
Generalized Quantifiers ∗

Jouko Väänänen
Department of Mathematics

University of Helsinki
Helsinki, Finland

Abstract

We review recent work in the field of generalized quantifiers on
finite models. We give an idea of the methods that are available in
this area. Main emphasis is on definability issues, such as whether
there is a logic for the PTIME properties of unordered finite models.

1 Introduction

The ordinary quantifiers “for some” and “for all” are not sufficient for ex-
pressing some basic mathematical concepts. This led Mostowski [22] to
introduce in 1957 generalized quantifiers, such as “for infinitely many” and
“for uncountably many”. In the 1960’s and 1970’s these and other similar
quantifiers were intensively studied by logicians. In this decade generalized
quantifiers re-emerged in the framework of finite structures. Researchers in
descriptive complexity theory and natural language semantics were looking at
ways to formalize expressions like “for at least half” and “for an even num-
ber”. It turned out that the concept of generalized quantifier introduced by
Mostowski, and further extended by Lindström [21], was the right answer.

The goal of descriptive complexity theory is to classify problems, not
according to how much resources they need when solved by means of a Turing

∗Appeared in the Bulletin of the European Association for Theoretical Computer Sci-
ence, 62 (1997), 115–136. Reprinted in Generalized Quantifiers and Computation, Lecture
Notes in Computer Science, vol. 1754, Springer, 1999.

1

machine, but according to how powerful logical languages are necessary for
describing the problems. For a quick example, let us consider some graph
problems, say the problem whether a graph is triangle-free.

We are given a graph, that is, a pair (G,E), where G is a set and E is a
binary predicate representing the edge-relation. Even before we think about
triangle-freeness, we may ask how difficult it is to express the fact that (G,E)
is indeed a graph. We have to check that E is symmetric and anti-reflexive.
These two axioms can be easily expressed in a logical language as follows: In
what follows, x and y are variables for elements of the domain G and E(x, y)
stands for the assertion that x and y are in the edge-relation. Using standard
logical notation, ∀ means “for all”, → means “implies”, ¬ means “not” and
∧ means “and”, the following sentence expresses the fact that (G,E) is a
graph:

∀x∀y(E(x, y)→ E(y, x)) ∧ ∀x¬E(x, x). (1)

Likewise, the sentence

∀x∀y∀z¬(E(x, y) ∧ E(y, z) ∧ E(z, x)). (2)

expresses triangle-freeness of the graph (G,E). From the point of view of
descriptive complexity theory we may now say that to express the graph-
axioms, and also the triangle-freeness of a graph, we do not need more than
a logical language which has variables for elements and permits the use of ∀,
¬, ∧ and →. The smallest such language is called first order logic FO.

The logical language FO has become an extremely successful tool in logic
in this century. However, this success is almost solely due to its handiness in
expressing completeness properties of infinite structures such as “for every
number there is a bigger number” or “between any two distinct numbers there
is another number” etc. Problems arising in computer science do not usually
involve structures with universal completeness properties, not least because
these structures (databases, computations, etc) are finite. Respectively, all
the usual methods in the theoretical study of FO almost systematically fail
in the finite context (see e.g. [11, 12]). Indeed, first order logic is not at all
handy in expressing interesting properties of finite structures. Let us take
the path-problem as an example. From a programming point of view it is
natural to express the existence of a path from x to y in a graph (G,E) by
a formula Conn(x, y) such that

Conn(x, y)↔ [E(x, y) ∨ ∃z(E(x, z) ∧ Conn(z, y))]. (3)

2

This sentence features ↔ (“if and only if”), ∃ (“there exists”) and ∨ (“or”),
which are all definable in terms of the operations of FO. But more interest-
ingly, it seems that in order to get the formula Conn(x, y) we have to “solve”
the equivalence (3) since Conn occurs on both sides. Such solutions are called
fixed points. In general there may be several different fixed points, but there
is a simple way of guaranteeing that a unique least fixed point exists. In
(3) the existence of a unique least fixed point characteristically follows from
the fact that on the right hand side the predicate Conn occurs only posi-
tively. The smallest logic extending first order logic where such fixed points
can be expressed is called fixed point logic FP. It was introduced by Aho
and Ullman [1] in 1979. They also proved that the least fixed point of the
equivalence (3) is not first order definable.

Fixed point logic is definitely very different from first order logic. Expres-
sions of first order logic can be written down on a piece of paper, but how
to write down the expression Conn? If we make a try, changing variables to
avoid confusion, the result is likely to look like this: Conn(x, y)↔

E(x, y) ∨ ∃z1(E(x, z1) ∧ (E(z1, y) ∨ ∃z2(E(z1, z2) ∧ (E(z2, y) ∨ . . .))).

This sentence is never-ending! The expressions of fixed point logic are not
sentences in the ordinary sense of the word but some kind of self-referential
recursive generalized sentences. Despite this difficulty in construing fixed
point queries as sentences, fixed point logic has a very clear computational
content. Whenever a graph and a fixed point expression is given, it is imme-
diate how to check whether the graph satisfies the expression, and this can
be done in polynomial time in the size of the graph.

