} ⇐m M ∪ {n},

where either k = 1 and n ≈ n′1, or k ≥ 0 and n′i ≺ n for all i, 1 ≤ i ≤ k.4

The multiset preorder �M(S) is the transitive closure +⇐m.

Two finite multisets M1 and M2 are equivalent (M1 ≈M(S) M2) iff they have the same
number of elements, and every element of M1 is equivalent to some element of M2 and vice
versa. It is easy to show that for any preordered set (S,�) we have associated preordered
sets (M(S),�M(S)) (where M(S) is the set of all finite multisets of members of S), and
(Sn,�lex) for n > 0. Furthermore � is total (respectively, well-founded) iff �lex (for any
n) is total (respectively, well-founded).

Using König’s lemma, we can also show that lemma 11.17 holds for preorders.

Lemma 11.20 If � is a well-founded preorder (respectively, total) on S, then �M(S) is
well-founded (respectively, total) on M(S).

A naive ordering on terms based on the notion of lexicographic order is as follows.

For any given ordering � on Σ we say that

s = f(s1, . . . , sn) �tlex g(t1, . . . , tm) = t

iff either

(i) f � g; or

(ii) f = g and 〈s1, . . . , sn〉 �tlex
lex 〈t1, . . . , tn〉,

where �tlex
lex is the lexicographic extension of �tlex to n-tuples of terms (the success of this

recursive definition depends on the fact that we use the lexicographic extension over terms
smaller than s and t).

It is easy to show by structural induction on terms that tlex is total on ground terms
whenever the � is total on Σ, but it has a severe defect: it is not well-founded. For example,

3 As usual, the equivalence ≈ associated with a preorder � is defined such that a ≈ b iff a � b and
b � a.

4 As usual, given a preorder �, the strict order ≺ is defined such that a ≺ b iff a � b and b 6� a.
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if a � f then we have a �tlex fa �tlex f2a �tlex . . .. The problem arises since it is possible
for a term to be strictly smaller than one of its subterms.

The most powerful forms of reduction orderings are based on the relative syntactic
simplicity of two terms, i.e., on the notion of a simplification ordering. Although there are
many types of simplification orderings, one of the most elegant and useful is the recursive
path ordering , for short, rpo.

Definition 11.21 Let � be a preorder on Σ. The recursive path ordering �rpo on TΣ(X ),
for short, rpo, is defined below. Actually, we give a simultaneous recursive definition of
�rpo, �rpo, and ≈rpo, where s �rpo t iff s �rpo t and s 6�rpo t, and s ≈rpo t iff s �rpo t and
s �rpo t.

Then, f(s1, . . . , sn) �rpo g(t1, . . . , tm) holds iff one of the conditions below holds:

(i) f ≈ g and {s1, . . . , sn} �mult
rpo {t1, . . . , tm}; or

(ii) f � g and f(s1, . . . , sn) �rpo ti for all i, 1 ≤ i ≤ m; or
(iii) si �rpo g(t1, . . . , tm) for some i, 1 ≤ i ≤ n,

where �mult
rpo is the extension of �rpo to multisets,5

Note that since the preorder � is only defined on Σ, variables are regarded as incom-
parable symbols. In (ii), the purpose of the condition f(s1, . . . , sn) �rpo ti for all i, is to
insure that f(s1, . . . , sn) �rpo g(t1, . . . , tm).

Theorem 11.22 (Dershowitz, Lescanne) The relation �rpo is a simplification ordering
stable under substitution. Furthermore, if the strict order � is well-founded on Σ, then
�rpo is well-founded, even when Σ is infinite.

Proof sketch. Proving that rpo is a simplification ordering is laborious, especially transi-
tivity. The complete proof can be found in Dershowitz [8]. In order to prove that �rpo is
well-founded when � is well-founded on Σ, it is tempting to apply proposition 4.8 to the
preorders � and �rpo, where � is defined such that s � t iff root(s) � root(t), since the
conditions of this lemma hold. Unfortunately, � is not a wqo. However, we can use the
idea from theorem 4.10 to extend � to a total well-founded ordering ≤. Then, by theorem
4.7, the embedding preorder �≤ induced by ≤ (see definition 4.6) is a wqo, and thus, it is
well-founded. We can now apply proposition 4.8, which shows that ≤rpo (the rpo induced
by ≤) is well-founded. Finally, we prove by induction on terms that ≤rpo contains �rpo,
which proves that �rpo itself is well-founded.

