Introduction to Metalogic

1 The semantics of sentential logic.

The language \mathcal{L} of sentential logic.

Symbols of \mathcal{L} :
(i) sentence letters $p_{0}, p_{1}, p_{2}, \ldots$
(ii) connectives \neg, \vee
(iii) parentheses (,)

Remarks:

(a) We shall pay little or no attention to the use-mention distinction. For instance, we are more likely to write " p_{1} is a sentence letter" than " p_{1} ' is a sentence letter."
(b) There are several standard variants of our list of connectives. Trivial variants can be gotten by using literally different symbols to play the roles ours play. For example, it is common to use \sim in place of our \neg. Other variants can be gotten by using additional symbols that play different roles from those ours play, e.g., connectives \wedge, \rightarrow, and \leftrightarrow. We do not do this, in order to keep definitions and proofs as short and simple as possible. We will, however, introduce the symbols mentioned above as abbreviations. Instead of adding connectives to our list, one could replace our connectives with others. For example, one could drop \vee and replace it by \wedge We shall occasionally make remarks on how such changes would affect our definitions of semantic and deductive concepts.

Formulas of \mathcal{L} :
(i) Each sentence letter is a formula.
(ii) If A is a formula, then so is $\neg A$.
(iii) If A and B are formulas, then so is $(A \vee B)$.
(iv) Nothing is a formula unless its being one follows from (i)-(iii).

Let us officially regard formulas as sequences of symbols. Thus the formula ($p_{1} \vee \neg p_{2}$) is officially a sequence of length 6 . This official stance will make little practical difference.

We often want to prove that all formulas have some property P. A method for proving this is formula induction. To prove by formula induction that every formula has property P, we must prove (i), (ii), and (iii) below.
(i) Each sentence letter has property P.
(ii) If A is a formula that has property P, then $\neg A$ has P.
(iii) If A and B are formulas that have property P, then $(A \vee B)$ has P.

If we prove (i)-(iii) for P, then clause (iv) in the definition of formulas guarantees that all formulas have property P.

The proof of the following lemma is an example of proof by formula induction.

Lemma 1.1. Every formula contains the same number of (occurrences of) left parentheses as (occurrences of) right parentheses.

Proof. Let P be the property of being a formula with the same number of left as right parentheses.
(i) Sentence letters have no parentheses, so clearly they have property P.
(ii) Assume that A is a formula and that A has P. Since $\neg A$ has the same occurrences of left and right parentheses as does $A, \neg A$ has P.
(iii) Assume that A and B are formulas having property P. The number of left parentheses in $(A \vee B)$ is $m+n+1$, where m is the number of left parentheses in A and n is the number of left parentheses in B, and the number of right parentheses in $(A \vee B)$ is $m^{\prime}+n^{\prime}+1$, where m^{\prime} is the number of right parentheses in A and n^{\prime} is the number of right parentheses in B. By assumption, $m=m^{\prime}$ and $n=n^{\prime}$; so $m+n+1=m^{\prime}+n^{\prime}+1$. Thus $(A \vee B)$ has P.

The lemma follows by formula induction.
Lemma 1.2. For every formula A, exactly one of the following holds.
(1) A is a sentence letter.
(2) There is a formula B such that A is $\neg B$.
(3) There are formulas B and C such that A is $(B \vee C)$.

Proof. Evidently at most one of (1)-(3) can hold for any formula, so we need only show that for each formula at least one of (1)-(3) holds. Since all the formulas given by instances of clauses (i)-(iii) in the definition of formula are of these forms, the desired conclusion follows by clause (iv).

Lemma 1.3. For every formula A,
(a) every initial segment of A has the at least as many left as right parentheses;
(b) if A is a disjunction (i.e., is $(B \vee C)$ for some formulas B and C), then every proper initial segment of A (i.e., every initial segment of A that is not the whole of A) that has length greater than 0 has more left than right parentheses.

Proof. Let P be the property of being a formula for which (a) and (b) hold. We use formula induction to prove that all formulas have P. In each of steps (i) and (ii), the proof that (a) holds is similar to the corresponding step of the proof of Lemma 1.1. For steps (i) and (ii), (b) holds vacuously. We need then only prove that (b) holds for $(A \vee B)$ on the assumption that A and B have property P. Let C be a proper initial segment of $(A \vee B)$ of length greater than $0 . C$ contains the initial (and does not contain the final (. The desired conclusion follows from the assumption that (a) holds for A and B.

Lemma 1.4. No proper initial segment of a formula is a formula.
Proof. We use formula induction, with P the property of being a formula no proper initial segment of which is a formula.

Note that (i) is trivial. Note also that (iii) follows from Lemmas 1.3 and 1.1. This is because part (b) of Lemma 1.3 says that non-zero length proper initial segments of disjunctions have more left than right parentheses, while Lemma 1.1 says that formulas have the same number of left as right parentheses.

For (ii), assume that A has P. Let D be a proper initial segment of $\neg A$. Since the empty sequence is not a formula, we may assume that D has length >0. Thus D is $\neg A^{\prime}$, where A^{\prime} is a proper initial segment of A. Since A has P, A^{\prime} is not a formula. It follows from this fact and Lemma 1.2 that $\neg A^{\prime}$ is not a formula.

Theorem 1.5 (Unique Readability). Let A be a formula. Then exactly one of the following holds.
(1) A is sentence letter.
(2) There is a unique formula B such that A is $\neg B$.
(3) There are unique formulas B and C such that A is $(B \vee C)$.

Proof. If A does not begin with a left parenthesis, then Lemma 1.2 implies that exactly one of (1) or (2) holds.

Assume that A begins with a left parenthesis. Then there must be formulas B and C such that A is $(B \vee C)$. Assume that there are formulas B^{\prime} and C^{\prime} such that B^{\prime} is different from B and A is $\left(B^{\prime} \vee C^{\prime}\right)$. Then one of B and B^{\prime} must be a proper initial segment of the other, contradicting Lemma 1.4.

Exercise 1.1. Prove by formula induction that, for every formula A, the number of occurrences of sentence letters in A is one more than the number of occurrences of \vee in A.

Truth and logical implication.

We now know that our language has an unambiguous grammar. Our next task is to introduce for it semantic notions such as meaning and truth. The natural way to proceed is from the bottom up: first to give meanings to the sentence letters; then to give meanings to the connectives and to use this to give meanings - and truth conditions-to the formulas of \mathcal{L}.

Let us first consider the sentence letters. As the name suggests, they are to be treated as whole (declarative) sentences. To give them a meaning, we should specify what statement or proposition each of them expresses. (Sentential logic is sometimes called propositional logic and sentence letters are sometimes called proposition letters.) One way to do this would be to assign to each sentence letter a declarative sentence of English whose translation it would be. The sentence letter would then have the same meaning, express the same proposition, as the English sentence.

If we did what was just suggested, then each sentence letter would be given a meaning once and for all. Once we specified the meanings of the connectives, then \mathcal{L} would be a language in the usual sense, albeit an artificial and a very simplified one. But we do not want to use \mathcal{L} in this way, to express particular propositions. Instead we want to use it to study logical relations between propositions, to study relations between propositions that depend only on the logical forms of the propositions. Therefore we shall not specify a fixed way of assigning a proposition to each sentence letter, but we
shall try to consider all ways in which this might be done, all ways in which the language could be turned into a language in the usual sense.

We want to define the general notion of what we might call an interpretation of \mathcal{L} or a model for \mathcal{L}, but what we shall actually call a valuation for \mathcal{L}. We could define a valuation to be an assignment of a declarative English sentence to each sentence letter. This seems, however, too restrictive a notion, since there are surely many propositions that are not expressed by any English sentence. We could instead define a valuation as an assignment of a proposition to each sentence letter. But we shall have no reason to be concerned with the content of the propositions assigned to the sentence letters. We shall only need to deal with their truth-values, with whether or not they are true or false. Because we shall be doing truth-functional logic, the truth conditions for complex formulas will depend only on the truth-values of the sentence letters that occur in them, and not on what propositions the sentence letters express.

We define then a valuation v for \mathcal{L} to be a function that assigns to each sentence letter of \mathcal{L} a truth-value \mathbf{T} or \mathbf{F}.

Let v be a valuation for \mathcal{L}. The valuation v directly gives us a truthvalue to each sentence letter. We next describe how it indirectly gives a truth-value to each formula of \mathcal{L}. To do this we define a function v^{*} that assigns a truth-value to each formula of \mathcal{L}, so that
(a) if A is a sentence letter, then $v^{*}(A)=v(A)$;
(b) $v^{*}(\neg A)= \begin{cases}\mathbf{F} & \text { if } v^{*}(A)=\mathbf{T} ; \\ \mathbf{T} & \text { if } v^{*}(A)=\mathbf{F} ; ~\end{cases}$
(c) $v^{*}((A \vee B))= \begin{cases}\mathbf{T} & \text { if } v^{*}(A)=\mathbf{T} \text { and } v^{*}(B)=\mathbf{T} ; \\ \mathbf{T} & \text { if } v^{*}(A)=\mathbf{T} \text { and } v^{*}(B)=\mathbf{F} ; \\ \mathbf{T} & \text { if } v^{*}(A)=\mathbf{F} \text { and } v^{*}(B)=\mathbf{T} ; \\ \mathbf{F} & \text { if } v^{*}(A)=\mathbf{F} \text { and } v^{*}(B)=\mathbf{F} .\end{cases}$

We define a formula A to be true under the valuation v if $v^{*}(A)=\mathbf{T}$ and to be false under v if $v^{*}(A)=\mathbf{F}$.

Have we actually defined the function v^{*} ? We have, for each of the three kinds of formulas, told by an equation what v^{*} assigns to formulas of that kind. But " v^{*} " appears on the right side as well as on the left side of these equations, so this is not an ordinary definition. It is what is called a recursive or inductive definition.

An example will make it intuitively clear that clauses (a)-(c) determine what truth-value v^{*} assigns to any given formula. Consider

$$
\left(\neg p_{3} \vee \neg\left(p_{1} \vee p_{3}\right)\right)
$$

$$
\begin{array}{rlrl}
\text { Assume that } v\left(p_{1}\right)=\mathbf{T} \text { and } v\left(p_{3}\right) & =\mathbf{F} \text {. Then } & \\
v^{*}\left(p_{1}\right) & =\mathbf{T} & & \text { (by (a)); } \\
v^{*}\left(p_{3}\right) & =\mathbf{F} & & \text { (by (a)); } \\
v^{*}\left(\neg p_{3}\right) & =\mathbf{T} & & \text { (by (b)); } \\
v^{*}\left(\left(p_{1} \vee p_{3}\right)\right) & =\mathbf{T} & & \text { (by (c))); } \\
v^{*}\left(\neg\left(p_{1} \vee p_{3}\right)\right) & =\mathbf{F} & & \text { (by (b)); } \\
v^{*}\left(\left(\neg p_{3} \vee \neg\left(p_{1} \vee p_{3}\right)\right)\right) & =\mathbf{T} & & \text { (by (c)). }
\end{array}
$$

Thus $\left(\neg p_{3} \vee \neg\left(p_{1} \vee p_{3}\right)\right)$ is true under v.
The definition of v^{*} is an example of definition by recursion on formulas. This is a method for defining a function h whose domain is the set of all formulas. To define h by this method, one must
(a) define $h(A)$ from A for sentence letters A;
(b) define $h(\neg A)$ from A and $h(A)$ for formulas A;
(c) define $h((A \vee B))$ from $A, B, h(A)$, and $h(B)$ for formulas A and B.

Here we are being a little imprecise in order to be comprehensible. Remaining at the same level of imprecision, let us sketch how to use formula induction to prove that doing (a)-(c) determines a unique function h whose domain is the set of all formulas. Suppose (a)-(c) have been done. Let P be the property of being a formula A for which a unique value $h(A)$ is determined by the definitions of (a)-(c). For (i) and (ii), use the definitions of (a) and (b) and the trivial parts of Unique Readability. For (iii), assume that A and B are formulas that have P. The definition of (c) determines a value of $h((A \vee B))$ from the values of $h(A)$ and $h(B)$ given by the fact that A and B have P. The uniqueness of this value follows from the uniqueness of $h(A)$ and $h(B)$ together with Unique Readability.

It will be convenient to make to introduce some abbreviations:

$$
\begin{array}{lll}
(A \wedge B) & \text { for } & \neg(\neg A \vee \neg B) ; \\
(A \rightarrow B) & \text { for } & (\neg A \vee B) ; \\
(A \leftrightarrow B) & \text { for } & ((A \rightarrow B) \wedge(B \rightarrow A)) .
\end{array}
$$

Bear in mind that \wedge, \rightarrow, and \leftrightarrow are not actually symbols of \mathcal{L}. Given a formula abbreviated by the use of these symbols, one may eliminate the symbols via the contextual definitions just given, thus getting a genuine formula.

Let us also consider \supset as an "abbreviation" for \rightarrow and \sim as an "abbreviation" for \neg (since some students may be more used to these symbols than to the official ones).

It is not hard to see that the defined symbols \wedge, \rightarrow, and \leftrightarrow obey the following rules:
(d) $v^{*}((A \wedge B))= \begin{cases}\mathbf{T} & \text { if } v^{*}(A)=\mathbf{T} \text { and } v^{*}(B)=\mathbf{T} ; \\ \mathbf{F} & \text { if } v^{*}(A)=\mathbf{T} \text { and } v^{*}(B)=\mathbf{F} ; \\ \mathbf{F} & \text { if } v^{*}(A)=\mathbf{F} \text { and } v^{*}(B)=\mathbf{T} ; \\ \mathbf{F} & \text { if } v^{*}(A)=\mathbf{F} \text { and } v^{*}(B)=\mathbf{F} ;\end{cases}$
(e) $v^{*}((A \rightarrow B))= \begin{cases}\mathbf{T} & \text { if } v^{*}(A)=\mathbf{T} \text { and } v^{*}(B)=\mathbf{T} ; \\ \mathbf{F} & \text { if } v^{*}(A)=\mathbf{T} \text { and } v^{*}(B)=\mathbf{F} ; \\ \mathbf{T} & \text { if } v^{*}(A)=\mathbf{F} \text { and } v^{*}(B)=\mathbf{T} ; \\ \mathbf{T} & \text { if } v^{*}(A)=\mathbf{F} \text { and } v^{*}(B)=\mathbf{F} ;\end{cases}$
(f) $v^{*}((A \leftrightarrow B))= \begin{cases}\mathbf{T} & \text { if } v^{*}(A)=\mathbf{T} \text { and } v^{*}(B)=\mathbf{T} ; \\ \mathbf{F} & \text { if } v^{*}(A)=\mathbf{T} \text { and } v^{*}(B)=\mathbf{F} ; \\ \mathbf{F} & \text { if } v^{*}(A)=\mathbf{F} \text { and } v^{*}(B)=\mathbf{T} ; \\ \mathbf{T} & \text { if } v^{*}(A)=\mathbf{F} \text { and } v^{*}(B)=\mathbf{F} .\end{cases}$

Exercise 1.2. Let v be the valuation for \mathcal{L} defined as follows.

$$
v\left(p_{i}\right)= \begin{cases}\mathbf{T} & \text { if } i \text { is even } \\ \mathbf{F} & \text { if } i \text { is odd }\end{cases}
$$

Using the tables above, determine which of the following two formulas are true under v.
(1) $\quad\left(p_{1} \leftrightarrow\left(\neg p_{1} \vee p_{1}\right)\right)$;
(2) $\left(\left(p_{0} \rightarrow p_{3}\right) \rightarrow\left(\neg p_{5} \rightarrow \neg p_{4}\right)\right)$.

Exercise 1.3. Prove that the formula $\left(\neg \neg p_{0} \leftrightarrow p_{0}\right)$ is true under v for every valuation v for \mathcal{L}.

Exercise 1.4. Use definition by recursion on formulas to define a function h such that, for every formula $A, h(A)$ is the first sentence letter occurring in A.

Let Γ be a set of formulas of \mathcal{L} and let A be a formula of \mathcal{L}. Consider the argument $\Gamma \therefore A$ with (set of) premises Γ and conclusion A. We say that this argument is valid if the formula A is true under every valuation v for \mathcal{L} such that all the formulas in Γ are true under v. To express this more briefly, let us say that a set of formulas is true under a valuation v if all the formulas belonging to the set are true under v. Then $\Gamma \therefore A$ is a
valid argument if and only if A is true under every valuation under which Γ is true.

There is a different way to talk about valid arguments, and we shall usually talk in this second way. If Γ is a set of formulas and A is a formula, then say that Γ logically implies A if $\Gamma \therefore A$ is a valid argument. We write $\Gamma \models A$ to mean that Γ logically implies A.