It would be tempting to conjecture that not only is every fixed point query
in polynomial time, but conversely every polynomial time graph property is
expressible as a fixed point query. Indeed, Immerman [19] and Vardi [24]
showed in 1982 that this is true in the special case that the graph is endowed
with a linear ordering of the vertices. In such a case it is possible to use tuples
of vertices to build a model of a Turing machine inside the graph and imitate
the polynomial time property by a suitable fixed point sentence. So in the
presence of an ordering the fixed point approach is very powerful. However,
what if we do not have an ordering of the vertices of the graph?

It is relatively easy to see with present-day game-theoretic techniques that
the polynomial time query “the number of vertices is even” is not expressible

3

in fixed point logic on unordered graphs. The same is true of all non-trivial
counting queries. This observation has led to the following problem:

Is there some natural extension of fixed
point logic which expresses exactly the
polynomial time queries on unordered
graphs?

(4)

raised first by Chandra and Harel [3].
If it were to be the case that P = NP, then such a natural extension

would exist, namely existential second order logic Σ1
1, defined below. First

let us observe that first order logic FO makes sense in a framework that
is much more general than just graphs. It is customary in logic to consider
structures of a very general type, such as ordered structures, directed graphs,
hypergraphs, groups, fields, etc. Common to all these structures is that
there is one domain and one or more relations (functions can be treated as
relations) and constants on this domain. Codd [4] defined on such finite
structures the so called relation algebra as a kind of minimal database query
language. Relation algebra is essentially the same thing as FO. More exactly,
a structure consists of a set A, a sequence of relations on A, and a sequence
of distinguished constants on A. Each relation is a subset of some Cartesian
product Ak of A. The number k is called the arity of the relation. First order
logic for such abstract structures has a name for each relation and constant of
the structure. (We use the same symbol for an object and its name, whenever
no confusion arises.) The names of the relations and constant of a structure
is called the vocabulary of the structure.

For example, if (G,E) is a graph and X is a subset of G, we can form a
new structure (G,E,X) which has one relation E of arity 2 and one relation
X of arity 1. We can say in first order logic that X contains neighbors of its
elements (i.e. X is a union of connected components):

∀x∀y((X(x) ∧ E(x, y))→ X(y)).

Here X(t) is interpreted as ”t is in X”. In existential second-order logic Σ1
1

we can form expressions such as

∃X(X(x) ∧ ¬X(y) ∧ ∀z∀u((X(z) ∧ E(z, u))→ X(u))). (5)

Here ∃X is a so called second order quantifier because it binds a relation
variable X rather than an element variable like ∃z in (3). Note that (5) says

4

that there is no path from x to y. Thus it is equivalent to ¬Conn(x, y). This
shows that Σ1

1 can express things which are not first order definable.
No-one knows whether Σ1

1 is closed under negation or not in the frame-
work of finite models. In infinite models infinity itself is a Σ1

1 concept. Its
complement - finiteness - is not Σ1

1, as follows easily from the so called Com-
pactness Theorem of infinite model theory.

Fagin [9] proved that a query is NP if and only if it is expressible in
Σ1

1, in symbols NP = Σ1
1. The role of guessing, inherent in non-deterministic

computations, is played by existential second order quantifiers. Fagin’s result
holds on all structures, ordered or not, because if an order was not present, we
could guess an ordering and continue as if the ordering was present. (Recall
that ordering is used to simulate a Turing machine inside a structure).

It is possible to express every fixed point query in Σ1
1. Thus if P = NP,

we have the extension Σ1
1 of FP which expresses exactly the polynomial time

queries on graphs or indeed on any structures. The message is, that if we were
able to answer question (4) in the negative, we would have proved P 6= NP.

The point of generalized quantifiers (to be defined below) is that they
provide a very general yet coherent and mathematically exact approach to
extending FO and FP. Proof techniques developed for them provide one pos-
sible road to analyzing question (4) and other open questions of descriptive
complexity theory.

2 Generalized quantifiers – definition

We pointed out above, that there is no fixed point expression (and no first
order expression) which would say that the number of vertices of a graph is
even. Neither can we say in FP (or FO) that the degree of a vertex is even, or
that at last half of the vertices have degree ≥ 3, or that two vertices have the
same degree, etc. There is an endless list of examples of simple properties
which cannot be captured by FP. This motivates the following idea: We
extend FO (and FP) by allowing a new operation Qevenx(. . . x . . .) with the
interpretation

Qevenx(. . . x . . .)⇔ the number of x with . . . x . . . is even. (6)

5

Now the expression QevenxE(x, y) says in a graph that the vertex y has even
degree. By adding another new operation

Qhalfx(. . . x . . .)⇔ at least half of all elements x satisfy . . . x . . .,

we can say things like at least half of the vertices of a graph have degree ≥ 3:

Qhalfx∃y∃z∃u(E(x, y) ∧ E(x, z) ∧ E(x, u) ∧ y 6= z ∧ y 6= u ∧ z 6= u).

The operations Qeven and Qhalf are examples of generalized quantifiers.
The extension of FO by Qeven is denoted by FO(Qeven) and the extension by
Qhalf is denoted by FO(Qhalf). It is easy to verify that all queries that can
be expressed in FO(Qeven) or FO(Qhalf) are polynomial time computable, but
not every polynomial time computable query is expressible in FO(Qeven) or
FO(Qhalf).

There is an element of arbitrariness in the definition of Qeven and Qhalf

above. One gets the feeling that something was needed and it was just
thrown in ad hoc. The point is that generalized quantifiers provide a way
of extending a language in a minimal way. Any extension of FO in which
we can say one way or other that a predicate is satisfied by an even number
of elements, and which satisfies some natural regularity properties, actually
contains FO(Qeven).