5 Other authors define �mult
rpo as the multiset extension of the strict order �rpo, and s �mult

rpo t iff

s �mult
rpo t or s = t. Our definition is more general.
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A proof not involving Kruskal’s theorem, but using Zorn’s lemma, is given in Lescanne
[29]. Of course, a strict order on a finite set is always a wqo, and the significance of the
second part of the theorem is that it holds even when Σ is infinite.

Example 11.23 Consider the following set of rewrite rules to convert a proposition to
disjunctive normal form:

¬(P ∨Q) −→ ¬P ∧ ¬Q,
¬(P ∧Q) −→ ¬P ∨ ¬Q,

P ∧ (Q ∨R) −→ (P ∧Q) ∨ (P ∧R),

(P ∨Q) ∧R −→ (P ∧R) ∨ (Q ∧R),

¬¬P −→ P,

P ∨ P −→ P,

P ∧ P −→ P.

This system can be easily shown to be Noetherian using the rpo induced by the following
ordering on the set of operators: ¬ � ∧ � ∨.

It is possible to show that �rpo is total on ground terms whenever � is total on
Σ. It is also possible to define reduction orderings which are total on ground terms; the
problem with �rpo is that it is not a partial order in general, but only a preorder, i.e., the
equivalence relation ≈rpo is not necessarily the identity. For example, for any � we have
f(a, b) ≈rpo f(b, a) but clearly f(a, b) 6= f(b, a). It is easy to show by structural induction
on terms, and using only clause (i) of the definition of rpo that for any two ground terms
s = f(s1, . . . , sn) and t = g(t1, . . . , tm), we have s ≈rpo t iff f ≈ g and si ≈rpo tπ(i), for
1 ≤ i ≤ n, where π is some permutation of the set {1, . . . , n}. (In other words, s ≈rpo t

iff s and t are equal up to equivalence of symbols, and up to the permutation of the order
of the terms under each function symbol, where the permutation of subterms arises by the
comparison of multisets of subterms in clause (i) of the definition.)

This motivates the following definition.

Definition 11.24 For any ordering � on Σ, let the term ordering �rpol be defined such
that s �rpol t iff either s �rpo t or s and t are ground, s ≈rpo t, and s �tlex t.

Clearly for any total � on Σ this is a reduction ordering total on ground terms, since
�rpo is total on ground terms and if s �rpo t and s �rpo t then, since �tlex is total on
ground terms, we must have either s �tlex t or s ≺tlex t.

Thus, any time the underlying ordering on Σ is total we have a total ordering on
TΣ, even though the ordering may not be total on TΣ(X ). This is a major problem with
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term orderings: in order to preserve stability under substitution, they must treat variables as
incomparable symbols. Thus equations such as commutative axioms (e.g. f(x, y) .= f(y, x))
can never be oriented.

Warning : It is possible that for R and S rewrite systems on disjoint sets of function
(and constant) symbols, both R and S are Noetherian, but R ∪ S is not, as shown by the
following example due to Toyama.

Example 11.25

R = {f(0, 1, z)→ f(z, z, z)}
S = {g(x, y)→ x

g(x, y)→ y}

Observe that the term f(g(0, 1), g(0, 1), g(0, 1)) rewrites to itself:

f(g(0, 1), g(0, 1), g(0, 1)) −→ f(0, g(0, 1), g(0, 1))

−→ f(0, 1, g(0, 1))

−→ f(g(0, 1), g(0, 1), g(0, 1)).

Another interesting kind of term ordering is the lexicographic path ordering due to
Kamin and Levy.

Definition 11.26 Let � be a preorder on Σ. The lexicographic path ordering �lpo on
TΣ(X ), for short, lpo, is defined below. Actually, we give a simultaneous recursive definition
of �lpo, �lpo, and ≈lpo, where s �lpo t iff s �lpo t and s 6�lpo t, and s ≈lpo t iff s �lpo t and
s �lpo t.