A special case of valid arguments and logical implication occurs when Γ is the empty set \emptyset. We usually write $\vDash A$ instead of $\emptyset \vDash A$. When $\vDash A$ we say that A is valid or that A is a tautology. A formula is a tautology if and only if it is true under every valuation for \mathcal{L}.

A formula is satisfiable if it is true under some valuation. Similarly a set of formulas is satisfiable if it is true under some valuation, i.e., if there is a valuation under which all the formulas in the set are true.

Exercise 1.5. Which of the following are tautologies? Prove your answers.
(1) $\left(\left(p_{0} \rightarrow\left(p_{1} \rightarrow p_{2}\right)\right) \rightarrow\left(p_{1} \rightarrow p_{2}\right)\right)$.
(2) $\left(\left(p_{0} \rightarrow p_{1}\right) \vee\left(p_{1} \rightarrow p_{2}\right)\right)$.

Exercise 1.6. Which of the following are statements are true? Prove your answers.
(1) $\left\{\left(p_{0} \rightarrow \neg p_{1}\right),\left(\left(p_{2} \vee p_{0}\right) \rightarrow\left(p_{1} \vee p_{2}\right)\right), \neg p_{2}\right\} \models \neg p_{0}$.
(2) $\left\{\left(\left(\neg p_{3} \vee p_{0}\right) \vee p_{1}\right),\left(\neg p_{1} \rightarrow \neg p_{2}\right),\left(p_{0} \rightarrow\left(p_{2} \wedge p_{3}\right)\right)\right\} \vDash p_{1}$.

If A and B are formulas, then by $A \models B$ we mean that $\{A\} \models B$.
Exercise 1.7. Let Γ and Δ be sets of formulas and let A, B, and A_{1}, \ldots, A_{n} be formulas. Prove each of the following.
(1) $\Gamma \cup\{A\} \models B$ if and only if $\Gamma \models(A \rightarrow B)$.
(2) $\left\{A_{1}, \ldots, A_{n}\right\} \models B$ if and only if $\models\left(A_{1} \rightarrow \cdots \rightarrow A_{n} \rightarrow B\right)$.
(3) A is satisfiable if and only if $A \not \vDash\left(p_{0} \wedge \neg p_{0}\right)$.
(4) If $\Gamma \models C$ for every C belonging to Δ and if $\Delta \models B$, then $\Gamma \models B$.

When we omit parentheses in a formula, as we did in (2), we make use of a convention that omitted parentheses group to the right. Thus $\left(A_{1} \rightarrow \cdots \rightarrow\right.$ $\left.A_{n} \rightarrow B\right)$ abbreviates $\left(A_{1} \rightarrow\left(\cdots \rightarrow\left(A_{n} \rightarrow B\right) \cdots\right)\right.$.

Mathematical induction: To prove that all natural numbers have some property P, one may use mathematical induction. To do this one must prove (i) and (ii) below.
(i) 0 has P.
(ii) If n is a natural number that has P, then $n+1$ has P.

One can define functions by definition by recursion on natural numbers as well as by recursion on formulas. Recursion on natural numbers is a method for defining a function h whose domain is the set \mathbf{N} of all natural numbers. To define h by this method, one must
(a) define $h(0)$;
(b) define $h(n+1)$ from n and $h(n)$ for natural numbers n.

Example. The clauses
(i) $h(0)=0$;
(ii) $h(n+1)=h(n)+1+1$;
give a definition by recursion of the doubling function (in terms of the successor function +1).
Exercise 1.8. The factorial function is the function h with domain \mathbf{N} such that $h(0)=1$ and, for every $n>0, h(n)$ is the product of all the positive integers $\leq n$. Show how to define the factorial function by recursion on natural numbers.

We now embark on the proof of the Compactness Theorem, one of the main theorems about our semantics for \mathcal{L}. Say that a set Γ of formulas is finitely satisfiable if every finite subset of Γ is satisfiable. The Compactness Theorem will assert that every finitely satisfiable set of formulas is satisfiable.

Lemma 1.6. Let Γ be a finitely satisfiable set of formulas and let A be a formula. Then either $\Gamma \cup\{A\}$ is finitely satisfiable or $\Gamma \cup\{\neg A\}$ is finitely satisfiable.

Proof. Assume for a contradiction neither $\Gamma \cup\{A\}$ nor $\Gamma \cup\{\neg A\}$ is finitely satisfiable. It follows that there are finite subsets Δ and Δ^{\prime} of Γ such that neither $\Delta \cup\{A\}$ nor $\Delta^{\prime} \cup\{\neg A\}$ is satisfiable. Since Γ is finitely satisfiable, the finite subset $\Delta \cup \Delta^{\prime}$ of Γ is satisfiable. Let v be a valuation under which $\Delta \cup \Delta^{\prime}$ is true. If A is true under v, then $\Delta \cup\{A\}$ is true under v and so is satisfiable. Otherwise $\Delta^{\prime} \cup\{\neg A\}$ is true under v and is satisfiable. In either case we have a contradiction.

Lemma 1.7. Let Γ be a finitely satisfiable set of formulas. There is a set Γ^{*} of formulas such that
(1) $\Gamma \subseteq \Gamma^{*}$;
(2) Γ^{*} is finitely satifiable;
(3) for every formula A, either A belongs to Γ^{*} or $\neg A$ belongs to Γ^{*}.

Proof. We can list all the formulas in an infinite list as follows. Think of the symbols of \mathcal{L} as forming an infinite "alphabet" with the alphabetical order

$$
\neg, \vee,(,), p_{0}, p_{1}, p_{2}, \ldots
$$

First list in alphabetical order all the (finitely many) formulas that have length 1 and contain no occurrences of sentence letters other than p_{0}. Next list in alphabetical order all the remaining formulas that have length ≤ 2 and contain no occurrences of sentence letters other than p_{0} and p_{1}. Next list in alphabetical order all the remaining formulas that have length ≤ 3 and contain no occurrences of sentence letters other than p_{0}, p_{1}, and p_{2}. Continue in this way. (If we gave the details, what we would be doing in describing this list would be to define a function by recursion on natural numbers - the function that assigns to n the formula called A_{n} in following paragraph.)

Let the formulas of \mathcal{L}, in the order listed, be

$$
A_{0}, A_{1}, A_{2}, A_{3}, \ldots
$$

We define, by recursion on natural numbers, a function that associates with each natural number n a set Γ_{n} of formulas.

Let $\Gamma_{0}=\Gamma$.
Let

$$
\Gamma_{n+1}= \begin{cases}\Gamma_{n} \cup\left\{A_{n}\right\} & \text { if } \Gamma_{n} \cup\left\{A_{n}\right\} \text { is finitely satisfiable; } \\ \Gamma_{n} \cup\left\{\neg A_{n}\right\} & \text { otherwise }\end{cases}
$$

Let $\Gamma^{*}=\bigcup_{n} \Gamma_{n}$.
Because $\Gamma=\Gamma_{0} \subseteq \Gamma^{*}$, Γ^{*} has property (1).
Γ_{0} is finitely satisfiable. By Lemma 1.6 , if Γ_{n} is finitely satisfiable then so is Γ_{n+1}. By mathematical induction, every Γ_{n} is finitely satisfiable. If Δ is a finite subset of Γ^{*}, then $\Delta \subseteq \Gamma_{n}$ for some n. Since Γ_{n} is finitely satisfiable, Δ is satisfiable. Thus Γ^{*} has property (2).

Because either A_{n} or $\neg A_{n}$ belongs to Γ_{n+1} for each n and because each $\Gamma_{n+1} \subseteq \Gamma^{*}, \Gamma^{*}$ has property (3).

It will be convenient to introduce the symbol " \in " as an abbreviation for "belongs to."

Lemma 1.8. Let Γ^{*} be a set of formulas having properties (2) and (3) described in the statement of Lemma 1.7. Then Γ^{*} is satisfiable.

Proof. Define a valuation v for \mathcal{L} by setting

$$
v(A)=\mathbf{T} \text { if and only if } A \in \Gamma^{*}
$$

for each sentence letter A. Let P be the property of being a formula A such that

$$
v^{*}(A)=\mathbf{T} \text { if and only if } A \in \Gamma^{*}
$$

We prove by formula induction that every formula has property P.
(i) For sentence letters, this is true by definition of v.
(ii) First we show that $\neg A \in \Gamma^{*}$ if and only if $A \notin \Gamma^{*}$ for any formula A. By (3) we have that $A \in \Gamma^{*}$ or $\neg A \in \Gamma^{*}$. Suppose that both A and $\neg A$ belong to Γ^{*}. Then $\{A, \neg A\}$ is a finite subset of Γ^{*}. By (2) we get the contradiction that $\{A, \neg A\}$ is satisfiable.

Now let A be a formula that has property P. Then

$$
\begin{array}{ll}
v^{*}(\neg A)=\mathbf{T} & \text { if and only if } v^{*}(A)=\mathbf{F} \\
& \text { if and only if } A \notin \Gamma^{*} \\
& \text { if and only if } \neg A \in \Gamma^{*}
\end{array}
$$

(iii) We first show that $(A \vee B) \in \Gamma^{*}$ if and only if either $A \in \Gamma^{*}$ or $B \in \Gamma^{*}$, for any formulas A and B. Assume first that $(A \vee B) \in \Gamma^{*}$ but that $A \notin \Gamma^{*}$ and $B \notin \Gamma^{*}$. By (3), $\neg A \in \Gamma^{*}$ and $\neg B \in \Gamma^{*}$. Thus $\{(A \vee B), \neg A, \neg B\}$ is a finite subset of Γ^{*}. By (2) we get the contradiction that $\{(A \vee B), \neg A, \neg B\}$ is satisfiable. Next assume that $A \in \Gamma^{*}$ but $(A \vee B) \notin$ Γ^{*}. By $(3) \neg(A \vee B) \in \Gamma^{*}$, and so $\{A, \neg(A \vee B)\}$ is a finite subset of Γ^{*}. By (2) we get the contradiction that $\{A, \neg(A \vee B)\}$ is satisfiable. A similar argument shows that if $B \in \Gamma^{*}$ then $(A \vee B) \in \Gamma^{*}$.

Now let A and B be formulas that have property P. Then

$$
\begin{array}{ll}
v^{*}((A \vee B))=\mathbf{T} & \text { if and only if } v^{*}(A)=\mathbf{T} \text { or } v^{*}(B)=\mathbf{T} \\
& \text { if and only if } A \in \Gamma^{*} \text { or } B \in \Gamma^{*} \\
& \text { if and only if }(A \vee B) \in \Gamma^{*} .
\end{array}
$$

Since, in particular, $v^{*}(A)=\mathbf{T}$ for every member of A of Γ^{*}, we have shown that Γ^{*} is satisfiable.

Exercise 1.9. Suppose that we added \wedge as an official symbol of \mathcal{L}, extending the definition of truth using the table for \wedge on page 7 . Then proof by formula induction would have an extra step: showing that $(A \wedge B)$ has property P if both A and B have P. Supply this $(A \wedge B)$ case for the proof by formula induction just given.

Theorem 1.9 (Compactness). Let Γ be a finitely satisfiable set of formulas. Then Γ is satisfiable.

Proof. By Lemma 1.7, let Γ^{*} have properties (1)-(3) of that lemma. By Lemma 1.8, Γ^{*} is satisfiable. Hence Γ is satisfiable.

Corollary 1.10 (Compactness, Second Form). Let Γ be a set of formulas and let A be a formula such that $\Gamma \models A$. Then there is a finite subset Δ of Γ such that $\Delta \models A$.

Exercise 1.10. Prove Corollary 1.10.

2 Deduction in Sentential Logic

Though we have not yet introduced any formal notion of deductions (i.e., of derivations or proofs), we can easily give a formal method for showing that formulas are tautologies: Construct the truth table of a given formula; i.e., compute the truth-value of the formulas for all possible assignments of truthvalues to the sentence letters occurring in it. If all these truth values are \mathbf{T}, then the formula is a tautology. This method extends to give a formal method for showing that $\Gamma \vDash A$, provided that Γ is finite. The method even extends to the case Γ is infinite, since the second form of Compactness guarantees that if $\Gamma \models A$ then $\Delta \models A$ for some finite $\Delta \subseteq \Gamma$.

Nevertheless we are now going to introduce a different system of formal deduction. This is because we want to gain experience with the metatheory of a more standard deductive system.

The system SL.

Axioms: From now on we shall often adopt the convention of omitting outmost parentheses in formulas. For any formulas A, B, and C, each of the following is an axiom of our deductive sytem.
(1) $A \rightarrow(A \vee B)$
(2) $B \rightarrow(A \vee B)$
(3) $(A \vee B) \rightarrow(\neg A \rightarrow B)$
(4) $(\neg A \rightarrow B) \rightarrow((\neg A \rightarrow \neg B) \rightarrow A)$
(5) $(A \rightarrow(B \rightarrow C)) \rightarrow((A \rightarrow B) \rightarrow(A \rightarrow C))$

Remarks:

(a) Note that (1)-(5) are not axioms but axiom schemas. There are infinitely many instances of each of these schemas, since A, B, and C may be any formulas whatsoever.
(b) Note also that we have used abbreviations in presenting these axiom schemas. For example, the (except for outer parentheses) unabbreviated Axiom Schema (1) is $\neg A \vee(A \vee B)$.

Rule of Inference:

$$
\text { Modus Ponens (MP) } \quad \frac{A,(A \rightarrow B)}{B}
$$

For any formulas A and B, we say that B follows by modus ponens from A and $(A \rightarrow B)$.

Deductions: A deduction in SL from a set Γ of formulas is a finite sequence \mathbf{D} of formulas such that whenever a formula A occurs in the sequence \mathbf{D} then at least one of the following holds.
(1) $A \in \Gamma$.
(2) A is an axiom.
(3) A follows by modus ponens from two formulas occurring earlier in the sequence \mathbf{D}.

If A is the nth element of the sequence \mathbf{D}, then we say that A is on line n of \mathbf{D} or even that A is line n of \mathbf{D}.

A deduction in $\mathbf{S L}$ of A from Γ is a deduction \mathbf{D} in $\mathbf{S L}$ from Γ with A on the last line of \mathbf{D}. We write $\Gamma \vdash_{\mathbf{S L}} A$ and say A is deducible in $\mathbf{S L}$ from Γ to mean that there is a deduction in $\mathbf{S L}$ of A from Γ. Sometimes we may express this by saying Γ proves A in $\mathbf{S L}$. We write $\vdash_{\text {SL }} A$ for $\emptyset \vdash_{\text {SL }} A$. We shall mostly omit the subscript "SL" and the phrase "in SL" during our study of sentential logic, since $\mathbf{S L}$ will be the only system we consider until we get to predicate logic.

Example 1. Let A and B be any formulas. Here is a very short deduction of $A \rightarrow(B \rightarrow A)$ from \emptyset. This deduction shows that $\vdash A \rightarrow(B \rightarrow A)$.

$$
\text { 1. } \begin{aligned}
& A \rightarrow(B \rightarrow A) \quad \text { Ax. } 2 \\
& {[A \rightarrow(\neg B \vee A)]}
\end{aligned}
$$

In square brackets we have rewritten line 1 in a less abbreviated way, in order to show that it is an instance of Axiom Schema 2. The formula A is the B of the schema, and the formula $\neg B$ is the A of the schema.

Example 2. Below we give a deduction of $A \rightarrow A$ from \emptyset. This deduction shows that $\vdash A \rightarrow A$.

1. $(A \rightarrow((A \rightarrow A) \rightarrow A)) \rightarrow((A \rightarrow(A \rightarrow A)) \rightarrow(A \rightarrow A)) \quad$ Ax. 5
2. $A \rightarrow((A \rightarrow A) \rightarrow A) \quad$ Ax. 2
3. $(A \rightarrow(A \rightarrow A)) \rightarrow(A \rightarrow A) \quad 1,2 ; \mathrm{MP}$
4. $A \rightarrow(A \rightarrow A)$

Ax. 2
5. $A \rightarrow A$

3,4; MP

Theorem 2.1 (Deduction Theorem). Let Γ be a set of formulas and let A and B be formulas. If $\Gamma \cup\{A\} \vdash B$ then $\Gamma \vdash(A \rightarrow B)$.

Proof. Assume that $\Gamma \cup\{A\} \vdash B$. Let \mathbf{D} be a deduction of B from $\Gamma \cup\{A\}$. We prove that

$$
\Gamma \vdash(A \rightarrow C)
$$

for every line C of \mathbf{D}. Assume that this is false. Consider the first line C of \mathbf{D} such that $\Gamma \nvdash(A \rightarrow C)$.