Let us consider Hamiltonicity of a graph as an example. The probability
that a randomly chosen finite graph is Hamiltonian tends to 1 when the size
of the graph increases. There are logics, like FO and FP for which a zero-one
law holds, that is, whatever sentence of the logic we consider, the probability
that a randomly chosen finite structure satisfies that sentence tends to 0 or
1 when the size of the graph increases (see [13] for an informal discussion
of this). Since Hamiltonicity cannot be expressed either in FO or in FP,
the question was raised whether there is some extension of these logics in
which Hamiltonicity can be expressed and which has a zero-one law. Dawar
and Grädel [7] proved that the extension of FO obtained by adding the
generalized quantifier

QHamxy(. . . x . . . y . . .) ⇔ the graph with the edge-relation
{(x, y) : . . . x . . . y . . .} is Hamiltonian

(7)

does not have the zero-one law. Thus no extension of FO capable of express-
ing Hamiltonicity can have a zero-one law.

6

A1
0 A1

1

A2
0 A2

1 A2
2

A3
0 A3

1 A3
2 A3

3

A4
0 A4

1 A4
2 A4

3 A4
4

. . .

Figure 1: Models with one unary predicate

Definition 1 ([21]) Suppose L is a vocabulary. Any collection Q of struc-
tures of vocabulary L, that is closed under isomorphisms, is called a general-
ized quantifier of vocabulary L.

The concept of generalized quantifier seems to be extremely general, and
does not appear to have anything to do with the ordinary quantifiers ∀ and
∃.

Let us discuss generality first. The important part of the definition is
closure under isomorphisms. To see what this means, and how it limits
generality, suppose L consists of one predicate symbol R which is unary
i.e. of arity one. Up to isomorphism there are just n + 1 non-isomorphic L-
structures of size n, namely for each m ≤ n the structure An

m with {1, . . . , n}
as universe and {1, . . . ,m} as the interpretation of R. We can picture these
structures as a pyramid (see Figure 1). On vertical rows the size of the model
is constant. On rows parallel to the left side of the pyramid the size of the
predicate R is constant. On rows parallel to the right side the size of the
complement of R is constant.

Now a generalized quantifier of vocabulary L is essentially just a subset of
this pyramid. Thus we have a pretty good picture of what kind of generalized
quantifiers of vocabulary L there are. For more general vocabularies the
picture becomes less and less clear.

The relation between generalized quantifiers and ordinary quantifiers be-
comes evident from the actual use of generalized quantifiers. Suppose Q is
as in the above definition. For simplicity, assume L consists of a relation
symbol R, which is binary, i.e. of arity two, and of X, which is unary, i.e. of
arity one. Using the quantifier Q we can talk about pairs (x, y) of elements
satisfying some condition . . . x . . . y . . . and of elements z satisfying another

7

condition z . The expression

Qxyz(. . . x . . . y . . .)(z)

says in a structure A with universe A that the L-structure (A,R,X) with
universe A and

R = {(x, y) ∈ A : . . . x . . . y . . . holds in A}
X = {z ∈ A : z holds in A},

is in the set Q.
In this framework the ordinary quantifier ∃ can be defined as a generalized

quantifier of vocabulary {X}, X unary, as follows:

∃ = {(A,X) : X ⊆ A,X 6= ∅}.

Thus ∃x(. . . x . . .) holds in a structure A if and only if (A,X) ∈ ∃ where

X = {x ∈ A : . . . x . . . holds in A}.

Similarly
∀ = {(A,X) : X = A}.

Let us denote by FO(Q) the extension of first order logic by the gen-
eralized quantifier Q. There is no special difficulty in adding a generalized
quantifier Q to FP, although some attention has to be paid to the details.
(Technically speaking, we should speak about the so called inflationary fixed
point logic, unless Q is a so called monotone quantifier, but we disregard this
detail here.) We denote the result by FP(Q).

Do generalized quantifiers lead to a solution of question (4)? The answer
is “yes and no”, as we shall see below. However, it is interesting to note
already here that on almost all structures PTIME = FP(Qeven) by a recent
result of Hella, Kolaitis and Luosto [16]. This means that there is a
representation of PTIME queries in terms of FP(Qeven) which holds on a
randomly chosen finite structure with a probability which tends to one as
the size of the structure increases. Even such a weak representation would
not be possible with FO or FP alone.

8

3 A hierarchy of generalized quantifiers

To evaluate the merits of the concept of generalized quantifier we have to
look at the results that it gives rise to. For example, hierarchy results are
in general rather rare in complexity theory, while strong methods exist for
proving hierarchy results for generalized quantifiers.

The hierarchies of generalized quantifiers are based on counting how many
variables and in how many formulas the quantifier binds. For example, the
quantifier Qeven of (6) binds one variable x in one formula. We say that it
has type (1). The quantifier

Ixy(. . . x . . .)(y) ⇐⇒ there are as many x with . . . x . . .

as there are y with y

binds two variables (x and y) in two formulas, one variable per formula. We
say that it has type (1,1). Finally QHam of (7) binds two variables in one
formula, we say that it has type (2).