Then, f(s1, . . . , sn) �lpo g(t1, . . . , tm) holds iff one of the conditions below holds:

(i) f ≈ g, s1 ≈lpo t1, . . . , si−1 ≈lpo ti−1, si �lpo ti, and s �lpo ti+1, . . . , s �lpo tn, for
some i, 1 ≤ i ≤ n, with s = f(s1, . . . , sn) and m = n; or

(ii) f � g and f(s1, . . . , sn) �lpo ti for all i, 1 ≤ i ≤ m; or
(iii) si �lpo g(t1, . . . , tm) for some i, 1 ≤ i ≤ n.

Note that since the preorder � is only defined on Σ, variables are regarded as incom-
parable symbols. Also, condition (i) is sometimes stated as:

(i’) f ≈ g, 〈s1, . . . , sn〉 �lex
lpo 〈t1, . . . , tn〉, m = n, and f(s1, . . . , sn) �lpo ti for all i,

1 ≤ i ≤ n, where �lex
lpo is the lexicographic extension of �lpo on n-tuples.6

6 Other authors define �lex
lpo as the lexicographic extension of the strict order �lpo, and s �lex

lpo t iff

s �lex
lpo t or s = t. Our definition is more general.
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It is easily seen that (i) and (i’) are equivalent. In (i), the purpose of the conditions
s �lpo ti+1, . . . , s �lpo tn is to insure that f(s1, . . . , sn) �lpo g(t1, . . . , tm) iff si �lpo ti.
Similarly, in (ii), the purpose of the condition f(s1, . . . , sn) �lpo ti for all i, is to insure
that f(s1, . . . , sn) �lpo g(t1, . . . , tm).

Theorem 11.27 (Kamin, Levy) The relation �lpo is a simplification ordering stable under
substitution. Furthermore, if the strict order � is well-founded on Σ, and equivalent symbols
have the same rank, then �lpo is well-founded, even when Σ is infinite.

Proof . The proof uses the techniques used in theorem 11.22 (Kruskal’s theorem).

As in the previous theorem on rpo, the significance of the second part of the theorem
is that it holds even when Σ is infinite.

Example 11.28 Consider the following set of rewrite rules for free groups (Knuth and
Bendix [27]).

(x ∗ y) ∗ z −→ x ∗ (y ∗ z),
1 ∗ x −→ x,

I(x) ∗ x −→ 1,

I(x) ∗ (x ∗ y) −→ y,

I(1) −→ 1,

x ∗ 1 −→ x,

I(I(x)) −→ x,

x ∗ I(x) −→ 1,

x ∗ (I(x) ∗ y) −→ y,

I(x ∗ y) −→ I(y) ∗ I(x).

This system can be easily shown to be Noetherian using the lpo induced by the following
ordering on the set of operators: I � ∗ � 1.

It is possible to combine lpo and rpo (Lescanne [32]). It is also possible to define
semantic path orderings (Kamin, Levy), as opposed to the above precedence orderings.
Semantic path orderings use orderings on TΣ rather than orderings on Σ (see Dershowitz
[7]).

The relative strength and the ordinals associated with these orderings have been stud-
ied by Okada and Dershowitz [37, 9]. For instance, given a strict ordering ≺ on a finite
set Σ of n elements, then TΣ under ≺rpo is order-isomorphic to ϕn(0), the first n-critical
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ordinal.7 In particular, there is a very natural representation of the ordinals less than ε0
in terms of nested multisets of natural numbers. It is even possible to define an rpo whose
order-type is Γ0 (see Dershowitz [7]), if we allow terms to serve as labels.8

Okada has showed that it is possible to combine the multiset and lexicographic ordering
to obtain term orderings subsuming both the rpo and lpo ordering, and also obtain a system
of notations for the ordinals less than Γ0 (see Okada [37], and Dershowitz and Okada [9]).
Such systems are inspired by some earlier work of Ackermann [1], and we briefly describe
one of them.

Let C be a set of constants, and F a set of function symbols (we are not assuming
that symbols in F have a fixed arity).

Definition 11.29 For any n > 0, the set An(F,C) of generalized Ackermann terms is
defined inductively as follows:

(1) c ∈ An(F,C) whenever c ∈ C.