Assume that C either belongs to Γ or is an axiom. The following gives a deduction of $(A \rightarrow C)$ from Γ.

$$
\begin{array}{lll}
\text { 1. } & C & \\
\text { 2. } & C \rightarrow(A \rightarrow C) & \text { Ax. } 2 \\
\text { 3. } & A \rightarrow C & 1,2 ; \mathrm{MP}
\end{array}
$$

Assume next that C is A. We have already shown that $\vdash(A \rightarrow A)$. Thus $\Gamma \vdash(A \rightarrow A)$.

Finally assume that C follows from formulas E and $(E \rightarrow C)$ by MP. These formulas are on earlier lines of \mathbf{D} than C. Since C is the first "bad" line of \mathbf{D}, let \mathbf{D}_{1} be a deduction of $(A \rightarrow E)$ from Γ and let \mathbf{D}_{2} be a deduction of $(A \rightarrow(E \rightarrow C))$ from Γ. We get a deduction of $(A \rightarrow C)$ from Γ by beginning with \mathbf{D}_{1}, following with \mathbf{D}_{2}, and then finishing with the lines

$$
\begin{array}{ll}
(A \rightarrow(E \rightarrow C)) \rightarrow((A \rightarrow E) \rightarrow(A \rightarrow C)) & \text { Ax. } 5 \\
(A \rightarrow E) \rightarrow(A \rightarrow C) & \text { MP } \\
A \rightarrow C & \text { MP }
\end{array}
$$

This contradiction completes the proof that the "bad" line C cannot exist. Applying this fact to the last line of \mathbf{D}, we get that $\Gamma \vdash(A \rightarrow B)$.

Remarks:
(a) The converse of the Deduction Theorem is also true. Given a deduction of $(A \rightarrow B)$ from Γ, one gets a deduction of B from $\Gamma \cup\{A\}$ by appending the lines A and B, the latter coming by MP.
(b) The proof of the Deduction Theorem would still go through if we added or dropped axioms, as long as we did not drop Axiom Schemas 2 and 5. It would not in general go through if we added rules of inference, and it would not go through if we dropped the rule of modus ponens.

Exercise 2.1. Show that the following hold for all formulas A and B.
(a) $\vdash(A \rightarrow(\neg A \rightarrow B))$;
(b) $\vdash(\neg \neg A \rightarrow A)$.

A set Γ of formulas is inconsistent (in $\mathbf{S L}$) if there is a formula B such that $\Gamma \vdash B$ and $\Gamma \vdash \neg B$. Otherwise Γ is consistent.

Theorem 2.2. Let Γ and Δ be sets of formulas and let A, B, and A_{1}, \ldots, A_{n} be formulas.
(1) $\Gamma \cup\{A\} \vdash B$ if and only if $\Gamma \vdash(A \rightarrow B)$.
(2) $\Gamma \cup\left\{A_{1}, \ldots, A_{n}\right\} \vdash B$ if and only if $\Gamma \vdash\left(A_{1} \rightarrow \ldots \rightarrow A_{n} \rightarrow B\right)$.
(3) Γ is consistent if and only if there is some formula C such that $\Gamma \nvdash C$.
(4) If $\Gamma \vdash C$ for all $C \in \Delta$ and if $\Delta \vdash B$, then $\Gamma \vdash B$.

Proof. We begin with (4). Let \mathbf{D} be a deduction of B from Δ. We can turn \mathbf{D} into a deduction of B from Γ as follows: whenever a formula $C \in \Delta$ is on a line of \mathbf{D}, replace that line with a deduction of C from Γ.
(1) is just the combination of the Deduction Theorem and its converse.

For (2), forget the particular $\Gamma, A_{1}, \ldots, A_{n}$, and B for the moment and let P be the property of being a positive integer n such that (2) holds for every choice of $\Gamma, A_{1}, \ldots, A_{n}$, and B. By a variant of mathematical induction (beginning with 1 instead of with 0) we show that every positive integer has P. The integer 1 has P by (1). Assume that n is a positive integer that has P. Let $\Gamma, A_{1}, \ldots, A_{n+1}$, and B be given. By (1) we have that
$\Gamma \cup\left\{A_{1}, \ldots, A_{n+1}\right\} \vdash B$ if and only if $\Gamma \cup\left\{A_{1}, \ldots, A_{n}\right\} \vdash\left(A_{n+1} \rightarrow B\right)$.
Since n has P, this holds if and only if $\Gamma \vdash\left(A_{1} \rightarrow \ldots \rightarrow A_{n+1} \rightarrow B\right)$.
For the "if" part of (3), assume that Γ is inconsistent. Let B be such that $\Gamma \vdash B$ and $\Gamma \vdash \neg B$. Let C be any formula. Using Axiom Schema 2 and MP, we get that $\Gamma \vdash(\neg C \rightarrow B)$ and $\Gamma \vdash(\neg C \rightarrow \neg B)$. The formula

$$
(\neg C \rightarrow B) \rightarrow((\neg C \rightarrow \neg B) \rightarrow C)
$$

is an instance of Axiom Schema 4. Two applications of MP show that $\Gamma \vdash C$.
The "only if" part of (3) is obvious.

Lemma 2.3. For any formulas A and B,
(a) $\{(\neg A \rightarrow B)\} \vdash(\neg B \rightarrow A)$;
(b) $\{(A \rightarrow B)\} \vdash(\neg B \rightarrow \neg A)$.

Proof. (a) By the Deduction Theorem, it is enough to show that

$$
\{(\neg A \rightarrow B), \neg B\} \vdash A .
$$

Let $\Gamma=\{(\neg A \rightarrow B), \neg B\}$. Axiom Schema 2 and MP give that $\Gamma \vdash(\neg A \rightarrow$ $\neg B$). The formula

$$
(\neg A \rightarrow B) \rightarrow((\neg A \rightarrow \neg B) \rightarrow A)
$$

is an instance of Axiom Schema 4. Two applications of MP show that $\Gamma \vdash A$.
(b) Since $\vdash(\neg \neg A \rightarrow A)$ by part (b) of Exercise 2.1, we can use the Deduction theorem and easily get that

$$
\{(A \rightarrow B)\} \vdash(\neg \neg A \rightarrow B) .
$$

But $\{(\neg \neg A \rightarrow B)\} \vdash(\neg B \rightarrow \neg A)$ by part (a).
Exercise 2.2. Exhibit a deduction of $\left.\left(\neg p_{2} \rightarrow p_{1}\right)\right)$ from $\left\{\left(\neg p_{1} \rightarrow p_{2}\right)\right.$. Do not appeal to the deduction theorem.

Hint. First write out the deduction \mathbf{D} of p_{1} from $\left\{\left(\neg p_{1} \rightarrow p_{2}\right), \neg p_{2}\right\}$ that is implicitly given by the proof of part (a) of Lemma 2.3. Now use the proof of the Deduction Theorem to get the desired deduction. (The proof of the Deduction Theorem shows us how to put $\neg p_{2} \rightarrow$ in front of all the lines of the given deduction and then to fix things up. There is one simplification here: If one puts $\neg p_{2} \rightarrow$ in front of the formula $\left(\neg p_{1} \rightarrow \neg p_{2}\right)$ that is on line 3 of \mathbf{D}, one gets an axiom. Thus one can forget about lines 1 and 2 of \mathbf{D} and just begin with this axiom.)

Exercise 2.3. Show the following:
(a) $\vdash \neg(A \rightarrow B) \rightarrow \neg B$;
(b) $\vdash(A \vee \neg A)$.

A system \mathbf{S} of deduction for \mathcal{L} is sound if, for all sets Γ of formulas and all formulas A, if $\Gamma \vdash_{\mathbf{S}} A$ then $\Gamma \models A$.

An example of a system of deduction that is not sound can be gotten by adding to the axioms and rules for SL the extra axiom p_{0}. For this system \mathbf{S}, one has that $\emptyset \vdash_{\mathbf{S}} p_{0}$, but $\emptyset \not \vDash p_{0}$.

Theorem 2.4 (Soundness). Let Γ be a set of formulas and let A be a formula. If $\Gamma \vdash_{\mathbf{S L}} A$ then $\Gamma \models A$. In other words, $\mathbf{S L}$ is sound.

Proof. Let \mathbf{D} be a deduction in $\mathbf{S L}$ of A from Γ. We shall show that, for every line C of $\mathbf{D}, \Gamma \models C$. Applying this to the last line of \mathbf{D}, this will give us that $\Gamma \models A$.

Assume that what we wish to show is false. Let C be the first line of \mathbf{D} such that $\Gamma \not \vDash C$.

If $C \in \Gamma$ then trivially $\Gamma \models C$ (and so we have a contradiction).
It can easily be checked that all of our axioms are tautologies. If C is an axiom we have then that $\vDash C$ and so that $\Gamma \models C$.

Note that the rule of modus ponens is a valid rule, i.e., $\{D,(D \rightarrow$ $E)\} \models E$ for any formulas D and E. Assume that C follows by MP from B and $(B \rightarrow C)$, where B and $(B \rightarrow C)$ are on earlier lines of \mathbf{D}. Since C is the first "bad" line of $\mathbf{D}, \Gamma \models B$ and $\Gamma \models(B \rightarrow C)$. By the validity of MP, it follows that $\Gamma \models C$.

A system \mathbf{S} of deduction for \mathcal{L} is complete if, for all sets Γ of formulas and all formulas A, if $\Gamma \models A$ then $\Gamma \vdash_{\mathbf{S}} A$.

Remark. Sometimes the word "complete" used to mean what we mean by "sound and complete."

We are now going to embark on the task of proving the completeness of SL. The proof will parallel the proof of the Compactness Theorem. In particular, the lemma that follows is the analogue of Lemma 1.6

Lemma 2.5. Let Γ be a consistent (in $\mathbf{S L}$) set of formulas and let A be a formula. Then either $\Gamma \cup\{A\}$ is consistent or $\Gamma \cup\{\neg A\}$ is consistent.

Proof. Assume for a contradiction neither $\Gamma \cup\{A\}$ nor $\Gamma \cup\{\neg A\}$ is consistent. It follows that there are formulas B and B^{\prime} such that
(i) $\Gamma \cup\{A\} \vdash B$;
(ii) $\Gamma \cup\{A\} \vdash \neg B$;
(iii) $\Gamma \cup\{\neg A\} \vdash B^{\prime}$;
(iv) $\Gamma \cup\{\neg A\} \vdash \neg B^{\prime}$.

Using Axiom Schema (4) together with (iii), (iv), and the Deduction Theorem, we can show that

$$
\Gamma \vdash A .
$$

This fact, together with (i) and (ii), allows us to show that $\Gamma \vdash B$ and $\Gamma \vdash \neg B$. Thus we have the contradiction that Γ is inconsistent.

Now we turn to the analogue of Lemma 1.7.
Lemma 2.6. Let Γ be a consistent set of formulas. There is a set Γ^{*} of formulas such that
(1) $\Gamma \subseteq \Gamma^{*}$;
(2) Γ^{*} is consistent ;
(3) for every formula A, either A belongs to Γ^{*} or $\neg A$ belongs to Γ^{*}.

Proof. Let

$$
A_{0}, A_{1}, A_{2}, A_{3}, \ldots
$$

be the list (defined in the proof of Lemma 1.7) of all the formulas of \mathcal{L}. As in that proof we define, by recursion on natural numbers, a function that associates with each natural number n a set Γ_{n} of formulas.

Let $\Gamma_{0}=\Gamma$.
Let

$$
\Gamma_{n+1}= \begin{cases}\Gamma_{n} \cup\left\{A_{n}\right\} & \text { if } \Gamma_{n} \cup\left\{A_{n}\right\} \text { is consistent; } \\ \Gamma_{n} \cup\left\{\neg A_{n}\right\} & \text { otherwise }\end{cases}
$$

Let $\Gamma^{*}=\bigcup_{n} \Gamma_{n}$.
Because $\Gamma=\Gamma_{0} \subseteq \Gamma^{*}, \Gamma^{*}$ has property (1).
Γ_{0} is consistent. By Lemma 2.5, if Γ_{n} is consistent then so is Γ_{n+1}. By mathematical induction, every Γ_{n} is consistent. Suppose, in order to obtain a contradiction, that Γ^{*} is inconsistent. Let B be a formula such that $\Gamma^{*} \vdash B$ and $\Gamma^{*} \vdash \neg B$. Let \mathbf{D}_{1} and \mathbf{D}_{2} be respectively deductions of B from Γ^{*} and of $\neg B$ from Γ^{*}. Let Δ be the set of all formulas belonging to Γ^{*} that are on lines of \mathbf{D}_{1} or of \mathbf{D}_{2}. Then Δ is a finite subset of Γ^{*}, and so $\Delta \subseteq \Gamma_{n}$ for some n. But then $\Gamma_{n} \vdash B$ and $\Gamma_{n} \vdash \neg B$. This contradicts the consistency of Γ_{n}. Thus Γ^{*} has property (2).

Because either A_{n} or $\neg A_{n}$ belongs to Γ_{n+1} for each n and because each $\Gamma_{n+1} \subseteq \Gamma^{*}, \Gamma^{*}$ has property (3).

Next comes the analogue of Lemma 1.8.
Lemma 2.7. Let Γ^{*} be a set of formulas having properties (2) and (3) described in the statement of Lemma 2.6. Then Γ^{*} is satisfiable.

Proof. Define a valuation v for \mathcal{L} by setting

$$
v(A)=\mathbf{T} \text { if and only if } A \in \Gamma^{*}
$$

for each sentence letter A. Let P be the property of being a formula A such that

$$
v^{*}(A)=\mathbf{T} \text { if and only if } A \in \Gamma^{*} .
$$

We prove by formula induction that every formula has property P.
(i) For sentence letters, this is true by definition of v.
(ii) First we show that $\neg A \in \Gamma^{*}$ if and only if $A \notin \Gamma^{*}$ for any formula A. By (3) we have that $A \in \Gamma^{*}$ or $\neg A \in \Gamma^{*}$. If both A and $\neg A$ belong to Γ^{*}, then Γ^{*} is inconsistent, contrary to (2).

Now let A be a formula that has property P. Then

$$
\begin{array}{rll}
v^{*}(\neg A)=\mathbf{T} & \text { if and only if } v^{*}(A)=\mathbf{F} \\
& \text { if and only if } A \notin \Gamma^{*} \\
& \text { if and only if } \neg A \in \Gamma^{*} .
\end{array}
$$

(iii) We first show that $(A \vee B) \in \Gamma^{*}$ if and only if either $A \in \Gamma^{*}$ or $B \in \Gamma^{*}$, for any formulas A and B. Assume first that $(A \vee B) \in \Gamma^{*}$ but that $A \notin \Gamma^{*}$ and $B \notin \Gamma^{*}$. By (3), $\neg A \in \Gamma^{*}$ and $\neg B \in \Gamma^{*}$. Using the instance $(A \vee B) \rightarrow(\neg A \rightarrow B)$ of Axiom Schema (3) and two applications of MP, we see that $\Gamma^{*} \vdash B$. Since $\Gamma^{*} \vdash \neg B$, we get the contradiction that Γ^{*} is inconsistent. Next assume that $A \in \Gamma^{*}$ but $(A \vee B) \notin \Gamma^{*}$. By (3) $\neg(A \vee B) \in \Gamma^{*}$. Using the instance $A \rightarrow(A \vee B)$ of Axiom Schema (1), we again get the contradiction that Γ^{*} is inconsistent. The assumption that $B \in \Gamma^{*}$ but $(A \vee B) \notin \Gamma^{*}$ yields a similar contradiction with the aid of Axiom Schema (2).

Now let A and B be formulas that have property P. Then

$$
\begin{array}{ll}
v^{*}((A \vee B))=\mathbf{T} & \text { if and only if } v^{*}(A)=\mathbf{T} \text { or } v^{*}(B)=\mathbf{T} \\
& \text { if and only if } A \in \Gamma^{*} \text { or } B \in \Gamma^{*} \\
& \text { if and only if }(A \vee B) \in \Gamma^{*} .
\end{array}
$$

Since, in particular, $v^{*}(A)=\mathbf{T}$ for every member of A of Γ^{*}, we have shown that Γ^{*} is satisfiable.

Theorem 2.8. Let Γ be a consistent set of formulas. Then Γ is satisfiable.
Proof. By Lemma 2.6, let Γ^{*} have properties (1)-(3) of that lemma. By Lemma 2.7, Γ^{*} is satisfiable. Hence Γ is satisfiable.

Theorem 2.9 (Completeness). Let Γ be a set of formulas and let A be a formula such that $\Gamma \models A$. Then $\Gamma \vdash_{\mathbf{S L}} A$. In other words, $\mathbf{S L}$ is complete.

Proof. Since $\Gamma \models A, \Gamma \cup\{\neg A\}$ is not satisfiable. By Theorem 2.8, $\Gamma \cup\{\neg A\}$ is inconsistent. Let B be a formula such that $\Gamma \cup\{\neg A\} \vdash B$ and $\Gamma \cup\{\neg A\} \vdash$ $\neg B$. By the Deduction Theorem, $\Gamma \vdash(\neg A \rightarrow B)$ and $\Gamma \vdash \neg A \rightarrow \neg B)$. Using Axiom Schema 4, we can use these facts to show that $\Gamma \vdash A$.