In general, a type is a finite sequence τ = (t1, . . . , tk) of positive integers
with t1 ≥ . . . ≥ tk. A vocabulary of type τ has an ti-ary predicate symbol Ri

for each i = 1, . . . , k. A generalized quantifier has type τ if its vocabulary is
of type τ .

The type of a vocabulary determines how many models (up to isomor-
phism) there are of that vocabulary in each size of the domain. If the type
τ is unary, that is, t1 = . . . = tk = 1, then there are(

n+ 2k − 1
2k − 1

)

non-isomorphic models of vocabulary L of size n. If the vocabulary L is
non-unary, that is, max{t1, . . . , tk} ≥ 2, then the number of non-isomorphic
models of vocabulary L and of size n is harder to compute, but asymptotically
it is ([8])

1

n!
2n

t1+...+ntk .

These formulas give immediately an idea of the number of quantifiers of a
given type. The number per se is infinite, but we can get a finite number
by considering the restrictions of the quantifier to a fixed finite domain A of

9

cardinality n. If L is unary of type (t1, . . . , tk), the number of restrictions of
quantifiers of vocabulary L to A is, of course

2

(
n+ 2k − 1

2k − 1

)

and if L is non-unary, the number is

2
1
n!

2n
t1+...+ntk

.

The point of calculating these numbers is that they give a simple counting
method (invented by Per Lindström) for proving results about generalized
quantifiers. Suppose we want to construct a generalized quantifier Q of type
(1,1) which is not definable in FO(Q′) for any generalized quantifier Q′ of
type (1). Let us make a list

φ0(Q′), φ1(Q′), φ2(Q′), . . .

of the possible sentences of FO(Q′) that could give rise to a definition of
such a Q. All we have to take care of is that in size n the quantifier Q is
defined differently than what φn(Q′) says. But (roughly speaking) there are
2(n+3)(n+2)(n+1)/3 possibilities for Q and only 2n+1 possibilities for Q′. So sheer
counting shows that such a Q can be constructed. By elaborating this idea
it is possible to prove a hierarchy theorem which demonstrates the existence
of genuinely new quantifiers on each level of the type hierarchy (see below).

If τ = (t1, . . . , tk) and τ ′ = (t′1, . . . , t
′
k′) are types, we let τ < τ ′ if τ

precedes τ ′ in the lexicographic order, that is, ti < t′i for the least i such that
ti 6= t′i (or k < k′ if ti = t′i for all i = 1, . . . , k). Thus

(1) < (1, 1) < . . . < (2) < (2, 1) < (2, 1, 1) < . . . < (2, 2) < . . . (3) <

The order-type of this ordering is the infinite ordinal number ωω.

Theorem 2 (The Hierarchy Theorem [17]) For every type τ = (t1, . . . , tk)
there is a generalized quantifier Q of type τ such that Q is not definable in
FO(Q′) for any Q′ of type < τ .

10

BA

�
�

�
�

@
@
@
@@u
u

u
u

u
u @@@�
�

@
@

�
�

�
�

@
@

�
�
@
@@u
u

u
u

u
uu

u

u
u

u
u @@@�
�

@
@

�
�

�
�

@
@

�
�
@
@@u
u

u
u

u
u

Figure 2: Two graphs

In loose terms: we get something genuinely new on every level of types.
This result permits many refinements and variations. The most important
of them says that Q can be chosen to be LOGSPACE, at least if t1 = . . . =
tk. Various other constraints can be imposed on Q. An essential feature
of this result is that it is a pure existence result, reminiscent of Cantor’s
diagonalization method. We may force the abstract object Q to satisfy some
nice properties but we cannot “put our finger” on Q.

4 Games and quantifiers

The Hierarchy Theorem of the previous section establishes the richness of
the family of all generalized quantifiers. To study properties of individual
quantifiers more refined methods are needed. Before introducing the main
technical tool in the study of generalized quantifiers, the method of games,
let us discuss the general problem of separating models by logical means.

Suppose A and B are two models of the same vocabulary. We may
assume they are both graphs, or we may assume they are two databases (of
similar type). Picture 2 shows a simple example of the case that A and B
are graphs. Graph B is connected while A is not, so the graphs are not
isomorphic. What is the simplest way of describing the difference between
A and B? Certainly the difference can be described in FO with the sentence

∃x1∃x2 . . . ∃x12(E(x1, x2) ∧ E(x2, x3) ∧ . . . ∧ E(x11, x12) ∧ E(x12, x1))

but this raises the new question, whether we can do the same with a sentence
which would work for larger cycles, too.

11

On the other hand, the sentence (recall (5))

∃x∃y(x 6= y ∧ ∃X(X(x) ∧ ¬X(y) ∧ ∀z∀u((X(z) ∧ E(z, u))→ X(u))) (8)

is a sentence of Σ1
1 which is true in A and false in B. To see that this sentence

is true in A, choose x from the left-hand cycle, y from the right-hand cycle,
and let X be the whole left-hand cycle. Note that (8) works regardless of the
sizes of A and B as long as A consists of two cycles and B of one. So (8)
looks like a good logical method to describe the difference between A and
B. But (8) is unsatisfactory as it uses the “second order” quantifier ∃X, and
no PTIME algorithm is known for checking the truth of sentences involving
∃X.