(2) f(t1, . . . , tn) ∈ An(F,C) whenever f ∈ F and t1, . . . , tn ∈ An(F,C).

The terms defined by (1) and (2) are called connected terms.

(3) t1# · · ·#tm ∈ An(F,C), whenever t1, . . . , tm are connected terms in An(F,C) (m ≥
2).9

Given a set Σ = C ∪ F of labels, note that the set of trees TΣ can be viewed as a
subset of A1(F,C), using the following representation function:

rep(c) = c, when c ∈ C, and

rep(f(t1, . . . , tm)) = f(rep(t1)# · · ·#rep(tn)).

Given a preorder � on C ∪ F , we define a preorder �ack on An(F,C) as follows.

Definition 11.30 The Ackermann ordering �ack on An(F,C) is defined below. Actually,
we give a simultaneous recursively definition of �ack, �ack, and ≈ack, where s �ack t iff
s �ack t and s 6�ack t, and s ≈ack t iff s �ack t and s �ack t.

(1) If s, t ∈ C, then s �ack t iff s � t. If s ∈ C and t /∈ C, then t �ack s (and t 6�ack s).

(2) Let s = f(s1, . . . , sn) and t = g(t1, . . . , tn). Then, s �ack t iff one of the conditions
below holds:

7 In this case, Σ is not a ranked alphabet. We allow the symbols in Σ to have varying (finite) ranks.
8 These terms are formed using a single symbol ? that can assume any finite rank.
9 Compared to the definition in Dershowitz and Okada [9], we require that t1, . . . , tm are connected

terms. This seems cleaner and does not seem to cause any loss of generality.
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(i) f ≈ g, s1 ≈ack t1, . . . , si−1 ≈ack ti−1, si �ack ti, and s �ack ti+1, . . . , s �ack tn,
for some i, 1 ≤ i ≤ n; or

(ii) f � g and f(s1, . . . , sn) �ack ti for all i, 1 ≤ i ≤ n; or
(iii) si �ack g(t1, . . . , tn) for some i, 1 ≤ i ≤ n.

(3) Let s = s1# · · ·#sm (or s = s1) and t = t1# · · ·#tp (or t = t1). Then, s �ack t iff

{s1, . . . , sm} �mult
ack {t1, . . . , tp},

where �mult
ack is the multiset extension of �ack.

The following results are stated in Okada [37], and Dershowitz and Okada [9].

Theorem 11.31 (1) If the strict order � is well-founded on C ∪ F , then �ack is well-
founded on An(F,C).

(2) The multiset extension of rpo is identical to �ack on A1(F,C).

Proof . The proof of (1) uses the techniques used in theorem 11.22 (Kruskal’s theorem).
The proof of (2) is straightforward.

Equivalently, part (2) of theorem 11.31 says that the restriction of �ack to connected
terms in A1(F,C) is identical to rpo (we use the representation of terms given by the
function rep described earlier).

Finally, as noted by Okada, 〈A2({ψ}, {0}),�ack〉 provides a system of notations for the
ordinals less than Γ0. This is easily seen using theorem 8.12. To show that �ack corresponds
to the ordering on the ordinals less than Γ0, we use lemma 8.11 and lemma 8.10. We can
even define a bijection ord bewteen the equivalence classes of A2({ψ}, {0}) modulo ≈ack

and the set of ordinals less than Γ0 as follows:

ord(ψ(s, t)) = ψ(ord(s), ord(t)),

ord(s1# · · ·#sm) = α1 + · · ·+ αm,

where α1 ≥ . . . ≥ αm is the sequence obtained by ordering {ord(s1), . . . , ord(sm)} in
nonincreasing order.

12 A Glimpse at Hierarchies of Fast and Slow Growing Functions

In this section, we discuss briefly some hierarchies of functions that play an important
role in logic because they provide natural classifications of recursive functions according to
their computational complexity. It is appropriate to discuss these classes of functions now,
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because we have sufficient background about constructive ordinal notations at our disposal.
When restricted to the ordinals less than ε0, these hierarchies provide natural rate-of-growth
and complexity classifications of the recursive functions which are provably total in Peano’s
arithmetic. In particular, for two of these hierarchies, Fε0 and Hε0 dominate every such
function (for all but finitely many arguments). Thus, the statement “Fε0 is total recursive”
is true, but not provable in Peano’s arithmetic. The relationship with Kruskal’s theorem is
that the function Fr mentioned in the discussion following theorem 5.2 dominates Fε0 (for
all but finitely many arguments). In fact, Fr has the rate of growth of a function Fα where
α is considerably larger that Γ0! The results of this section are presented in Cichon and
Wainer [4], and Wainer [54], and the reader is referred to these papers for further details.