Exercise 2.4. Derive Theorem 2.8 from Theorem 2.9.
Remark. Soundness and completeness imply compactness. To see this, assume that Γ is a set of formulas that is not satisfiable. By part (3) of Exercise 1.7, $\Gamma \models\left(p_{0} \wedge \neg p_{0}\right)$. By completeness, $\Gamma \vdash\left(p_{0} \wedge \neg p_{0}\right)$. Let \mathbf{D} be a deduction of $\left(p_{0} \wedge \neg p_{0}\right)$ from Γ. Let Δ be the set of all formulas $C \in \Gamma$ such that C is on a line of \mathbf{D}. Then Δ is a finite subset of Γ and $\Delta \vdash\left(p_{0} \wedge \neg p_{0}\right)$. By soundness, $\Delta \models\left(p_{0} \wedge \neg p_{0}\right)$. By part (3) of Exercise 1.7, Δ is not satisfiable. Thus Γ is not finitely satisfiable.

Exercise 2.5. Prove that $\{\neg(\neg A \wedge \neg B)\} \vdash(A \vee B)$ and that $\{(A \vee B)\} \vdash$ $\neg(\neg A \wedge \neg B)$. You may use any of our theorems, lemmas, etc.

Exercise 2.6. We define by recursion on natural numbers a function that assigns to each natural number n a set Formula $_{n}$ of formulas. Let Formula ${ }_{0}$ be the set of all sentence letters. Let A belong to Formula ${ }_{n+1}$ if and only if at least one of the following holds:
(i) $A \in$ Formula $_{n}$;
(ii) there is a $B \in$ Formula $_{n}$ such that A is $\neg B$;
(iii) there are $B \in$ Formula $_{n}$ and $C \in$ Formula $_{n}$ such that A is $(B \vee C)$.

It is not hard to prove that A is a formula if and only if A belongs to Formula $_{n}$ for some n. (You may assume this.)

Use mathematical induction to prove that every formula has an even number of parentheses.

Exercise 2.7. Show, without using Completeness and Soundness, that \vdash $(\neg(\neg B \rightarrow A) \rightarrow \neg(A \vee B))$.

Exercise 2.8. Suppose we changed our system of deduction by replacing the Axiom Schemas 1 and 2 by the rules

$$
\frac{A}{(A \vee B)} \frac{B}{(A \vee B)}
$$

Would the resulting system be sound? Would it be complete?
Exercise 2.9. Show, without using completeness and soundness, that

$$
\{(A \rightarrow C),(B \rightarrow C)\} \vdash((A \vee B) \rightarrow C) .
$$

Exercise 2.10. Use the Deduction Theorem and its converse to give a brief proof that $\vdash(B \rightarrow(A \rightarrow A))$.

3 The semantics of pure first-order predicate logic

We now begin our study of what is called, among other things, predicate logic, quantificational logic, and first-order logic. We shall use the term "firstorder logic" for our subject. The term "predicate logic" suggests formal languages that have predicate lettrers but not function letters, and we do not want to leave out the latter. Both "predicate logic" and "quantificational logic" fail to suggest that higher-order and infinitary logics are excluded, and- except for a brief consideration of second-order logic at the end of the course - we do intend to exclude them.

In order that our first pass through first-order logic be as free of complexities as possible, we study in this section a simplified version of first-order logic, one whose formal languages lack two important kinds of symbols:
(a) function letters;
(b) an identity symbol.

We call this simplified logic "pure first-order predicate logic." In the next section, we shall see what changes have to be made in our definitions and proofs to accommodate the presence of these symbols.

The languages $\mathcal{L}_{\mathrm{C}}^{*}$ of pure predicate logic.

For each any set C of constant symbols, we shall have a language $\mathcal{L}_{\mathrm{C}}^{*}$.

Symbols of $\mathcal{L}_{\mathrm{C}}^{*}$:
(i) sentence letters
(ii) for each $n \geq 1$, n-place predicate letters
$p_{0}, p_{1}, p_{2}, \ldots$
$P_{0}^{n}, P_{1}^{n}, P_{2}^{n}, \ldots$
(iii) variables
(iv) constant symbols (constants)
$v_{0}, v_{1}, v_{2}, \ldots$
(v) connectives
all members of C
(vi) quantifier
\neg, \vee
(vii) parentheses
\forall

Constants and variables will more or less play the role played in natural languages by nouns and pronouns respectively. Predicate letters will more or less play the role that predicates play in natural languages. In combination, these symbols will give our formal language a new kind of basic formulas, the simplest of which will play the role that subject-predicate sentences play
in natural languages. The quantifier \forall will play the role that the phrase "for all" can play in natural languages.

Formulas of $\mathcal{L}_{\mathrm{C}}^{*}$
(1) Each sentence letter is a formula.
(2) For each n and i, if t_{1}, \ldots, t_{n} are variables or constants, then $P_{i}^{n} t_{1} \ldots t_{n}$ is a formula.
(3) If A is a formula, then so is $\neg A$.
(4) If A and B are formulas, then so is $(A \vee B)$.
(5) If A is a formula and x is a variable, then $\forall x A$ is a formula.
(6) Nothing is a formula unless its being one follows from (1)-(5).

The formulas given by (1) and (2) are called atomic formulas.
The method of proof by formula induction applies to $\mathcal{L}_{\mathrm{C}}^{*}$ as it does to \mathcal{L}. To prove by formula induction that every formula of $\mathcal{L}_{\mathrm{C}}^{*}$ has property P, we must prove (i), (ii), (iii), and (iv) below.
(i) Each atomic formula has property P.
(ii) If A is a formula that has property P, then $\neg A$ has P.
(iii) If A and B are formulas that have property P, then $(A \vee B)$ has P.
(iv) If x is a variable and A is a formula that has property P, then $\forall x A$ has P.

Not only is there a step, step (iv), that was absent in the case of \mathcal{L}, but also there is an extra part to step (ii), the part corresponding to atomic formulas of the form $P_{i}^{n} t_{1} \ldots t_{n}$.

Unique readability holds for $\mathcal{L}_{\mathrm{C}}^{*}$ as it does for \mathcal{L}. Here are the new versions of the Lemmas 1.1-1.4 that were used to prove the unique readability theorem, Theorem 1.5. The proofs are similar to the proofs of the earlier lemmas and theorem.

Lemma 3.1. Every formula of $\mathcal{L}_{\mathrm{C}}^{*}$ contains the same number of (occurrences of) left parentheses as (occurrences of) right parentheses.

Lemma 3.2. For every formula A of $\mathcal{L}_{\mathrm{C}}^{*}$,
(a) every initial segment of A has the at least as many left as right parentheses;
(b) if A is a disjunction (i.e., if A is $(B \vee C)$ for some B and C), then every proper initial segment of A (i.e., every initial segment of A that is not the whole of A) that has length greater than 0 has more left than right parentheses.

Lemma 3.3. For every formula A of $\mathcal{L}_{\mathrm{C}}^{*}$, exactly one of the following holds.
(1) A is an atomic formula.
(2) There is a formula B such that A is $\neg B$.
(3) There are formulas B and C such that A is $(B \vee C)$.
(4) There is a formula B and there is a variable x such that A is $\forall x B$.

Lemma 3.4. No proper initial segment of a formula of $\mathcal{L}_{\mathrm{C}}^{*}$ is a formula of $\mathcal{L}_{\mathrm{C}}^{*}$.

Theorem 3.5 (Unique Readability). Let A be a formula of $\mathcal{L}_{\mathrm{C}}^{*}$. Then exactly one of the following holds.
(1) A is an atomic formula.
(2) There is a unique formula B such that A is $\neg B$.
(3) There are unique formulas B and C such that A is $(B \vee C)$.
(4) There is a unique formula B and there is a unique variable x such that A is $\forall x B$.

Remark. Note that we could have phrased Lemma 1.3 exactly as Lemma 3.2 is phrased without altering its content in any significant way.

Truth and logical implication.

As we did with the sentential language \mathcal{L}, we want to introduce semantic notions for the languages $\mathcal{L}_{\mathrm{C}}^{*}$. If we want to keep as close as possible to the methods of $\S 1$, then we might try to extend the notion of a valuation v so that v assigns a truth-value to all atomic formulas, not just all sentence letters. But consider an atomic formula like $P_{1}^{2} v_{3} c$. The symbol v_{3} is a variable, i.e., we are not going to use it to denote any particular object. The language of arithmetic does not provide a truth-value for an expression like " $x<3$," and the English language does not provide a truth-value for sentences like "He is fat." To get a truth-value for the former, one needs to assign the variable x to some particular number. To get a truth-value for
the latter, one needs a context in which "he" denotes a particular person (or animal or whatever). Similarly, the semantics of $\mathcal{L}_{\mathrm{C}}^{*}$ will not by itself provide a truth-value for $P_{1}^{2} v_{3} c$. In addition, there will have to be an assignment of v_{3} to some particular object.

What are the objects over which our variables are to range? A natural answer would be that they range over all objects. If we made this choice, then we could interpret $\forall v_{3}$ as saying "for all objects v_{3}." However, there are reasons for not wanting to make a matter of logic that, e.g., there are more than 17 objects, and requiring that our variables range over all objects would make this a matter of logic. Therefore we allow the variables to range over any set of objects, and we make the specification of such a set part of any interpretatation of our language.

The first step in providing an interpretation of $\mathcal{L}_{\mathrm{C}}^{*}$ (or, as we shall say, a model for $\mathcal{L}_{\mathrm{C}}^{*}$) is thus to specify a set \boldsymbol{D} as the domain or universe of the model. It is standard to require that \boldsymbol{D} be a non-empty set, because doing so avoids certain technical complexities. We make this requirement.

The second step is to provide a way to assign truth-values to atomic formulas when their variables are assigned to particular members of \boldsymbol{D}. To accomplish this (in an indirect way), (i) we specify the truth-values of sentence letters and (ii) we specify what property of elements of \boldsymbol{D} or relation among elements of \boldsymbol{D} each predicate letter is to stand for. We do this by telling, for each n and i, which n-tuples $\left(d_{1}, \ldots, d_{n}\right)$ of elements of \boldsymbol{D} the predicate P_{i}^{n} is true of.

The final step in determining a model for $\mathcal{L}_{\mathrm{C}}^{*}$ is to specify what element of \boldsymbol{D} each constant denotes.

Here is the formal definition. A model for $\mathcal{L}_{\mathrm{C}}^{*}$ is a triple $\mathfrak{M}=(\boldsymbol{D}, v, \chi)$, where
(i) \boldsymbol{D} is a non-empty set (the domain or universe of \mathfrak{M});
(ii) v is a function (the valuation of \mathfrak{M}) that assigns a truth-value to each sentence letter and each $(n+1)$-tuple of the form $\left(P_{i}^{n}, d_{1}, \ldots, d_{n}\right)$ for d_{1}, \ldots, d_{n} members of \boldsymbol{D}.
(iii) χ is a function (the constant assignment of \mathfrak{M}) that assigns to each constant an element of \boldsymbol{D}.

Note that, except for the sentence letters, the things to which v assigns truth-values are not actually formulas.

In describing the v of a model, we shall often find it convenient to list the set of things to which v assigns \mathbf{T}. Let us call this the v-truth set.

Examples:

(a) Let $\mathrm{C}_{a}=\{c\}$. Let $\mathfrak{M}_{a}=\left(\boldsymbol{D}_{a}, v_{a}, \chi_{a}\right)$, where:

$$
\begin{aligned}
\boldsymbol{D}_{a} & =\left\{d_{1}, d_{2}\right\} \\
v_{a} \text {-truth set } & =\left\{p_{2},\left(P^{1}, d_{1}\right),\left(P^{2}, d_{1}, d_{2}\right),\left(P^{2}, d_{2}, d_{2}\right)\right\} \\
\chi_{a}(c) & =d_{2}
\end{aligned}
$$

(b) Let $\mathrm{C}_{b}=\left\{c, c^{\prime}\right\}$. Let $\mathfrak{M}_{b}=\left(\boldsymbol{D}_{b}, v_{b}, \chi_{b}\right)$, where:

$$
\begin{aligned}
\boldsymbol{D}_{b} & =\{0,1,2, \ldots\} \\
v_{b} \text {-truth set } & =\left\{\left(P^{1}, 0\right)\right\} \cup\left\{\left(P^{2}, m, n\right) \mid m \geq n\right\} \\
\chi_{b}(c) & =0 \\
\chi_{b}\left(c^{\prime}\right) & =1
\end{aligned}
$$

Whenever we omit the subscript of a predicate letter, as we have done in describing these two models, let us take the omitted subscript to be 0 .

Let $\mathfrak{M}=(\boldsymbol{D}, v, \chi)$ be a model for $\mathcal{L}_{\mathrm{C}}^{*}$. Let s be a variable assignment, a function that assigns a member $s(x)$ of \boldsymbol{D} to each variable x. For each variable or constant t, let

$$
\operatorname{den}_{\mathfrak{M}}^{s}(t)=\left\{\begin{array}{cc}
s(t) & \text { if } t \text { is a variable; } \\
\chi(t) & \text { if } t \text { is a constant. }
\end{array}\right.
$$

By a modified version of recursion on formulas, we define a function $v_{\mathfrak{M}}^{s}$ that assigns a truth-value to each formula.
(i) The case of A atomic:
(a) $v_{\mathfrak{M}}^{s}\left(p_{i}\right)=v\left(p_{i}\right)$;
(b) $v_{\mathfrak{M}}^{s}\left(P_{i}^{n} t_{1} \ldots t_{n}\right)=v\left(\left(P_{i}^{n}, \operatorname{den}_{\mathfrak{M}}^{s}\left(t_{1}\right), \ldots, \operatorname{den}_{\mathfrak{M}}^{s}\left(t_{n}\right)\right)\right)$;
(ii) $v_{\mathfrak{M}}^{s}(\neg A)= \begin{cases}\mathbf{F} & \text { if } v_{\mathfrak{M}}^{s}(A)=\mathbf{T} \text {; } \\ \mathbf{T} & \text { if } v_{\mathfrak{M}}^{s}(A)=\mathbf{F} \text {; }\end{cases}$
(iii) $v_{\mathfrak{M}}^{s}((A \vee B))= \begin{cases}\mathbf{T} \quad \text { if } v_{\mathfrak{M}}^{s}(A)=\mathbf{T} \text { and } v_{\mathfrak{M}}^{\mathfrak{s}}(B)=\mathbf{T} ; \\ \mathbf{T} & \text { if } v_{\mathfrak{M}}^{s}(A)=\mathbf{T} \text { and } v_{\mathfrak{M}}^{s}(B)=\mathbf{F} ; \\ \mathbf{T} & \text { if } v_{\mathfrak{M}}^{s}(A)=\mathbf{F} \text { and } v_{\mathfrak{M}}^{s}(B)=\mathbf{T} ; \\ \mathbf{F} & \text { if } v_{\mathfrak{M}}^{s}(A)=\mathbf{F} \text { and } v_{\mathfrak{M}}^{s}(B)=\mathbf{F} ;\end{cases}$
(iv) $v_{\mathfrak{M}}^{s}(\forall x A)= \begin{cases}\mathbf{T} & \begin{array}{l}\text { if for all } d \in \boldsymbol{D}, v_{\mathfrak{M}}^{s^{\prime}}(A)=\mathbf{T}, \\ \text { where } s^{\prime} \text { is like } s \text { except that } s^{\prime}(x)=d ; \\ \mathbf{F} \\ \text { otherwise. }\end{array}\end{cases}$
\mathfrak{M} satisfies A under s if and only if $v_{\mathfrak{M}}^{\mathfrak{s}}(A)=\mathbf{T}$.
An occurrence of a variable x in a formula A is free if the occurrence is not within any subformula of A of the form $\forall x B$. A sentence or closed formula is a formula with no free occurrences of variables.

Example. The third occurrence of v_{1} in the formula

$$
\forall v_{2}\left(\forall v_{1} P_{3}^{1} v_{1} \vee P_{1}^{2} v_{1} v_{2}\right)
$$

is free, and so this formula is not a sentence.
It is not hard to verify that whether or not \mathfrak{M} satisfies A under s does not depend on the whole of s but only on the values $s(x)$ for variables x that have free occurrences in A. For sentences A, we may then define $v_{\mathfrak{M}}(A)$ to be the common value of all $v_{\mathfrak{M}}^{s}(A)$. We define a sentence A to be true in \mathfrak{M} if $v_{\mathfrak{M}}(A)=\mathbf{T}$ and false in \mathfrak{M} if $v_{\mathfrak{M}}(A)=\mathbf{F} . \mathfrak{M}$ satisfies a set Γ of formulas under s if and only if all \mathfrak{M} satisfies each member of Γ under s. A set of sentences is true in \mathfrak{M} if and only if all its members are true in \mathfrak{M}.