Then there is the fixed point formula Conn(x, y) of (3), but it is (in a
sense) infinitary and therefore unsatisfactory. Of course we can also take the
generalized quantifier of type (2)

Qconnxy(. . . x . . . y . . .) ⇐⇒ the graph which has an edge between

every x and y with . . . x . . . y . . .

is connected.

Then FO(Qconn) can in a trivial way describe a difference between A and
B. The concept of generalized quantifier provides one possible framework
for asking questions like: is FO(Qconn) really the simplest logic in which the
difference of A and B of Picture 2 can be expressed? So what is simpler than
FO(Qconn)? What if we replace Qconn by a quantifier of simpler type? The
types simpler than that of Q are the unary types (1), (1,1), ...

Proposition 3 ([15]) No generalized quantifier of a unary type can express
connectivity of graphs.

The main idea behind the proof is the use of the following “bijective”
game. The game BGk(A,B) is played on two models A and B. There are
two players called I and II. Player II starts by choosing a bijection f1 between
the domain A of A and the domain B of B. (If there is no such f1, Player
II loses.) Then Player I chooses an element a1 of A. Now Player II chooses
again a bijection f2 and Player I chooses again an element a2 of A. The game

12

continues like this for k moves. In the end we have a correspondence

a1 7→ f1(a1)
a2 7→ f2(a2)

...
ak 7→ fk(ak).

(9)

Player II is the winner if he has been able to play all the k moves and
the produced correspondence (9) is a partial isomorphism, i.e., preserves
structure. For example, if A and B are graphs, this means that there is an
edge between ai and aj in A if and only if there is and edge between fi(ai)
and fj(aj) in B (and ai = aj ⇐⇒ fi(ai) = fj(aj)). A winning strategy
of Player II in BG3(A,B) for the graphs of Picture 2 can be described as
follows. The choice of f1 can be arbitrary (because every single element looks
the same in both models: edge to the left and edge to the right). After Player
I has chosen a1, Player II chooses f2 so that it maps any element at a distance
d ≤ 2 from a1 to an element at the same distance d from f1(a1) preserving
orientation. Otherwise f2 can be quite arbitrary as long as it is a bijection.
After Player I chooses a2, Player II chooses f3 so that it maps a1, a2, and
their immediate neighbors to f1(a1), f2(a2), and their immediate neighbors,
preserving again orientation. After Player I has chosen a3 it is easy to see
that the mapping ai 7→ fi(ai) preserves the edge-relation.

Let Q1 be the family of all unary generalized quantifiers and FO(Q1) the
extension of FO by all quantifiers in Q1.

Theorem 4 ([14]) A sufficient condition for a property P of finite models
to be undefinable in FO(Q1) is that for all numbers k there are models A and
B such that

(i) A has property P ,

(ii) B does not have property P ,

(iii) Player II has a winning strategy in the game BGk(A,B).

This theorem reduces the logical question whether a property P is express-
ible in terms of propositional connectives and quantifiers of a very general
albeit unary nature, to the purely mathematical question whether certain

13

models with certain combinatorial properties exist. For example, graphs like
in Picture 2 together with Theorem 4 provide a proof of Proposition 3.

The proof of Theorem 4 is lengthy but not particularly difficult. The suf-
ficiency of the condition for the undefinability of P is based on the following
idea: Let us assume the model A satisfies a sentence Qx(. . . x . . .), suppos-
edly defining P , where Q is a generalized quantifier of type (1). (In general,
the defining sentence need not start with Q.) Furthermore, suppose Player
II has a winning strategy in BGk(A,B) with k sufficiently large. The actual
choice of k is based on an inspection of the formula . . . x This strategy
advises Player II to choose some bijection f1. Since Qx(. . . x . . .) is true in
A, the structure (A,X) is in Q, where A is the domain of A and X is the
set of elements x of A which satisfy . . . x Let B be the domain of B and
Y the set of elements x of B which satisfy the same condition . . . x . . . in B.
Now comes the fundamental idea of the game BGk. We claim that

f1 : (A,X) ∼= (B, Y). (10)

Suppose x ∈ A. We have to prove a ∈ X ⇐⇒ f1(a) ∈ Y . Suppose therefore
e.g. x ∈ X. Thus x satisfies the condition . . . x . . . in A. Let us let Player
I choose a1 = x in the game BGk(A,B). Because Player II is playing a
winning strategy, we know that a1 satisfies the same basic relations of A as
f1(a1) satisfies in B. By formulating the induction hypothesis appropriately,
we actually know that a1 satisfies the same “definable” relations in A as
f1(a1) satisfies in B. Here “definable” means definability in a restricted
sense, which however includes the relation . . . x Since we know that
a1 satisfies condition . . . a1 . . . in A, we can conclude that f1(a1) satisfies
condition . . . f1(a1) . . . in B. In particular, f1(a1) ∈ Y , as desired.

Now that we know (10), we may draw from (A,X) ∈ Q the conclusion
(B, Y) ∈ Q, which means, by definition, that the sentence Qx(. . . x . . .) is
true in B. Thus Qx(. . . x . . .) cannot, after all, define the property P .

Theorem 4 has been successfully used to show that various graph prop-
erties (e.g. planarity) are not expressible in terms of unary quantifiers [23].
Such results can be seen as formalizations of the vague intuition that some
properties of binary relations cannot be reduced to properties of cardinalities
of definable sets.