For ease of understanding, we begin by defining hierarchies indexed by the natural
numbers. There are three classes of hierarchies.

1. Outer iteration hierarchies.

Let g:N→ N be a given function. The hierarchy (gm)m∈N is defined as follows: For
all n ∈ N,

g0(n) = 0,

gm+1(n) = g(gm(n)).

The prime example of this kind of hierarchy is the slow-growing hierarchy (Gm)m∈N based
on the successor function g(n) = n + 1. This hierarchy is actually rather dull when the
Gm are indexed by finite ordinals, since Gm(n) = m for all n ∈ N, but it is much more
interesting when the index is an infinite ordinal.

2. Inner iteration hierarchies.

Again, let g:N→ N be a given function. The hierarchy (hm)m∈N is defined as follows:
For all n ∈ N,

h0(n) = n,

hm+1(n) = hm(g(n)).

The prime example of this kind of hierarchy is the Hardy hierarchy (Hm)m∈N based on the
successor function g(n) = n+1. This hierarchy is also rather dull when the Hm are indexed
by finite ordinals, since Hm(n) = n+m for all n ∈ N, but it is much more interesting when
the index is an infinite ordinal.

3. Fast iteration hierarchies.
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Let g:N → N be a given increasing function. The hierarchy (fm)m∈N is defined as
follows: For all n ∈ N,

f0(n) = g(n),

fm+1(n) = fn
m(n),

where fn
m(x) = fm(fm(. . . (fm(x)) . . .)), the nth iterate of fm applied to x. The prime

example of this kind of hierarchy is the Grzegorczyk hierarchy (Fm)m∈N based on the
successor function g(n) = n+ 1. This hierarchy is not dull even when the Fm are indexed
by finite ordinals. Indeed, F1(n) = 2n, F2(n) = 2nn, and

22··
·2

n }
n
< F3(n).

In order to get functions growing even faster than those obtained so far, we extend
these hierarchies to infinite ordinals. The trick is to diagonalize at limit ordinals. How-
ever, this presuposes that for each limit ordinal α under consideration, we already have a
particular predefined increasing sequence α[0], α[1], . . . , α[n], . . ., such that α =

⊔
n∈N α[n],

a so-called fundamental sequence. The point of ordinal notations is that they allow the
definition of standard fundamental sequences. This is particularly simple for the ordinals
less than ε0, where we can use the Cantor normal form.

For every limit ordinal δ < ε0, if δ = α + β, then δ[n] = α + β[n], if δ = ωα+1, then
δ[n] = ωαn (i.e. ωα + · · · + ωα n times), and when δ = ωα for a limit ordinal α, then
δ[n] = ωα[n]. For ε0 itself, we choose ε0[0] = 0, and ε0[n+ 1] = ωε0[n].

Fundamental sequences can also be assigned to certain classes of limit ordinals larger
than ε0, but this becomes much more complicated. In particular, this can be done for limit
ordinals less than Γ0, using the normal form representation given in theorem 8.2.

Assuming that fundamental sequences have been defined for all limit ordinals in a
given subclass I of O, we extend the definition of the hierarchies as follows.

Definition 12.1 Outer iteration hierarchies.

Let g:N → N be a given function. The hierarchy (gα)α∈I is defined as follows: For
all n ∈ N,

g0(n) = 0,

gα+1(n) = g(gα(n)),

gα(n) = gα[n](n),
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where in the last case, α is a limit ordinal. The prime example of this kind of hierarchy
is the slow-growing hierarchy (Gα)α∈I based on the successor function g(n) = n+ 1. This
time, we can show that for any n, gα(n) = gGα(n)(0), and Gα+β(n) = Gα(n) + Gβ(n),
from which it follows that Gωα(n) = nGα(n). This means that if α is represented in Cantor
normal form, then Gα(n) is the result of replacing ω by n troughout the Cantor normal
form! Thus, we have

Gε0[n](n) = nn··
·n

n }
n−1

.