We introduce one more abbreviation:

$$
\exists x A \text { for } \neg \forall x \neg A \text {. }
$$

It is not hard to verify that the defined symbol \exists obeys the following rule:
(v) $v_{\mathfrak{M}}^{s}(\exists x A)= \begin{cases}\mathbf{T} & \begin{array}{l}\text { if for some } d \in \boldsymbol{D}, v_{\mathfrak{M}}^{s^{\prime}}(A)=\mathbf{T}, \\ \text { where } s^{\prime} \text { is like } s \text { except that } s^{\prime}(x)=d ; \\ \mathbf{F} \\ \text { otherwise } .\end{array}\end{cases}$

Example. Here are some sentences true in the model \mathfrak{M}_{a} described on page 27: $\neg P^{1} c ; \forall v_{1} \exists v_{2} P^{2} v_{1} v_{2} ; \exists v_{1}\left(p_{2} \wedge P^{2} v_{1} v_{1}\right)$.

Exercise 3.1. For each of the following sentences, tell in which of the models \mathfrak{M}_{a} and \mathfrak{M}_{b} the sentence is true. Explain your answers briefly and informally.
(a) $\exists v_{1} \forall v_{2} P^{2} v_{2} v_{1}$
(b) $\forall v_{1}\left(P^{1} v_{1} \vee P^{2} c v_{1}\right)$
(c) $\forall v_{1}\left(P^{1} v_{1} \rightarrow p_{2}\right)$
(d) $\exists v_{1}\left(P^{1} v_{1} \rightarrow p_{2}\right)$

If Γ is a set of formulas and A is a formula, then we say that Γ logically implies A (in symbols, $\Gamma \models A$) if and only if, for every model \mathfrak{M} and every variable assignment s,

$$
\text { if } \mathfrak{M} \text { satisfies } \Gamma \text { under } s \text {, then } \mathfrak{M} \text { satisfies } A \text { under } s \text {. }
$$

A formula or set of formulas is valid if it is satisfied in every model under every variable assignment; it is satisfiable if it is satisfied in some model under some variable assignment. As in sentential logic, a formula A is valid if and only if $\emptyset \models A$, and we abbreviate $\emptyset \models A$ by $\models A$. We shall be interested in the notions of implication, validity, and satisfiability mainly for sets of sentences and sentences. In this case variable assignments s play no role. For example, a set Σ of sentences implies a sentence A if and only if, for every model \mathfrak{M},

$$
\text { if } \Sigma \text { is true in } \mathfrak{M} \text {, then } A \text { is true in } \mathfrak{M} \text {. }
$$

Exercise 3.2. For each of the following pairs (Γ, A), tell whether $\Gamma \models A$. If the answer is yes, explain why. If the answer is no, then describe a model or a model and a variable assignment showing that the answer is no.
(a) Γ : $\left\{\forall v_{1} \exists v_{2} P^{2} v_{1} v_{2}\right\} ; A: \exists v_{2} \forall v_{1} P^{2} v_{1} v_{2}$.
(b) $\Gamma:\left\{\exists v_{1} \forall v_{2} P^{2} v_{1} v_{2}\right\} ; A: \forall v_{2} \exists v_{1} P^{2} v_{1} v_{2}$.
(c) $\Gamma:\left\{\forall v_{1} P^{2} v_{1} v_{1}, P^{2} c_{1} c_{2}\right\} ; A: P^{2} c_{2} c_{1}$;
(d) $\Gamma:\left\{\forall v_{1} \forall v_{2} P^{2} v_{1} v_{2}\right\} ; A: \forall v_{2} \forall v_{1} P^{2} v_{1} v_{2}$;
(e) $\Gamma:\left\{P^{1} v_{1}\right\} ; A: \forall v_{1} P^{1} v_{1}$.

Exercise 3.3. Describe a model in which the following sentences are all true.
(a) $\forall v_{1} \exists v_{2} P^{2} v_{1} v_{2}$.
(b) $\forall v_{1} \forall v_{2}\left(P^{2} v_{1} v_{2} \rightarrow \neg P^{2} v_{2} v_{1}\right)$.
(c) $\forall v_{1} \forall v_{2} \forall v_{3}\left(\left(P^{2} v_{1} v_{2} \wedge P^{2} v_{2} v_{3}\right) \rightarrow P^{2} v_{1} v_{3}\right)$.

Can these three sentences be true in a model whose universe is finite? Explain.

Exercise 3.4. Show that the four statements of Exercise 1.7 hold for formulas of $\mathcal{L}_{\mathrm{C}}^{*}$.

For sentential logic, valid formulas and tautologies are by definition the same. For predicate logic, the notion of a tautology is different from that of a valid formula. We now explain how this difference arises.

Call a formula of any of our formal languages sententially atomic if it is neither a negation nor a disjuction, i.e., if it is not $\neg A$ for any A and it is not $(A \vee B)$ for any A and B. The sententially atomic formulas of \mathcal{L} are the sentence letters. The sententially atomic formulas of $\mathcal{L}_{\mathrm{C}}^{*}$ are the atomic formulas and the quantifications (the formulas of the form $\forall x A$). Note that every formula can be gotten from the sententially atomic formulas using only negation and conjunction.

An extended valuation for any of our languages is a function that assigns a truth-value to each sententially atomic formula.

Let v be an extended valuation. We as follows define a function v^{*} that assigns a truth-value to each formula.
(a) if A is sententially atomic, then $v^{*}(A)=v(A)$;
(b) $v^{*}(\neg A)= \begin{cases}\mathbf{F} & \text { if } v^{*}(A)=\mathbf{T} ; \\ \mathbf{T} & \text { if } v^{*}(A)=\mathbf{F} ; ~\end{cases}$
(c) $v^{*}((A \vee B))= \begin{cases}\mathbf{T} & \text { if } v^{*}(A)=\mathbf{T} \text { and } v^{*}(B)=\mathbf{T} ; \\ \mathbf{T} & \text { if } v^{*}(A)=\mathbf{T} \text { and } v^{*}(B)=\mathbf{F} ; \\ \mathbf{T} & \text { if } v^{*}(A)=\mathbf{F} \text { and } v^{*}(B)=\mathbf{T} ; \\ \mathbf{F} & \text { if } v^{*}(A)=\mathbf{F} \text { and } v^{*}(B)=\mathbf{F} .\end{cases}$

We define a formula A to be true under the extended valuation v if $v^{*}(A)=$ \mathbf{T} and to be false under v if $v^{*}(A)=\mathbf{F}$. We define a set Γ of formulas to be true under v if and only if all members of Γ are true under v.

If Γ is a set of formulas and A is a formula, then say that Γ sententially implies A if and only if A is true under every extended valuation under which Γ is true. We write $\Gamma \models_{\text {sl }} A$ to mean that Γ sententially implies A. A formula A is a tautology if and only if $\emptyset \models_{\text {sl }} A$, i.e., if and only if A is true under every extended valuation. We usually write $\models_{\mathrm{sl}} A$ instead of $\emptyset \models{ }_{\mathrm{sl}} A$.

For the language \mathcal{L}, the new definition of tautology agrees with the old definition. It is easy to see that for both \mathcal{L} and $\mathcal{L}_{\mathrm{C}}^{*}$ every tautology is valid. The converse, while true for \mathcal{L}, is false for $\mathcal{L}_{\mathrm{C}}^{*}$. For example, the formula

$$
\forall v_{1}\left(P^{1} v_{1} \vee \neg P^{1} v_{1}\right)
$$

is valid but is not a tautology.

We now begin the proof of the Compactness Theorem for $\mathcal{L}_{\mathrm{C}}^{*}$. As we did with \mathcal{L}, we call a set Γ of formulas of $\mathcal{L}_{\mathrm{C}}^{*}$ finitely satisfiable if every finite subset of Γ is satisfiable. The Compactness Theorem we shall prove states that every finitely satisfiable set of sentences is satisfiable. The stronger statement with "sentences" replaced by "formulas" is true. The reasons why we prove only the weaker one are (a) simplicity and (b) considerations-to be explained later-involving the theory of deduction.

The analogue for formulas of the following lemma is true and has a proof like that of the lemma.

Lemma 3.6. Let Γ be a finitely satisfiable set of sentences of $\mathcal{L}_{\mathrm{C}}^{*}$ and let A be a sentence of $\mathcal{L}_{\mathrm{C}}^{*}$. Then either $\Gamma \cup\{A\}$ is finitely satisfiable or $\Gamma \cup\{\neg A\}$ is finitely satisfiable.

Proof. The proof is like the proof of Lemma 1.6. Assume for a contradiction neither $\Gamma \cup\{A\}$ nor $\Gamma \cup\{\neg A\}$ is finitely satisfiable. It follows that there are finite subsets Δ and Δ^{\prime} of Γ such that neither $\Delta \cup\{A\}$ nor $\Delta^{\prime} \cup\{\neg A\}$ is satisfiable. Since Γ is finitely satisfiable, the finite subset $\Delta \cup \Delta^{\prime}$ of Γ is satisfiable. Let \mathfrak{M} be a model in which $\Delta \cup \Delta^{\prime}$ is true. If $v_{\mathfrak{M}}(A)=\mathbf{T}$, then $\Delta \cup\{A\}$ is true in \mathfrak{M} and so $\Delta \cup\{A\}$ is satisfiable. Otherwise $\Delta^{\prime} \cup\{\neg A\}$ is true in \mathfrak{M} and so $\Delta^{\prime} \cup\{\neg A\}$ is satisfiable. In either case we have a contradiction.

Simplifying assumption. From now on we assume that the members of the set C can be arranged in a finite or infinite list. In the technical jargon of set theory, this is the assumption that C is countable. Most of the facts we shall prove can be proved without this assumption, but the proofs involve concepts beyond the scope of this course.

Our next lemma is the analogue for $\mathcal{L}_{\mathrm{C}}^{*}$ of Lemma 1.7. The main difference from the earlier lemma is that the set Γ^{*} has a fourth property. This property will be needed for the proof of Lemma 3.8, the analogue of Lemma 1.8. If A is a formula, x is a variable, and t is a variable or constant, then $A(x ; t)$ is the result of replacing each free occurrence of x in A by an occurrence of t. A set Γ of formulas is Henkin if and only if, for each formula A and each variable x, if (i) below holds, then (ii) also holds.
(i) $A(x ; c) \in \Gamma$ for all $c \in \mathrm{C}$.
(ii) $\forall x A \in \Gamma$.

Lemma 3.7. Let Γ be a finitely satisfiable set of sentences of $\mathcal{L}_{\mathrm{C}}^{*}$. Let C^{*} be a set gotten from C by adding infinitely many new constants. There is a set Γ^{*} of sentences of $\mathcal{L}_{\mathrm{C}^{*}}^{*}$ such that
(1) $\Gamma \subseteq \Gamma^{*}$;
(2) Γ^{*} is finitely satifiable;
(3) for every sentence A of $\mathcal{L}_{\mathrm{C}^{*}}^{*}$, either A belongs to Γ^{*} or $\neg A$ belongs to Γ^{*};
(4) Γ^{*} is Henkin.

Proof. In keeping with our simplying assumption, let c_{0}, c_{1}, \ldots, be all the constants of $\mathcal{L}_{\mathrm{C}^{*}}^{*}$.

Since $\mathcal{L}_{\mathrm{C}^{*}}^{*}$ has symbols that are not symbols of \mathcal{L}, we need to specify an alphabetical order for the symbols of $\mathcal{L}_{\mathrm{C}^{*}}^{*}$. Let that order be as follows.

$$
\begin{aligned}
& \neg, \vee,(,), \forall \\
& v_{0}, v_{1}, v_{2}, \ldots, \\
& c_{0}, c_{1}, c_{2}, \ldots, \\
& p_{0}, p_{1}, p_{2}, \ldots \\
& P_{0}^{1}, P_{1}^{1}, P_{2}^{1}, \ldots, \\
& P_{0}^{2}, P_{1}^{2}, P_{2}^{2}, \ldots,
\end{aligned}
$$

Now we give a method for listing all the sentences of $\mathcal{L}_{\mathrm{C}^{*}}^{*}$ in an infinite list. First list in alphabetical order all the sentences that have length 1 and contain no occurrences of variables, constants, sentence letters, or predicate letters with any subscript or superscript larger than 0 . Next list in alphabetical order all the sentences that have length ≤ 2 and contain no occurrences of variables, constants, sentence letters, or predicate letters with any subscript or superscript larger than 1 . Next list in alphabetical order all the sentences that have length ≤ 3 and contain no occurrences of variables, constants, sentence letters, or predicate letters with any subscript or superscript larger than 2 . Continue in this way.

Let the sentences of $\mathcal{L}_{\mathrm{C}^{*}}^{*}$, in the order listed, be

$$
A_{0}, A_{1}, A_{2}, A_{3}, \ldots
$$

We define, by recursion on natural numbers, a function that associates with each natural number n a set Γ_{n} of sentences of $\mathcal{L}_{\mathrm{C}}^{*}$.

Let $\Gamma_{0}=\Gamma$.

For each n, we shall make sure that at most two sentences belong to Γ_{n+1} but not to Γ_{n}. Since none of the constants added to C to get C^{*} occur in sentences in Γ, it follows that for each n only finitely many of the new constants occur in sentences in Γ_{n}.

We define Γ_{n+1} from Γ_{n} in two steps. For the first step, let

$$
\Gamma_{n}^{\prime}= \begin{cases}\Gamma_{n} \cup\left\{A_{n}\right\} & \text { if } \Gamma_{n} \cup\left\{A_{n}\right\} \text { is finitely satisfiable; } \\ \Gamma_{n} \cup\left\{\neg A_{n}\right\} & \text { otherwise } .\end{cases}
$$

Let $\Gamma_{n+1}=\Gamma_{n}^{\prime}$ unless both of the following hold.
(a) $\neg A_{n} \in \Gamma_{n}^{\prime}$.
(b) A_{n} is $\forall x_{n} B_{n}$ for some variable x_{n} and formula B_{n}.

Suppose that both (a) and (b) hold. Let i_{n} be the least i such that the constant c_{i} does not occur in any formula belonging to Γ_{n}^{\prime}. Such an i must exist, since only finitely many of the infinitely many new constants occur in sentences in Γ_{n}^{\prime}. Let

$$
\Gamma_{n+1}=\Gamma_{n}^{\prime} \cup\left\{\neg B_{n}\left(x_{n} ; c_{i_{n}}\right)\right\} .
$$

Let $\Gamma^{*}=\bigcup_{n} \Gamma_{n}$.
Because $\Gamma=\Gamma_{0} \subseteq \Gamma^{*}, \Gamma^{*}$ has property (1).
We prove by mathematical induction that Γ_{n} is finitely satisfiable for each n. Γ_{0} is finitely satifiable by hypothesis. ${ }^{1}$ Assume that Γ_{n} is finitely satisfiable. Lemma 3.6 implies that Γ_{n}^{\prime} is finitely satisfiable. If $\Gamma_{n+1}=\Gamma_{n}^{\prime}$, then Γ_{n+1} is finitely satisfiable. Assume then that (a) and (b) hold and so $\Gamma_{n+1}=\Gamma_{n}^{\prime} \cup\left\{\neg B_{n}\left(x_{n} ; c_{i_{n}}\right)\right\}$ and, in order to derive a contradiction, assume that Γ_{n+1} is not finitely satisfiable. For some finite subset Δ of $\Gamma_{n}^{\prime}, \Delta \cup\left\{\neg B_{n}\left(x_{n} ; c_{i_{n}}\right)\right\}$ is not satisfiable. Since Γ_{n}^{\prime} is finitely satisfiable and $\neg A_{n} \in \Gamma_{n}^{\prime}, \Delta \cup\left\{\neg A_{n}\right\}$ is satisfiable. Let $\mathfrak{M}=(\boldsymbol{D}, v, \chi)$ be a model for $\mathcal{L}_{\mathrm{C}^{*}}^{*}$ in which $\Delta \cup\left\{\neg A_{n}\right\}$ is true. Since A_{n} is $\forall x_{n} B_{n}, \forall x_{n} B_{n}$ is false in \mathfrak{M}. This means that there is a $d \in \boldsymbol{D}$ such that $v_{\mathfrak{M}}^{s}\left(B_{n}\right)=\mathbf{F}$ for any variable assignment s such that $s\left(x_{n}\right)=d$. Let $\mathfrak{M}^{\prime}=\left(\boldsymbol{D}, v, \chi^{\prime}\right)$ be just like \mathfrak{M}, except let

$$
\chi\left(c_{i_{n}}\right)=d .
$$

[^0]Since $c_{i_{n}}$ does not occur in B_{n},

$$
v_{\mathfrak{M}^{\prime}}\left(B_{n}\left(x_{n} ; c_{i_{n}}\right)\right)=\mathbf{F} .
$$

Since $c_{i_{n}}$ does not occur in Δ, Δ is true in \mathfrak{M}^{\prime}. Thus we have the contradiction that $\Delta \cup\left\{\neg B_{n}\left(x_{n} ; c_{i_{n}}\right)\right\}$ is satisfiable.