What is really remarkable about Theorem 4 is that it generalizes both
to non-unary quantifiers and to extensions of fixed point logic by generalized

14

quantifiers. Let us call a type τ = (t1, . . . , tk) r-ary if max{t1, . . . , tk} ≤ r. A
vocabulary (and a generalized quantifier) is called r-ary if its type is r-ary.
The word “binary” is generally used for 2-ary.

The game BGr
k(A,B), an r-ary version of BGk(A,B), is defined like

BGk(A,B) except that when Player I moves, he chooses an r-tuple (a1
i , . . . , a

r
i)

rather than a single element ai. So after k moves we have the correspondence

aj1 7→ f1(aj1), j = 1, . . . , r
...

ajk 7→ fk(a
j
k), j = 1, . . . , r

(11)

and Player II wins if this is a partial isomorphism. This game is immensely
more difficult to win for Player II than BGk(A,B) since already f1 has to
preserve all r-tuples. For graphs this means that Player II cannot even make
the first move without losing unless A and B are isomorphic.

Let Qr denote the family of all r-ary generalized quantifiers, and FO(Qr)
the corresponding extension of FO.

Theorem 5 ([14]) Theorem 4 holds for r-ary generalized quantifiers, that
is, if Q1 is replaced by Qr and BGk(A,B) by BGr

k(A,B).

By means of this criterion it is possible to show that the following “Ramsey-
quantifier” of type (r)

Ramrx(. . .x . . .) ⇐⇒ ∃X(X large ∧ ∀x ∈ [X]r(. . .x . . .)) (12)

is not definable in FO(Qr−1)[18]. Here “large” can be anything reasonable,
e.g. n/2 or log(n), where n is the size of the model. We have denoted an
r-tuple (x1, . . . , xr) by the bold face x. [X]r means the set of all r-tuples of
distinct elements of X. The Ramsey-quantifier is not known to be PTIME
in general. Indeed, in many natural instances it is NP-complete. But there
are other explicit r-ary quantifiers, even in FP, which are not definable in
FO(Qr−1). One example is the transitive closure quantifier on r-tuples (see
below) [10]. An interesting conclusion from this is:

Theorem 6 ([14]) Fixed point logic FP cannot be represented as the exten-
sion of FO by finitely many generalized quantifiers.

15

Namely, the arities of the finitely many quantifiers would have a common
upper bound r, so such a representation would contradict the existence of FP
queries, which are not definable in FO(Qr). This is a strong manifestation of
the inherent incapability of (finitely many) generalized quantifiers to express
recursion.

What about combining recursion and generalized quantifiers? We have
already remarked that any generalized quantifier can be added to fixed point
logic FP. Let FP(Qr) denote the extension of FP by all r-ary quantifiers.

We can replace the logic FO(Q1) by the logic FP(Qr) in Theorem 4, if we
simultaneously replace the game BGk(A,B) by a new game BPGr

k(A,B),
called the bijective pebble game, which we now define. This game is like
BGr

k(A,B) but it is potentially infinitely long (although it does not make
sense to play more than nk moves, where n is the size of A). Therefore it
is even harder for Player II than BGr

k(A,B). To counterbalance the length
there is a special mechanism to limit the size of the final correspondence
(cf. (11)). There are k pebbles. While in BGr

k(A,B) Player I chooses some
r-tuple, in the game BPGr

k(A,B) he puts pebbles on elements of an r-tuple.
What is the difference? Eventually he runs out of pebbles! Then he can take
back some pebbles that he has used already and reuse them. At some point
Player I decides that the game has lasted long enough. Now we look at the
correspondence generated by the elements that have a pebble on them in the
final position. So we form the mapping

aj1i1 7→ fi1(aj1i1)
...

ajkik 7→ fik(a
jk
ik

),

(13)

where aj1i1 , . . . , a
jk
ik

is the sequence of elements with a pebble on them at the
end. If this is a partial isomorphism, then Player II has won.

The challenge that BPGr
k(A,B) presents for Player II is that he should

find a strategy which works no matter how long the game has been going on
and no matter how long it will go on. For example, if A and B are as in
Picture 2, Player II wins BPG1

k(A,B) if and only if k = 1.

Theorem 7 ([14]) Theorem 4 holds for fixed point logic and r-ary general-
ized quantifier, that is, if FO(Q1) is replaced by FP(Qr) and BGk(A,B) by
BPGr

k(A,B).

16

With this criterion it is possible to prove that certain properties of r-ary
relations are not expressible in terms of (r − 1)-ary generalized quantifiers
even if taking least fixed points of formulas are allowed. The first result in this
direction, due to Cai, Fürer and Immerman [2], exhibited a LOGSPACE
property of graphs that is not expressible in FP(Q1). This demonstrates in
a powerful way the impossibility of solving question (4) by means of fixed
points and quantifiers which merely count sizes of definable sets. A further
result of Hella [14] showed that for every r there are LOGSPACE properties
of finite models that are not expressible in FP(Qr). Hence:

Theorem 8 ([14]) On unordered finite models, PTIME is not the extension
of fixed point logic by finitely many generalized quantifiers.

This shows that if we want to answer (4) affirmatively, we have to look
beyond fixed point logic and finite collections of generalized quantifiers.

The difference between the Hierarchy Theorem (Theorem 2) and the re-
sults of this section is that the counting method of the Hierarchy Theorem
simply gives the existence of a quantifier with certain properties, with no con-
cern to whether the quantifier has any intuitive meaning. The more elaborate
game-theoretic methods of this section make it possible to take a concrete
meaningful quantifier, like the Ramsey-quantifier, and prove that it cannot
be reduced to simpler quantifiers.