Definition 12.2 Inner iteration hierarchies.

Again, let g:N→ N be a given function. The hierarchy (hα)α∈I is defined as follows:
For all n ∈ N,

h0(n) = n,

hα+1(n) = hα(g(n)),

hα(n) = hα[n](n),

where in the last case, α is a limit ordinal. The prime example of this kind of hierarchy is
the Hardy hierarchy (Hα)α∈I based on the successor function g(n) = n+1 (Hardy [20]). It
is easy to show that hα+β(n) = hα(hβ(n)), and so hωα+1(n) = hn

ωα(n).

Definition 12.3 Fast iteration hierarchies.

Let g:N → N be a given increasing function. The hierarchy (fα)α∈I is defined as
follows: For all n ∈ N,

f0(n) = g(n),

fα+1(n) = fn
α (n),

fα(n) = fα[n](n),

where fn
α (x) = fα(fα(. . . (fα(x)) . . .)), the nth iterate of fα applied to x, and in the last

case, α is a limit ordinal.

The prime example of this kind of hierarchy is the extended Grzegorczyk hierarchy
(Fα)α∈I based on the successor function g(n) = n + 1. It is interesting to note that
Ackermann’s function has rate of growth roughly equivalent to that of Fω.

It is not difficult to show that fα(n) = hωα(n). Thus, even though the fast-growing
hierarchy seems to grow faster than the inner iteration hierarchy, the h-hierarchy actually
“catches up” with the f -hierarchy at ε0, in the sense that

fε0(n− 1) ≤ hε0(n) ≤ fε0(n+ 1).
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Given two functions f, g:N → N, we say that g majorizes f (or that g dominates
f) iff there is some k ∈ N such that g(n) > f(n) for all n ≥ k. It is shown in Buchholz
and Wainer [3] that Fβ majorizes Fα and that Hβ majorizes Hα if β > α. This property
can also be shown for the slow-growing hierarchy. Buchholz and Wainer [3] also show that
every recursive function provably total in Peano’s arithmetic is majorized by some Fα+1 in
the fast-growing hierarchy up to ε0, and that every Fα for α < ε0 is recursive and provably
total in PA. It follows that Fε0 is recursive, but not provably total in PA. Going back to
the function Fr associated with Friedman miniature version of Kruskal’s theorem (theorem
5.2), Friedman has shown that Fr majorizes FΓ0 , and in fact, Fr has the rate of growth of
a function Fα where α is considerably larger that Γ0!

We noted that the h-hierarchy catches up with the f -hierarchy at ε0. It is natural
to ask whether the slow-growing hierarchy catches up with the fast-growing hierarchy. At
first glance, one might be skeptical that this could happen. But large ordinals are tricky
objects, and in fact there is an ordinal α such that the slow-growing hierarchy catches up
with the fast-growing hierachy.

Theorem 12.4 (Girard) There is an ordinal α such that Gα and Fα have the same rate
of growth, in the sense that

Gα(n) < Fα(n) < Gα(an+ b),

for some simple linear function an+ b.

This remarkable result was first proved by Girard [17]. The ordinal α for which Gα

and Fα have the same rate of growth is nonother than Howard’s ordinal , another important
ordinal occurring in proof theory. Unfortunately, we are not equipped to describe it, even
with the apparatus of the normal functions ϕ(α, β). Howard’s ordinal is greater than Γ0,
and it is denoted by ϕεΩ+1+1(0), where Ω is the least uncountable ordinal, and εΩ+1 is

the least ε-number after Ω (so εΩ+1 = ΩΩΩ··
·

). Alternate proofs of this result are given
in Cichon and Wainer [4], and Wainer [54] (among others). A fairly simple description of
Howard’s ordinal is given in Pohlers [41].

Before closing this section, we cannot resist mentioning Goodstein sequences [18],
another nice illustration of the representation of ordinals less than ε0 in Cantor normal
form.