If Δ is any finite subset of Γ^{*}, then $\Delta \subseteq \Gamma_{n}$ for some n. Since Γ_{n} is finitely satisfiable, Δ is satisfiable. Thus Γ^{*} has property (2).

Because either A_{n} or $\neg A_{n}$ belongs to Γ_{n+1} for each n and because each $\Gamma_{n+1} \subseteq \Gamma^{*}, \Gamma^{*}$ has property (3).

Suppose that A_{n} is $\forall x_{n} B_{n}$. If $A_{n} \notin \Gamma^{*}$, then $A_{n} \notin \Gamma_{n+1}$ and so $\neg A_{n} \in$ Γ_{n+1}. But this implies that $\neg B_{n}\left(x_{n} ; c_{i_{n}}\right) \in \Gamma_{n+1} \subseteq \Gamma^{*}$. By property (2) of Γ^{*}, it follows that $B_{n}\left(x_{n} ; c_{i_{n}}\right) \notin \Gamma^{*}$. This argument shows that Γ^{*} has property (4).

Lemma 3.8. Let Γ^{*} be a set of sentences of a language $\mathcal{L}_{\mathrm{C}^{*}}^{*}$ having properties (2), (3), and (4) described in the statement of Lemma 3.7. Then Γ^{*} is satisfiable.

Proof. Define a model $\mathfrak{M}=(\boldsymbol{D}, v, \chi)$ for $\mathcal{L}_{\mathrm{C}^{*}}^{*}$ as follows.
(i) $\boldsymbol{D}=\mathrm{C}^{*}$.
(ii) (a) $v\left(p_{i}\right)=\mathbf{T}$ if and only if $p_{i} \in \Gamma^{*}$.
(b) $v\left(\left(P_{i}^{n}, c_{1}, \ldots, c_{n}\right)\right)=\mathbf{T}$ if and only if $P_{i}^{n} c_{1} \ldots c_{n} \in \Gamma^{*}$.
(iii) $\chi(c)=c$ for each $c \in \mathrm{C}^{*}$.

Let P be the property of being a sentence A such that

$$
v_{\mathfrak{M}}(A)=\mathbf{T} \text { if and only if } A \in \Gamma^{*} .
$$

We prove, by a variant of formula induction, that every sentence of $\mathcal{L}_{\mathrm{C}^{*}}^{*}$ has property P.
(i)(a) Sentence letters have P because $v_{\mathfrak{M}}\left(p_{i}\right)=v\left(p_{i}\right)$.
(i)(b) Atomic sentences $P_{i}^{n} c_{1} \ldots c_{n}$ have P because

$$
v_{\mathfrak{M}}\left(P_{i}^{n} c_{1} \ldots c_{n}\right)=v\left(\left(P_{i}^{n}, \chi\left(c_{1}\right), \ldots, \chi\left(c_{n}\right)\right)\right)=v\left(\left(P_{i}^{n}, c_{1}, \ldots, c_{n}\right)\right) .
$$

(ii) and (iii) The proof that $\neg A$ has P if A has P and that $(A \vee B)$ has P if A and B have P are just like the corresponding steps of the proof of Lemma 1.8.
(iv) Let A be a formula with no free occurrences of variables other than the variable x. Assume that, for every $c \in \mathrm{C}^{*}, A(x ; c)$ has P. We prove that $\forall x A$ has P.

$$
\begin{array}{ll}
v_{\mathfrak{M}}(\forall x A)=\mathbf{T} & \text { iff } \\
& \text { for all } s, v_{\mathfrak{M}}^{s}(A)=\mathbf{T} \\
& \text { iff } \\
& \text { for all } c \in \mathrm{C}^{*}, \text { for all } s \text { with } s(x)=c, v_{\mathfrak{M}}^{s}(A)=\mathbf{T} \\
& \text { iff all } c \in \mathrm{C}^{*}, v_{\mathfrak{M}}(A(x ; c))=\mathbf{T} \\
& \text { iff for all } c \in \mathrm{C}^{*}, A(x ; c) \in \Gamma^{*} \\
& \text { iff } \forall x A \in \Gamma^{*}
\end{array}
$$

The first "iff" is by the definition of $v_{\mathfrak{M}}$ and the fact that no variable besides x occurs free in A. The second "iff" is by the fact that no variable besides x occurs free in A and the fact that $\boldsymbol{D}=\mathrm{C}^{*}$. The third "iff" is by the fact that $\chi(c)=c$ for each $c \in \mathrm{C}^{*}$. The fourth "iff" is by the fact that the sentences $A(x ; c)$ have property P.

To see that the "if" part of the last "iff" holds, assume that $\forall x A \in \Gamma^{*}$ and that, for some $c \in \mathrm{C}^{*}, A(x ; c) \notin \Gamma^{*}$. By (3), $\neg A(x ; c) \in \Gamma^{*}$. Thus $\{\forall x A, \neg A(x ; c)\}$ is a finite subset of Γ^{*}. But this subset is not satisfiable, contradicting (2).

The "only if" part of the last "iff" holds by (4).
Since, in particular, $v_{\mathfrak{M}}(A)=\mathbf{T}$ for every member of A of Γ^{*}, we have shown that Γ^{*} is satisfiable.

Theorem 3.9 (Compactness). Let Γ be a finitely satisfiable set of sentences of $\mathcal{L}_{\mathrm{C}}^{*}$. Then Γ is satisfiable, i.e., true in a model for $\mathcal{L}_{\mathrm{C}}^{*}$.

Proof. By Lemma 3.7, let Γ^{*} have properties (1)-(4) of that lemma. By Lemma 3.8, Γ^{*} is satisfiable. Let \mathfrak{M}^{*} be a model for $\mathcal{L}_{\mathrm{C}^{*}}^{*}$ in which Γ^{*} is true. By (1), Γ is true in \mathfrak{M}^{*}. We can turn \mathfrak{M}^{*} into a model for $\mathcal{L}_{\mathrm{C}}^{*}$ in which Γ is true by throwing away the part of the χ of Γ^{*} that assigns objects to the constants in C^{*} that do not belong to C . (The resulting model \mathfrak{M} is called the reduct of \mathfrak{M}^{*} to $\mathcal{L}_{\mathrm{C}}^{*}$.)

Corollary 3.10 (Compactness, Second Form). Let Γ be a set of sentences of $\mathcal{L}_{\mathrm{C}}^{*}$ and let A be a sentence such that $\Gamma \models A$. Then there is a finite subset Δ of Γ such that $\Delta \models A$.

Proof. The proof is just like that of Corollary 1.10.

Exercise 3.5. For each of the following pairs (Γ, A), tell whether $\Gamma \models_{\mathrm{sl}} A$. Prove your answers.
(a) $\Gamma:\left\{\forall v_{1} P^{1} v_{1}, \forall v_{1}\left(P^{1} v_{1} \rightarrow P^{1} v_{2}\right\} ; A: P^{1} v_{2}\right.$;
(b) $\Gamma:\left\{\left(\forall v_{1} \neg P^{1} v_{1} \rightarrow p_{0}\right),\left(\neg \forall v_{2} P^{1} v_{2} \rightarrow \neg p_{0}\right)\right\} ; \quad A: \quad\left(\forall v_{2} P^{1} v_{2} \vee\right.$ $\left.\exists v_{1} P^{1} v_{1}\right)$:

Exercise 3.6. Let Γ^{*} be a set of sentences having properties (2) and (3) described in the statement of Lemma 3.7. Show that Γ^{*} is Henkin if and only if, for each formula A and each variable x, if (iii) below holds, then (iv) also holds.
(iii) $\exists x A \in \Gamma^{*}$.
(iv) $A(x ; c) \in \Gamma^{*}$ for some $c \in \mathrm{C}^{*}$.

Exercise 3.7. Let $\mathrm{C}=\{\mathbf{0}, \mathbf{1}, \mathbf{2}, \ldots\}$, where, e.g., $\mathbf{7}$ is the numeral "7." Let $\mathfrak{M}=(\boldsymbol{D}, v, \chi)$, where:

$$
\begin{aligned}
\boldsymbol{D}= & \{0,1,2, \ldots\} \\
v \text {-truth set }= & \left\{\left(P^{2}, m, n\right) \mid m \geq n\right\} \cup\left\{\left(P_{0}^{3}, m, n, p\right) \mid m+n=p\right\} \\
& \cup\left\{\left(P_{1}^{3}, m, n, p\right) \mid m \cdot n=p\right\} \\
\chi(\mathbf{n})= & n
\end{aligned}
$$

Let Σ be the set of all sentences true in \mathfrak{M}. Prove that there is a model $\mathfrak{M}^{\prime}=\left(\boldsymbol{D}^{\prime}, v^{\prime}, \chi^{\prime}\right)$ such that:
(a) Σ is true in \mathfrak{M}^{\prime};
(b) there is a $d \in \boldsymbol{D}^{\prime}$ such that, for every natural number $n,\left(P^{2}, d, \chi^{\prime}(\mathbf{n})\right)$ belongs to the v^{\prime}-truth set.

Hint. Let $\mathrm{C}^{*}=\mathrm{C} \cup\{c\}$. Describe the set Π of sentences involving c that need to be true in \mathfrak{M}^{\prime} if $\chi^{\prime}(c)$ is to be a d witnessing that (b) holds. Next show that $\Sigma \cup \Pi$ is finitely satisfiable. To do this, assume that Δ is a finite subset of Π. Show that \mathfrak{M} can be made into a model $\overline{\mathfrak{M}}=(\boldsymbol{D}, v, \bar{\chi})$ of $\Sigma \cup \Delta$ by an appropriate choice of $\bar{\chi}(c)$. Apply the Compactness Theorem to get a model \mathfrak{M}^{*} of $\Sigma \cup \Pi$. Finally let \mathfrak{M}^{\prime} be the reduct of \mathfrak{M}^{*} to $\mathcal{L}_{\mathrm{C}}^{*}$.

4 The semantics of full first-order logic

In this section we make two additions to the languages $\mathcal{L}_{\mathrm{C}}^{*}$ of $\S 3$. The first is the addition of a symbol for identity. The second is the addition of symbols that are used to denote functions.

The languages $\mathcal{L}_{=, \mathrm{C}}^{*}$ of predicate logic with identity.

For each set C of constant symbols, we have a language $\mathcal{L}_{=, \mathrm{C}}^{*}$.
Symbols of $\mathcal{L}_{=, \mathrm{C}}^{*}$: All symbols of $\mathcal{L}_{\mathrm{C}}^{*}$ plus the symbol $=$.
Formulas of $\mathcal{L}_{=, \mathrm{C}}^{*}$: Modify the definition, given on page 24 , of formulas of $\mathcal{L}_{\mathrm{C}}^{*}$ by renumbering clause (6) as clause (7) and adding the following clause.
(6) If t_{1} and t_{2} are variables or constants, then $t_{1}=t_{2}$ is a formula.

Remark. Unique readability holds for $\mathcal{L}_{=, \mathrm{C}}^{*}$ by a proof very similar to the proof that it holds for $\mathcal{L}_{\mathrm{C}}^{*}$.

Models for $\mathcal{L}_{=, \mathrm{C}}^{*}:$ Models for $\mathcal{L}_{=, \mathrm{C}}^{*}$ are the same as models for $\mathcal{L}_{\mathrm{C}}^{*}$.
Satisfaction and truth for $\mathcal{L}_{=, \mathrm{C}}^{*}$:
The notions of a variable assignment and of $\operatorname{den}_{\mathfrak{M}}^{s}$ are the same as for $\mathcal{L}_{\mathrm{C}}^{*}$. The definition of $v_{\mathfrak{M}}^{s}$ is the same as that for $\mathcal{L}_{=, \mathrm{C}}^{*}$, except that there is an extra subclause of the atomic clause (i):

$$
\text { (c) } v_{\mathfrak{M}}^{s}\left(t_{1}=t_{2}\right)= \begin{cases}\mathbf{T} & \text { if } \operatorname{den}_{\mathfrak{M}}^{s}\left(t_{1}\right)=\operatorname{den}_{\mathfrak{M}}^{s}\left(t_{2}\right) ; \\ \mathbf{F} & \text { if } \operatorname{den}_{\mathfrak{M}}^{s}\left(t_{1}\right) \neq \operatorname{den}_{\mathfrak{M}}^{s}\left(t_{2}\right)\end{cases}
$$

Satisfaction and truth are defined as for $\mathcal{L}_{\mathrm{C}}^{*}$.
Logical implication for $\mathcal{L}_{=, \mathrm{C}}^{*}$: Logical implication, validity, and satisfiability are defined as for $\mathcal{L}_{\mathrm{C}}^{*}$.

Example. The following formulas are valid.
(a) $v_{1}=v_{1}$
(d) $v_{1}=v_{2} \rightarrow\left(P^{1} v_{1} \leftrightarrow P^{1} v_{2}\right)$
(b) $\forall v_{1} v_{1}=v_{1}$
(e) $\forall v_{1} \forall v_{2}\left(v_{1}=v_{2} \rightarrow\left(P^{1} v_{1} \leftrightarrow P^{1} v_{2}\right)\right)$
(c) $\exists v_{1} v_{1}=v_{1}$
(f) $v_{1}=c \rightarrow\left(c=v_{2} \rightarrow v_{1}=v_{2}\right)$

The proof of the Compactness Theorem for $\mathcal{L}_{=, \mathrm{C}}^{*}$ is similar to that for $\mathcal{L}_{\mathrm{C}}^{*}$, but there is one important difference, as we shall see.

Lemma 4.1. Let Γ be a finitely satisfiable set of sentences of $\mathcal{L}_{=, \mathrm{C}}^{*}$ and let A be a sentence of $\mathcal{L}_{=, \mathrm{C}}^{*}$. Then either $\Gamma \cup\{A\}$ is finitely satisfiable or $\Gamma \cup\{\neg A\}$ is finitely satisfiable.

Proof. The proof is exactly like that of Lemma 3.6.
Lemma 4.2. Let Γ be a finitely satisfiable set of sentences of $\mathcal{L}_{=, \mathrm{C}}^{*} \cdot$ Let C^{*} be a set gotten from C by adding infinitely many new constants. There is a set Γ^{*} of sentences of $\mathcal{L}_{=, \mathrm{C}^{*}}^{*}$ such that
(1) $\Gamma \subseteq \Gamma^{*}$;
(2) Γ^{*} is finitely satifiable;
(3) for every sentence A of $\mathcal{L}_{=, \mathrm{C}^{*}}^{*}$, either A belongs to Γ^{*} or $\neg A$ belongs to Γ^{*};
(4) Γ^{*} is Henkin.

Proof. The only change we have to make in the proof of Lemma 3.7 is that we must specify an alphabetical order for the symbols of $\mathcal{L}_{=, \mathrm{C}^{*}}^{*}$. Let us do this by letting the new symbol $=$ come immediately after \forall.

Lemma 4.3. Let Γ^{*} be a set of sentences of a language $\mathcal{L}_{=, \mathrm{C}^{*}}^{*}$ having properties (2), (3), and (4) described in the statement of Lemma 4.2. Then Γ^{*} is satisfiable.

Proof. We wish to begin, as we did in the proof of Lemma 3.8, by using Γ^{*} to define a model for $\mathcal{L}_{=, C^{*}}^{*}$. But we must not define the model as we did before (on page 34). To see this, assume that we did use the old definition. Let c_{1} and c_{2} be two distinct members of C^{*} and suppose that the sentence $c_{1}=c_{2}$ belongs to Γ^{*}, as is possible. Since $\chi\left(c_{1}\right)=c_{1}, \chi\left(c_{2}\right)=c_{2}$, and c_{1} and c_{2} are distinct objects, the new clause (i)(c) in the definition of $v_{\mathfrak{M}}^{s}$ implies that $v_{\mathfrak{M}}\left(c_{1}=c_{2}\right)=\mathbf{F}$. Thus it is not the case that, for all formulas A, $v_{\mathfrak{M}}(A)=\mathbf{T}$ if and only if $A \in \Gamma^{*}$. But for the proof of Lemma 3.8 it was critical that this was the case. If we are to define a model for which it is the case, then we must make sure that

$$
\text { if } c_{1}=c_{2} \in \Gamma^{*}, \text { then } \chi\left(c_{1}\right)=\chi\left(c_{2}\right)
$$

A 2-place relation R on a set X is an equivalence relation on X if and only if all three of the following conditions are satisfied.
(a) R is reflexive: $R x x$ holds for all $x \in X$.
(b) R is symmetric: if $x \in X$ and $y \in X$ and $R x y$ holds, then $R y x$ holds.
(c) R is transitive: if $x \in X, y \in X, z \in X$, and both $R x y$ and $R y z$ hold, then $R x z$ holds.