5 Quantifier schemata

We have pointed out that PTIME can be expressed in logical formalism as
fixed point logic, provided that we restrict ourselves to ordered models. We
have also pointed out that there is an extension of fixed point logic by a
single generalized quantifier, which captures PTIME on almost all unordered
finite models. Finally, we have concluded that in the framework of all un-
ordered finite models there is no extension of fixed point logic by finitely
many generalized quantifiers that would give all of PTIME.

Can we capture PTIME by adding an infinite number of generalized quan-
tifiers to fixed point logic? There is a trivial answer. We can take one new
quantifier for each PTIME query and add the resulting infinitely many quan-
tifiers to FO. Surely we get PTIME, but we have not gained anything. It

17

makes more sense to look at infinite collections of quantifiers arising from
some effective process, and then ask, can we get all of PTIME.

There are several ways in which a single generalized quantifier can give
rise to an infinite sequence of quantifiers. Recall the Ramsey-quantifier Ramr

defined in (12). We can think of it as arising from the much simpler quantifier

Qfx(. . . x . . .) ⇐⇒ ∃X (|X| ≥ f(n) ∧ ∀x ∈ X(. . . x . . .)) ,

where f : N → N and n is the size of the model. With this quantifier one
can say (by choosing f(n) = bn/2c+ 1) things like:

“Most vertices have a green neighbor.”

Let us denote Ramr by Ramr(Qf) if “X large” in (12) is defined as |X| ≥
f(n), where again n denotes the size of the model. Ramr(Qf) is called a
Ramsey lift of Qf . So with the sentence

Ram2(Qf)xyE(x, y)

we can say
“Most vertices are neighbors of each other.” (14)

For every choice of f , the quantifier Qf of type (1) gives rise to the infinite
sequence of quantifiers Ramr(Qf) of higher and higher type. It turns out
that for non-trivial f the quantifier Ramn(Qf) cannot be defined in terms of
quantifiers of smaller type even if fixed points are used. But we would not get
all of PTIME even if we added all possible Ramsey lifts of quantifiers of type
(1) [17]. Other lifts of the nature of the Ramsey lift have been considered,
especially in the study of natural language semantics, where they are used
to formalize expressions like

Most boys in my class and most girls in your class
have all dated each other.

However, the most interesting lift from the point of view of descriptive com-
plexity theory is the resumption or vectorization lift. In a few words, the
vectorization of a quantifier Q says about tuples what Q itself says about
elements. Thus the second vectorization of Qeven says “for an even number
of pairs (x, y) we have . . . x . . . y In general, let Q be a quantifier of type

18

τ = (t1, . . . , tk). Then its m’th vectorization Resm(Q) is a quantifier of type
(mt1, . . . ,mtk). So the arity of the quantifier increases by a factor of m. A
quantifier Q of type τ is a class of models of vocabulary L, where L consists
of a ti-ary relation symbol Ri(x1, . . . , xti) for each i = 1, . . . , k. To define
Resm(Q) we use the vector notation z to denote a sequence (z1, . . . , zm) of
m variables. Let the language L′ consist of an (mti)-ary relation symbol
R′i(x1, . . . , xmti) for each i = 1, . . . , k. Then Resm(Q) is the class of models
(A,R′1, . . . , R

′
k) of vocabulary L′ for which the L-structure (Am, R1, . . . , Rk)

is in Q, where

Ri = {((a1
1, . . . , a

1
t1

), . . . , (am1 , . . . , a
m
ti

)) ∈ (Am)ti :

R′i(a
1
1, . . . , a

1
t1
, . . . , am1 , . . . , a

m
ti

)}.

For example, suppose Q is the type (2,1) quantifier which consists of
structures (A,E, U), where U ⊆ A and (A,E) is a graph with a clique of the
size of the set U . So in a model with domain A the expression

Qxyz(. . . x . . . y . . .)(z)

says that (A, {(a, b) ∈ A2 : . . . a . . . b . . .}) is a graph with a clique with as
many elements as there are a ∈ A with a , while Resm(Q) is of type
(2m,m) and

Qxyz(. . .x . . .y . . .)(z)

says in the same model that (Am, {(a,b) ∈ (Am)2 : . . . a . . .b . . .}) is a graph
with a clique with as many elements as there are sequences a ∈ Am with

a .
Note that if Q is PTIME, then so is every Resm(Q), so the vectorization

lift is computationally simpler than the Ramsey lift. We denote by FO(Q<ω)
the extension of FO by all the vectorizations Resm(Q), m = 1, 2, . . ., of Q.

As an important concrete example, consider the Transitive Closure quan-
tifier of type (2, 1, 1):

TC = {(A,E,X, Y) : (A,E) is a graph, X ⊆ A, Y ⊆ A

and from every x ∈ X there is a path in the graph

to some y ∈ Y .}

Theorem 9 ([20]) NLOGSPACE= FO(TC<ω) on ordered models.

19

It is interesting to note that before this result it was not even known whether
NLOGSPACE is closed under complements. It is an open problem, whether
there is some natural logic L such that NLOGSPACE= FO(L) holds on
unordered models.