Let n be any fixed natural number, and consider any natural number a such that

a < (n+ 1)(n+1)·
··
(n+1)

}
(n+1)

.
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We express a in complete base n+1 by first writing a = m0 +m1(n+1)+ . . .+mk(n+1)ak ,
where mi ≤ n, and ai < ai+1, and then recursively writing each ai in complete base n+ 1,
until all the exponents are ≤ n. Given a, denote by rep(a, n+1) its associated representation
in complete base n + 1. Given a number a and its representation rep(a, n + 1), we denote
by shiftrep(a, n+ 1) the result of replacing n+ 1 by n+ 2 throughout the representation
rep(a, n+ 1), and by |shiftrep(a, n+ 1)| the numerical value of this new term.

Definition 12.5 The Goodstein sequence starting with a ≥ 0 is defined as follows. Choose
n as the least number such that

a < (n+ 1)(n+1)·
··
(n+1)

}
(n+1)

.

Set a0 = a− 1, and ak+1 = |shiftrep(ak, n+ k + 1)| − 1.

In the above definition, a− b is the usual difference between a and b when a ≥ b, and
it is equal to 0 otherwise. Thus, we obtain ak+1 from ak by changing n+ k+ 1 to n+ k+ 2
in the representation rep(ak, n+ k + 1) of ak and subtracting 1 from this new value.

Theorem 12.6 (Goodstein, Kirby and Paris) Every Goodstein sequence terminates, that
is, there is some k such that ak = 0. Furthermore, the function Good such that Good(a) =
the least k such that ak = 0 is recursive, but it majorizes the function Hε0 from the Hardy
Hierarchy.

Proof . The proof that every Goodstein sequence terminates is not that difficult. The trick
is to associate to each ak an ordinal αk < ε0 obtained by replacing n+k+1 by ω throughout
rep(ak, n+k+1). Then, it is easy to see that αk+1 < αk, and thus, the sequence ak reaches
0 for some k. The second part of the theorem is due to Kirby and Paris [26]. Another
relatively simple proof appears in Buchholz and Wainer [3].

Since Hε0 is not provably recursive in PA, Goodstein’s theorem is a statement that is
true but not provable in PA.

Readers interested in combinatorial independence results are advised to consult the
beautiful book on Ramsey theory, by Graham, Rothschild, and Spencer [19].

13 Constructive Proofs of Higman’s Lemma

If one looks closely at the proof of Higman’s lemma (lemma 3.2), one notices that the proof
is not constructive for two reasons:

(1) The proof proceeds by contradiction, and thus it is not intuitionistic.
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(2) The definition of a minimal bad sequence is heavily impredicative, as it involves uni-
versal quantification over all bad sequences.

Thus, it is natural, and as it turns out, quite challenging, to ask whether it is possible
to give a constructive (and predicative) proof of Higman’s lemma.

In a remarkable (and short) paper, Friedman [15] introduces a new and simple tech-
nique, the A-translation, which enables him to give simple proofs of the fact that first-order
classical Peano arithmetic and classical higher-order arithmetic are conservative over their
respective intuitionistic version over Π0

2-sentences. His technique also yields closure un-
der Markov’s rule for several intuitionistic versions of arithmetic (if ¬¬∃xϕ is provable,
then ∃xϕ is also provable, where x is a numeric variable, and ϕ is a primitive recursive
relation). Using Friedman’s A-translation technique, it follows that there is an intuition-
istic impredicative proof of Higman’s lemma. However, it would still be interesting to
see whether a constructive (predicative) proof can be extracted directly from the classical
proof, and Gabriel Stolzenberg was among the first researchers to propose this challenge,
and eventually solve it. It turns out that (at least) two constructive (predicative) proofs of
a constructive version of Higman’s lemma have been given independently by Richman and
Stolzenberg [45], and Murthy and Russell [35]. Steve Simpson has proven a related result
for the Hilbert’s basis theorem [49], and his proof technique seems related to some of the
techniques of Richman and Stolzenberg. The significance of having a constructive proof is
that one gets an algorithm which, given a constructively (and finitely presented) infinite
sequence, yields the lefmost pair of embedded strings. Murthy and Russell [35] do extract
such an algorithm using the NuPRL proof development system. The next challenge is to
find a constructive proof of Kruskal’s theorem.
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