If R is an equivalence relation on X, then R divides X up into equivalence classes. For $x \in X$, let $[x]_{R}$, the equivalence class of x with respect to R, be defined by

$$
[x]_{R}=\{y \in X \mid R x y \text { holds }\}
$$

Let R be the relation on C^{*} defined by

$$
R c_{1} c_{2} \text { holds iff } c_{1}=c_{2} \in \Gamma^{*}
$$

We shall prove that R is an equivalence relation on C^{*}.
For reflexivity, we must show that $c=c$ belongs to Γ^{*} for all members c of C^{*}. Assume that $c=c \notin \Gamma^{*}$. By property (3) of $\Gamma^{*}, c \neq c \in \Gamma^{*}$, where we use $t \neq t^{\prime}$ as an abbreviation for $\neg t=t^{\prime}$. But then $\{c \neq c\}$ is a finite subset of Γ^{*} that is not satisfiable, contradicting (2).

For symmetry, we must show that, for all members c_{1} and c_{2} of Γ^{*}, if $c_{1}=c_{2} \in \Gamma^{*}$, then $c_{2}=c_{1} \in \Gamma^{*}$. Assume that $c_{1}=c_{2} \in \Gamma^{*}$ but $c_{2}=c_{1} \notin \Gamma^{*}$. Using (3), we get that $\left\{c_{1}=c_{2}, c_{2} \neq c_{1}\right\}$ is a finite subset of Γ^{*}. Once again, we contradict (2).

For transitivity, we must show that, for all members c_{1}, c_{2}, and c_{3} of Γ^{*}, if $c_{1}=c_{2} \in \Gamma^{*}$ and $c_{2}=c_{3} \in \Gamma^{*}$, then $c_{1}=c_{3} \in \Gamma^{*}$. Assume that $c_{1}=c_{2} \in \Gamma^{*}$ and $c_{2}=c_{3} \in \Gamma^{*}$ but $c_{1}=c_{3} \notin \Gamma^{*}$. By (3), $\left\{c_{1}=c_{2}, c_{2}=c_{3}, c_{1} \neq c_{3}\right\}$ is a finite subset of Γ^{*}, contradicting (2).

Define a model $\mathfrak{M}=(\boldsymbol{D}, v, \chi)$ for $\mathcal{L}_{=, \mathrm{C}^{*}}^{*}$ as follows.
(i) $\boldsymbol{D}=\left\{[c]_{R} \mid c \in \mathrm{C}^{*}\right\}$.
(ii) (a) $v\left(p_{i}\right)=\mathbf{T}$ if and only if $p_{i} \in \Gamma^{*}$.
(b) $v\left(\left(P_{i}^{n},\left[c_{1}\right]_{R}, \ldots,\left[c_{n}\right]_{R}\right)\right)=\mathbf{T}$ if and only if $P_{i}^{n} c_{1} \ldots c_{n} \in \Gamma^{*}$.
(iii) $\chi(c)=[c]_{R}$ for each $c \in \mathrm{C}^{*}$.

To see that (ii)(b) is a genuine definition, we need to show that the truthvalue it assigns does not depend on the choice of representatives c_{j} of the equivalence classes. To show this, assume that $\left[c_{j}\right]_{R}=\left[c_{j}^{\prime}\right]_{R}$ for $1 \leq j \leq n$. By the definition of the equivalence classes, we have that $R c_{j} c_{j}^{\prime}$ holds for $1 \leq j \leq n$. By the definition of R, we get that the sentence $c_{j}=c_{j}^{\prime}$ belongs to Γ^{*} for $1 \leq j \leq n$. We must show that $P_{i}^{n} c_{1} \ldots c_{n} \in \Gamma^{*}$ if and only if
$P_{i}^{n} c_{1}^{\prime} \ldots c_{n}^{\prime} \in \Gamma^{*}$. For the "only if" direction, assume that $P_{i}^{n} c_{1} \ldots c_{n} \in \Gamma^{*}$ and that $P_{i}^{n} c_{1}^{\prime} \ldots c_{n}^{\prime} \notin \Gamma^{*}$. By (3), $\neg P_{i}^{n} c_{1}^{\prime} \ldots c_{n}^{\prime} \in \Gamma^{*}$. Thus

$$
\left\{P_{i}^{n} c_{1} \ldots c_{n}, P_{i}^{n} c_{1}^{\prime} \ldots c_{n}^{\prime}, c_{1}=c_{1}^{\prime}, \ldots, c_{n}=c_{n}^{\prime}\right\}
$$

is a finite subset of $\Gamma *$. By (2) it is satisfiable. This is a contradiction. The "if" direction is similar.

Let P be the property of being a sentence A such that

$$
v_{\mathfrak{M}}(A)=\mathbf{T} \text { if and only if } A \in \Gamma^{*}
$$

We prove, by the same variant of formula induction as we used in the proof of Lemma 3.8 , that every sentence of $\mathcal{L}_{=, \mathrm{C}^{*}}^{*}$ has property P.

There are only two cases that are significantly different from the corresponding cases in the proof of Lemma 3.8, so we omit the other cases.
(i)(c) Atomic sentences $c_{1}=c_{2}$ have P because

$$
v_{\mathfrak{M}}\left(c_{1}=c_{2}\right)=\mathbf{T} \text { iff } \chi\left(c_{1}\right)=\chi\left(c_{2}\right) \text { iff }\left[c_{1}\right]_{R}=\left[c_{2}\right]_{R} \text { iff } c_{1}=c_{2} \in \Gamma^{*}
$$

(iv) Let A be a formula with no free occurrences of variables other than the variable x. Assume that, for every $c \in \mathrm{C}^{*}, A(x ; c)$ has P. We prove that $\forall x A$ has P.

```
\(v_{\mathfrak{M}}(\forall x A)=\mathbf{T} \quad\) iff \(\quad\) for all \(s, v_{\mathfrak{M}}^{s}(A)=\mathbf{T}\)
    iff for all \(c \in \mathrm{C}^{*}\), for all \(s\) with \(s(x)=[c]_{R}, v_{\mathfrak{M}}^{s}(A)=\mathbf{T}\)
    iff for all \(c \in \mathrm{C}^{*}, v_{\mathfrak{M}}(A(x ; c))=\mathbf{T}\)
    iff for all \(c \in \mathrm{C}^{*}, A(x ; c) \in \Gamma^{*}\)
    iff \(\forall x A \in \Gamma^{*}\)
```

The first "iff" is by the definition of $v_{\mathfrak{M}}$ and the fact that no variable besides x occurs free in A. The second "iff" is by the fact that no variable besides x occurs free in A and the fact that $\boldsymbol{D}=\left\{[c]_{R} \mid c \in \mathrm{C}^{*}\right\}$. The third "iff" is by the fact that $\chi(c)=[c]_{R}$ for each $c \in \mathrm{C}^{*}$. The fourth "iff" is by the fact that the sentences $A(x ; c)$ have property P. The proof that the fifth "iff" holds is exactly the same as the corresponding step in the proof of Lemma 3.8.

Since, in particular, $v_{\mathfrak{M}}(A)=\mathbf{T}$ for every member of A of Γ^{*}, we have shown that Γ^{*} is satisfiable.

The proof of the two Compactness Theorems that follow are just like the proofs Theorem 3.9 and Theorem 3.10.

Theorem 4.4 (Compactness). Let Γ be a finitely satisfiable set of sentences of $\mathcal{L}_{=, \mathrm{C}}^{*}$. Then Γ is satisfiable, i.e., true in a model for $\mathcal{L}_{=, \mathrm{C}}^{*}$.

Corollary 4.5 (Compactness, Second Form). Let Γ be a set of sentences of $\mathcal{L}_{=, \mathrm{C}}^{*}$ and let A be a sentence such that $\Gamma \models A$. Then there is a finite subset Δ of Γ such that $\Delta \models A$.

Exercise 4.1. Exhibit a sentence of $\mathcal{L}_{=, \emptyset}^{*}$ that is true in every model with exactly three elements and is false in all other models.

Exercise 4.2. Tell which of the following sentences of $\mathcal{L}_{=,\{c\}}^{*}$ are valid. If a sentence is valid, explain briefly why. If it is invalid, give a model in which it is false.
(a) $\forall v_{1} c=c$
(c) $\forall v_{1}\left(P^{1} v_{1} \rightarrow \exists v_{2}\left(v_{1}=v_{2} \wedge P^{1} v_{2}\right)\right)$
(b) $\forall v_{1} \forall v_{2} P^{2} v_{1} v_{2} \rightarrow \forall v_{1} \forall v_{2} v_{1}=v_{2}$
(d) $\forall v_{1}\left(P^{1} v_{1} \rightarrow \forall v_{2}\left(P^{1} v_{2} \rightarrow v_{1}=v_{2}\right)\right)$

The languages $\mathcal{L}_{\mathrm{C}}^{\#}$ of full first-order logic.

For each set C of constant symbols, we have a language $\mathcal{L}_{\mathrm{C}}^{\#}$.
Symbols of $\mathcal{L}_{\mathrm{C}}^{\#}$: All symbols of all symbols of $\mathcal{L}_{=, \mathrm{C}}^{*}$ plus n-place function letters

$$
F_{0}^{n}, F_{1}^{n}, F_{2}^{n}, \ldots
$$

for each $n \geq 1$.
Terms of $\mathcal{L}_{\mathrm{C}}^{\#}$:
(1) Each variable or constant is a term.
(2) For each n and i, if t_{1}, \ldots, t_{n} are terms, then $F_{i}^{n} t_{1} \ldots t_{n}$ is a term.
(3) Nothing is a term unless its being one follows from (1)-(2).

Example of a term:

$$
F_{1}^{3} F_{2}^{2} c F_{0}^{1} v_{4} v_{6} F_{0}^{1} c
$$

Remarks:

(a) As we shall see, terms are expressions that, in a model and under a variable assignment, denote a member of the domain of the model. The terms of $\mathcal{L}_{\mathrm{C}}^{*}$ and $\mathcal{L}_{=, \mathrm{C}}^{*}$ are-let us retroactively specify-the variables and constants. Variables and constants are the atomic terms of a language. The new ingredients of $\mathcal{L}_{\mathrm{C}}^{\#}$ are the complex terms given by clause (2) above.
(b) Just as we can do proof by formula induction and definition by recursion on formulas, so we can do term induction and definition by recursion on terms. In proving by term induction that all terms have a property P, we must (1) show that all variables and constants have P and (2) show that whenever t_{1}, \ldots, t_{n} are terms that have P then $F_{i}^{n} t_{1} \ldots t_{n}$ has P.

Formulas of $\mathcal{L}_{\mathrm{C}}^{\#}$: Replace clauses (2) and (6) in the definition of formulas of $\mathcal{L}_{=, \mathrm{C}}^{*}$ by the following clauses.
(2) For each n and i, if t_{1}, \ldots, t_{n} are terms, then $P_{i}^{n} t_{1} \ldots t_{n}$ is a formula.
(6) If t_{1} and t_{2} are terms, then $t_{1}=t_{2}$ is a formula.

Note that, with our retroactive definition of term for $\mathcal{L}_{\mathrm{C}}^{*}$ and $\mathcal{L}_{=, \mathrm{C}}^{*}$, the new clauses (2) and (6) have the same meaning as the old (2) and (6).

Remark. The proof of unique readability for formulas of $\mathcal{L}_{\mathrm{C}}^{\#}$ has a preliminary step. One first needs to prove Unique Readability for Terms. This states that every term is either a variable or constant or else is $F_{i}^{n} t_{1} \ldots t_{n}$ for unique n, i, and t_{1}, \ldots, t_{n}. The rest of the proof of unique readability for formulas is similar to the proof for the other languages.

Models for $\mathcal{L}_{\mathrm{C}}^{\#}$:
A model for $\mathcal{L}_{\mathrm{C}}^{\#}$ is a triple $\mathfrak{M}=(\boldsymbol{D}, v, \chi)$ satisfying conditions (i) and (ii) in the definition of a model for $\mathcal{L}_{=, C}^{*}$ and satisfying the following condition:
(iii) χ is a function that assigns
(a) a member of \boldsymbol{D} to each constant;
(b) a member of \boldsymbol{D} to each $(n+1)$-tuple of the form $\left(F_{i}^{n}, d_{1}, \ldots, d_{n}\right)$ for d_{1}, \ldots, d_{n} members of \boldsymbol{D}.

Satisfaction, truth, and logical implication for $\mathcal{L}_{\mathrm{C}}^{\#}$:
The notion of a variable assignment is the same as for $\mathcal{L}_{\mathrm{C}}^{*}$ and $\mathcal{L}_{=, \mathrm{C}}^{*}$.
The definition of den $\mathfrak{M}_{\mathfrak{M}}^{\mathfrak{S}}$ for the other languages has to be extended so that $\operatorname{den}_{\mathfrak{M}}^{s}(t)$ is defined for all terms t. The definition is by recursion on terms.
(1) $\operatorname{den}_{\mathfrak{M}}^{s}(t)=s(t)$ if t is a variable, and $\operatorname{den}_{\mathfrak{M}}^{s}(t)=\chi(t)$ if t is a constant.
(2) $\operatorname{den}_{\mathfrak{M}}^{s}\left(F_{i}^{n} t_{1} \ldots t_{n}\right)=\chi\left(\left(F_{i}^{n}, \operatorname{den}_{\mathfrak{M}}^{s}\left(t_{1}\right), \ldots, \operatorname{den}_{\mathfrak{M}}^{s}\left(t_{n}\right)\right)\right)$.

The definitions of satisfaction, truth, logical implication, validity, and satisfiability are word for word the same as for $\mathcal{L}_{=, \mathrm{C}}^{*}$.

The proof of the Compactness Theorem for $\mathcal{L}_{\mathrm{C}}^{\#}$ is very much like that for $\mathcal{L}_{=, \mathrm{C}}^{*}$. We list the lemmas and indicate the ways the proofs of the analogous earlier lemmas are to be modified.

Lemma 4.6. Let Γ be a finitely satisfiable set of sentences of $\mathcal{L}_{\mathrm{C}}^{\#}$ and let A be a sentence of $\mathcal{L}_{\mathrm{C}}^{\#}$. Then either $\Gamma \cup\{A\}$ is finitely satisfiable or $\Gamma \cup\{\neg A\}$ is finitely satisfiable.

Lemma 4.7. Let Γ be a finitely satisfiable set of sentences of $\mathcal{L}_{\mathrm{C}}^{\#}$. Let C^{*} be a set gotten from C by adding infinitely many new constants. There is a set Γ^{*} of sentences of $\mathcal{L}_{\mathrm{C}^{*}}^{\#}$ such that
(1) $\Gamma \subseteq \Gamma^{*}$;
(2) Γ^{*} is finitely satifiable;
(3) for every sentence A of $\mathcal{L}_{\mathrm{C}^{*}}^{\#}$, either A belongs to Γ^{*} or $\neg A$ belongs to Γ^{*};
(4) Γ^{*} is Henkin.

Proof. The only change we have to make in the proof of Lemma 4.2 is that we must specify an alphabetical order for the symbols of $\mathcal{L}_{\mathrm{C}^{*}}^{\#}$. Let us do this by letting the new symbols F_{i}^{n} come after the symbols of $\mathcal{L}_{=, \mathrm{C}^{*}}^{*}$, ordered first by superscript and then by subscript.

Lemma 4.8. Let Γ^{*} be a set of sentences of a language $\mathcal{L}_{\mathrm{C}^{*}}^{\#}$ having properties (2), (3), and (4) described in the statement of Lemma 4.7. Then Γ^{*} is satisfiable.

Proof. We need to make two additions to the proof of Lemma 4.3.
First we let

$$
\chi\left(\left(F_{i}^{n},\left[c_{1}\right]_{R}, \ldots,\left[c_{n}\right]_{R}\right)\right)=[c]_{R} \quad \text { iff } \quad F_{i}^{n} c_{1} \ldots c_{n}=c \in \Gamma^{*} .
$$

It fairly easy to see that the definition does not depend on the choice of elements of equivalence classes. It is also easy to show-and we need to do so- that for all c_{1}, \ldots, c_{n}, there is a c such that $F_{i}^{n} c_{1} \ldots c_{n}=c \in \Gamma^{*}$.