The Alternating Transitive Closure quantifier ATC consists of models
(A,E,X, Y), where (A,E) is a graph, X ⊆ A, Y ⊆ A, and every x0 ∈ X
has a neighbor x1 whose every neighbor x2 has a neighbor x3 whose every
neighbor x4 has a neighbor x5 ...etc... until we come to an element of Y .
Immerman [20] proved that PTIME= FO(ATC<ω) on ordered finite models.
This result has the following interesting version on all models, ordered or
unordered:

Theorem 10 ([5]) FP = FO(ATC<ω).

So although no finite sequence of generalized quantifiers can capture all of FP
on unordered models (Theorem 6), the infinite sequence ATC<ω is capable
of the job.

Generalized quantifiers are thus, after all, able to express recursive defi-
nitions, as soon as sufficient arities, i.e. sufficiently long tuples are available.
Still, it remains an open problem, whether PTIME = FO(Q<ω) for some Q
on unordered models. But Dawar has proved the following interesting result,
which shows that the approach of (vectorizations) of generalized quantifiers
is at least as good as any other:

Theorem 11 ([6]) If question (4) has a positive answer (in an exact sense),
then there is a generalized quantifier Q so that PTIME = FO(Q<ω) on all
finite models.

The methods available at the moment in the study of generalized quantifiers
can be effectively used to study definability questions concerning individual
quantifiers and families of quantifiers with a bound on arities. Unfortu-
nately the same methods become extremely hard when applied to quantifier
schemata.

References

[1] A.V. Aho and J.D. Ullman, Universality of data retrieval languages,
Sixth ACM Symposium on Principles of Programming Languages, 1979,
110–117.

20

[2] J. Cai, M. Fürer and N. Immerman, An Optimal Lower Bound on
the Number of Variables for Graph Identification, Combinatorica 12:4
(1992), 389-410.

[3] A. Chandra and D. Harel. Structure and complexity of relational queries.
Journal of Computer and System Sciences, 25:99–128, 1982.

[4] E.F. Codd, Relational completeness of database sublanguages, in:
Database Systems (R.Rustin, ed.), Prentice-Hall, 1972, 65–98.

[5] E. Dahlhaus, Skolem normal forms concerning the least fixpoint, in:
Computation theory and logic (E. Börger, ed.), 101–106, Lecture Notes
in Comput. Sci., 270, Springer, Berlin-New York, 1987.

[6] A. Dawar, Generalized quantifiers and logical reducibilities, Journal of
Logic and Computation, 5(1995), 213–226.

[7] A. Dawar and E. Grädel, Generalized quantifiers and 0-1 laws, Proc.
10th IEEE Symp. on Logic in Computer Science, 1995, 54–64.

[8] R. Fagin, The number of finite relational structures, Discrete Mathe-
matics 19(1977), 17–21.

[9] R. Fagin, Generalized first-order spectra and polynomial-time recogniz-
able sets, in: Complexity of Computation (R. Karp, ed.) SIAM-AMS
Proc. 7, 1974, 27–41.

[10] M. Grohe and L. Hella, A double arity hierarchy theorem for transitive
closure logic, Archive for Mathematical Logic, 35(3): 157-172, 1996.

[11] Y. Gurevich. Toward logic tailored for computational complexity. In
M. M. Richter et al., editor, Computation and Proof Theory, Lecture
Notes in Mathematics 1104, pages 175–216. Springer-Verlag, 1984.

[12] Y. Gurevich. Logic and the challenge of computer science. In E. Börger,
editor, Current trends in theoretical computer science, pages 1–57. Com-
puter Science Press, 1988.

[13] Y. Gurevich, Zero-one laws, This column in the EATCS Bulletin 46
(1992), 90-106.

21

[14] L. Hella, Logical hierarchies in PTIME, Information and Computation
129: 1-19, 1996.

[15] L. Hella and G. Sandu, Partially ordered connectives and finite graphs,
in: Quantifiers: Logics, models and computation (M. Krynicki, M.
Mostowski and L. Szczerba, eds.), vol II, Kluwer Academic Publishers
1995, 79–88.

[16] L. Hella, Ph. Kolaitis and K. Luosto, Almost everywhere equivalence
of logics in finite model theory, Bulletin of Symbolic Logic 2(4), 1996,
422-443.

[17] L. Hella, K. Luosto and J. Väänänen, The hierarchy theorem for gener-
alized quantifiers. J. Symbolic Logic 61 (1996), no. 3, 802–817.

[18] L. Hella, J. Väänänen and D. Westerst̊ahl, Definability of polyadic lifts
of generalized quantifiers, to appear in the Journal of Logic, Language
and Information.

[19] N. Immerman, Relational queries computable in polynomial time, In-
formation and Control 68 (1986), 86–104.

[20] N. Immerman, Languages that capture complexity classes, SIAM J.
Comput. 16, No. 4 (1987), 760-778.

[21] P. Lindström, First order predicate logic with generalized quantifiers,
Theoria 32 (1966), 186–195.

[22] A. Mostowski, On a generalization of quantifiers. Fundamenta Mathe-
maticae 44 (1957) 12–36.

[23] J. Nurmonen, On winning strategies with unary quantifiers, Journal of
Logic and Computation, 6(6): 779-798, 1996.

[24] M. Vardi, Complexity of relational query languages, 14th ACM STOC
Symposium (1982), 137–146.

22