We also need to change clause (ii)(b) to make it analogous to the clause above.

The other change we have to make is in the atomic cases (i)(b) and (i)(c) of the proof that all formulas have property P.

Before considering the proofs of these facts, we first prove another fact that we will need in these proofs.

Say that a term t containing no variables has property Q if and only if, for every $c \in \mathbf{C}^{*}$,

$$
\text { if den } \mathfrak{M}_{\mathfrak{M}}(t)=[c]_{R} \text { then } t=c \in \Gamma^{*},
$$

where $\operatorname{den}_{\mathfrak{M}}(t)$ is the common value of the $\operatorname{den}_{\mathfrak{M}}^{s}(t)$. We prove by a variant of term induction that all terms without variables have Q.
(1) If t is a constant, then $\operatorname{den}_{\mathfrak{M}}(t)=[t]_{R}$. By definition of $[c]_{R}, t=c$ belongs to Γ^{*} if and only if $[t]_{R}=[c]_{R}$. Thus t has Q.
(2) Assume that t_{1}, \ldots, t_{n} have Q and let t be $F_{i}^{n} t_{1} \ldots t_{n}$. Let $\operatorname{den}_{\mathfrak{M}}\left(t_{i}\right)=$ $\left[c_{i}\right]_{R}$ for $1 \leq i \leq n$. Since the t_{i} have Q, the sentence $t_{i}=c_{i}$ belongs to Γ^{*} for each i. Let $\operatorname{den}_{\mathfrak{M}}(t)=[c]_{R}$. By the definition of den $n_{\mathfrak{M}}$, it follows that

$$
\begin{aligned}
\operatorname{den}_{\mathfrak{M}}\left(F_{i}^{n} c_{1} \ldots c_{n}\right) & =\chi\left(\left(F_{i}^{n},\left[c_{1}\right]_{R}, \ldots,\left[c_{n}\right]_{R}\right)\right) \\
& =\operatorname{den}_{\mathfrak{M}}\left(F_{i}^{n} t_{1} \ldots t_{n}\right) \\
& =\operatorname{den}_{\mathfrak{M}}(t) \\
& =[c]_{R}
\end{aligned}
$$

By the definition of $v\left(\left(F_{i}^{n},\left[c_{1}\right]_{R}, \ldots,\left[c_{n}\right]_{R}\right)\right)$, we have that $F_{i}^{n} c_{1} \ldots c_{n}=c$ belongs to Γ^{*}. Assume that $F_{i}^{n} t_{1} \ldots t_{n}=c$ does not belong to Γ^{*}. By property (3) of $\Gamma^{*}, F_{i}^{n} t_{1} \ldots t_{n} \neq c$ belongs to Γ^{*}. Since $t_{i}=c_{i} \in \Gamma^{*}$ for every i, the set

$$
\left\{t_{1}=c_{1}, \ldots, t_{n}=c_{n}, F_{i}^{n} c_{1} \ldots c_{n}=c, F_{i}^{n} t_{1} \ldots t_{n} \neq c\right\}
$$

is a finite subset of Γ^{*}. This set is not satisfiable, and so we have contradicted property (2) of Γ^{*}. In doing so, we have shown that t has Q.

Now we are ready for cases (i)(b) and (i)(c) of the property P proof. Let $\operatorname{den}_{\mathfrak{M}}\left(t_{i}\right)=\left[c_{i}\right]_{R}$ for $1 \leq i \leq n$. Since the t_{i} have $Q, t_{i}=c_{i} \in \Gamma^{*}$ for each i.

$$
\begin{array}{lll}
v_{\mathfrak{M}}\left(P_{i}^{n} t_{1} \ldots t_{n}\right)=\mathbf{T} & \text { iff } & v\left(\left(P_{i}^{n}, \operatorname{den}_{\mathfrak{M}}\left(t_{1}\right), \operatorname{den}_{\mathfrak{M}}\left(t_{n}\right)\right)\right)=\mathbf{T} \\
& \text { iff } & v\left(\left(P_{i}^{n},\left[c_{1}\right]_{R}, \ldots,\left[c_{n}\right]_{R}\right)\right)=\mathrm{T} \\
& \text { iff } & P_{i}^{n} c_{1} \ldots c_{n} \in \Gamma^{*} \\
& \text { iff } & P_{i}^{n} t_{1} \ldots t_{n} \in \Gamma^{*},
\end{array}
$$

where the last iff is by properties (2) and (3) of Γ^{*}.
The proof for case (i)(c) is similar, and we omit it.

Theorem 4.9 (Compactness). Let Γ be a finitely satisfiable set of sentences of $\mathcal{L}_{\mathrm{C}}^{\#}$. Then Γ is satisfiable, i.e., true in a model for $\mathcal{L}_{\mathrm{C}}^{\#}$.

Corollary 4.10 (Compactness, Second Form). Let Γ be a set of sentences of $\mathcal{L}_{\mathrm{C}}^{\#}$ and let A be a sentence such that $\Gamma \models A$. Then there is a finite subset Δ of Γ such that $\Delta \models A$.

Exercise 4.3. Which of the following sentences are valid? For each one, explain or give (the relevant part of) a counter-model.
(a) $\exists v_{1} F^{3} v_{2} c v_{3}=v_{1}$
(b) $\forall v_{1} \forall v_{2}\left(v_{1} \neq v_{2} \rightarrow F^{1} v_{1} \neq F^{1} v_{2}\right) \rightarrow \forall v_{1} \exists v_{2} F^{1} v_{2}=v_{1}$

Exercise 4.4. Give the omitted case (i)(c) in the proof of Lemma 4.8.

5 Deduction in First-Order Logic

The system $\mathrm{FOL}_{\mathrm{C}}$.

Let C be a set of constant symbols. $\mathrm{FOL}_{\mathrm{C}}$ is a system of deduction for the language $\mathcal{L}_{\mathrm{C}}^{\#}$.

Axioms: The following are axioms of $\mathbf{F O L}_{\mathrm{C}}$.
(1) All tautologies.
(2) Identity Axioms:
(a) $t=t$
for all terms t;
(b) $t_{1}=t_{2} \rightarrow\left(A\left(x ; t_{1}\right) \rightarrow A\left(x ; t_{2}\right)\right)$
for all terms t_{1} and t_{2}, all variables x, and all formulas A such that there is no variable y occurring in t_{1} or t_{2} with a free occurrence of x in A in a subformula of A of the form $\forall y B$.
(3) Quantifier Axioms:

$$
\forall x A \rightarrow A(x ; t)
$$

for all formulas A, variables x, and terms t such that there is no variable y occurring in t with a free occurrence of x in A in a subformula of A of the form $\forall y B$.

Rules of Inference:

$$
\begin{array}{ll}
\text { Modus Ponens (MP) } & \frac{A,(A \rightarrow B)}{B} \\
\text { Quantifier Rule }(\mathrm{QR}) & \frac{(A \rightarrow B)}{(A \rightarrow \forall x B)}
\end{array}
$$

provided the variable x does not occur free in A.
Discussion of the axioms and rules.
(1) We would have gotten an equivalent system of deduction if instead of taking all tautologies as axioms we had taken as axioms all instances (in $\mathcal{L}_{\mathrm{C}}^{\#}$) of the five schemas on page 13. All instances of these schemas are tautologies, so the change would have not have increased what we could deduce. In the
other direction, we can apply the proof of the Completeness Theorem for SL by thinking of all sententially atomic formulas as sentence letters. The proof so construed shows that every tautology in $\mathcal{L}_{\mathrm{C}}^{\#}$ is deducible using MP and schemas (1)-(5). Thus the change would not have decreased what we could deduce.
(2) Identity Axiom Schema (a) is self-explanatory. Schema (b) is a formal version of the Indiscernibility of Identicals, also called Leibniz's Law.
(3) The Quantifer Axiom Schema is often called the schema of Universal Instantiation. Its idea is that whatever is true of a all objects in the domain is true of whatever object t might denote. The reason for the odd-looking restriction is that instances where the restriction fails do not conform to the idea. Here is an example. Let A be $\exists v_{2} v_{1} \neq v_{2}$, let x be v_{1} and let t be v_{2}. The instance of the schema would be

$$
\forall v_{1} \exists v_{2} v_{1} \neq v_{2} \rightarrow \exists v_{2} v_{2} \neq v_{2} .
$$

The antecedent is true in all models whose domains have more than one element, but the consequent is not satisfiable.
(MP) Modus ponens is the rule we are familiar with from the system SL.
(QR) As we shall explain later, the Quantifier Rule is not a valid rule. The reason it will be legitimate for us to use it as a rule is that we shall allow only sentences as premises of our deductions. How this works will be explained in the proof of the Soundness Theorem.

Deductions: A deduction in $\mathbf{F O L}_{\mathrm{C}}$ from a set Γ of sentences is a finite sequence \mathbf{D} of formulas such that whenever a formula A occurs in the sequence D then at least one of the following holds.
(1) $A \in \Gamma$.
(2) A is an axiom.
(3) A follows by modus ponens from two formulas occurring earlier in the sequence \mathbf{D} or follows by the Quantifier Rule from a formula occurring earlier in \mathbf{D}.

A deduction in $\mathbf{F O L}_{C}$ of a formula A from a set Γ of sentences is a deduction \mathbf{D} in $\mathbf{F O L}_{\mathrm{C}}$ from Γ with A on the last line of \mathbf{D}. We write $\Gamma \vdash_{\mathbf{F O L}_{\mathrm{C}}} A$ and say A is deducible in $\mathbf{F O L}_{\mathrm{C}}$ from Γ to mean that there is a deduction in $\mathbf{F O L}_{\mathrm{C}}$ of A from Γ. We write $\vdash_{\mathbf{F O L}_{\mathrm{C}}} A$ for $\emptyset \vdash_{\mathbf{F O L}_{\mathrm{C}}} A$.

Announement. For the rest of this section, we shall omit subscripts "FOL ${ }_{C}$." and phrases "in $\mathbf{F O L}_{C}$ " except in contexts where we are considering more than one set C .

In order to avoid dealing directly with long formulas and long deductions, it will be useful to begin by justifying some derived rules.

Lemma 5.1. Assume that $\Gamma \vdash A_{i}$ for $1 \leq i \leq n$ and $\left\{A_{1}, \ldots, A_{n}\right\} \not \models_{\mathrm{sl}} B$. Then $\Gamma \vdash B$. (See page 30 for the definition of \models_{sl}.)

Proof. If we string together deductions witnessing that $\Gamma \vdash A_{i}$ for each i, then we get a deduction from Γ in which each A_{i} is a line. The fact that $\left\{A_{1}, \ldots, A_{n}\right\} \not \models_{\text {sl }} B$ gives us that the formula

$$
\left(A_{1} \rightarrow A_{2} \rightarrow \cdots A_{n} \rightarrow B\right)
$$

is a tautology. Appending this formula to our deduction and applying MP n times, we get B.

Lemma 5.1 justifies a derived rule, which we call SL. A formula B follows from formulas A_{1}, \ldots, A_{n} by SL iff

$$
\left\{A_{1}, \ldots, A_{n}\right\} \neq_{\mathrm{sl}} B
$$

Lemma 5.2. If $\Gamma \vdash A$ then $\Gamma \vdash \forall x A$.
Proof. Assume that $\Gamma \vdash A$. Begin with a deduction from Γ with last line A. Use SL to get the line $\left(p_{0} \vee \neg p_{o}\right) \rightarrow A$. Now apply QR to get $\left(p_{0} \vee \neg p_{o}\right) \rightarrow \forall x A$. Finally use SL to get $\forall x A$.

Lemma 5.2 justifies a derived rule, which we call Gen:

$$
\text { Gen } \quad \frac{A}{\forall x A}
$$

Lemma 5.3. For all formulas A and B,

$$
\vdash \forall x(A \rightarrow B) \rightarrow(\forall x A \rightarrow \forall x B)
$$

Proof. Here is an abbreviated deduction.

1. $\forall x(A \rightarrow B) \rightarrow(A \rightarrow B) \quad$ QAx
2. $\forall x A \rightarrow A \quad$ QAx
3. $(\forall x(A \rightarrow B) \wedge \forall x A) \rightarrow B \quad 1,2 ; \mathrm{SL}$
4. $(\forall x(A \rightarrow B) \wedge \forall x A) \rightarrow \forall x B \quad 3 ; \mathrm{QR}$
5. $\forall x(A \rightarrow B) \rightarrow(\forall x A \rightarrow \forall x B) \quad 4 ; \mathrm{SL}$

Lemma 5.4. For all formulas A,

$$
\vdash \exists x \forall y A \rightarrow \forall y \exists x A
$$

Proof. Here is an abbreviated deduction.

1.	$\forall y A \rightarrow A$
2.	$\neg A \rightarrow \neg \forall y A$
3.	$\forall x(\neg A \rightarrow \neg \forall y A)$
4.	$\forall x(\neg A \rightarrow \neg \forall y A) \rightarrow(\forall x \neg A \rightarrow \forall x \neg \forall y A)$
5.	$\forall x \neg A \rightarrow \forall x \neg \forall y A$
6.	$\neg \forall x \neg \forall y A \rightarrow \neg \forall x \neg A$
	Lemma 5.3
7.	$\exists \exists x \forall y A \rightarrow \exists x \forall y A \rightarrow \forall y \exists x A$

Exercise 5.1. Show that $\vdash\left(\exists v_{1} P^{1} v_{1} \rightarrow \exists v_{2} P^{1} v_{2}\right)$.
Exercise 5.2. Show that $\left\{\forall v_{1} P^{1} v_{1}\right\} \vdash \exists v_{1} P^{1} v_{1}$.
Lemma 5.5. If $\Gamma \vdash(A \rightarrow B)$ then $\Gamma \vdash(\forall x A \rightarrow \forall x B)$.
Proof. Start with a deduction from Γ with last line $(A \rightarrow B)$. Use Gen to get the line $\forall x(A \rightarrow B)$. Then apply Lemma 5.3 and MP.

Theorem 5.6 (Deduction Theorem). Let Γ be a set of sentences, let A be a sentence, and let B be a formula. If $\Gamma \cup\{A\} \vdash B$ then $\Gamma \vdash(A \rightarrow B)$.

Proof. The proof is similar to the proof of the Deduction Theorem for $\mathbf{S L}$. Assume that $\Gamma \cup\{A\} \vdash B$. Let \mathbf{D} be a deduction of B from $\Gamma \cup\{A\}$. We prove that

$$
\Gamma \vdash(A \rightarrow C)
$$

for every line C of \mathbf{D}. Assume that this is false. Consider the first line C of \mathbf{D} such that $\Gamma \nvdash(A \rightarrow C)$.

Assume that C either belongs to Γ or is an axiom. Then $\Gamma \vdash C$ and $(A \rightarrow C)$ follows from C by SL. Hence $\Gamma \vdash(A \rightarrow C)$.

Assume next that C is A. Since $A \rightarrow A$ is a tautology, $\Gamma \vdash(A \rightarrow A)$.
Assume next that C follows from formulas E and $(E \rightarrow C)$ by MP. These formulas are on earlier lines of \mathbf{D} than C. Since C is the first "bad" line of $\mathbf{D}, \Gamma \vdash A \rightarrow E$ and $\Gamma \vdash A \rightarrow(E \rightarrow C)$. Since

$$
\{(A \rightarrow E),(A \rightarrow(E \rightarrow C))\} \models_{\mathrm{sl}}(A \rightarrow C)
$$

$\Gamma \vdash(A \rightarrow C)$.
Finally assume that C is $(E \rightarrow \forall x F)$ and that C follows by QR from an earlier line $(E \rightarrow F)$ of \mathbf{D}. Since C is the first "bad" line of $\mathbf{D}, \Gamma \vdash A \rightarrow$ $(E \rightarrow F)$. Starting with a deduction from Γ of $A \rightarrow(E \rightarrow F)$, we can get a deduction from Γ of $A \rightarrow(E \rightarrow \forall x F)$ as follows.

\cdots	\cdots	\cdots
\cdots	\cdots	\cdots
\cdots	\cdots	\cdots
n	$A \rightarrow(E \rightarrow F)$	\cdots
$n+1$.	$(A \wedge E) \rightarrow F$	$n ; \mathrm{SL}$
$n+2$.	$(A \wedge E) \rightarrow \forall x F$	$n+1 ; \mathrm{QR}$
$n+3$.	$A \rightarrow(E \rightarrow \forall x F)$	$n+2 ; \mathrm{SL}$

Note that the variable x has no free occurrences in A because A is a sentence, and we know that it has no free occurrences in E because we know that QR was used in \mathbf{D} to get $E \rightarrow \forall x F$ from $E \rightarrow F$.

This contradiction completes the proof that the "bad" line C cannot exist. Applying this fact to the last line of \mathbf{D}, we get that $\Gamma \vdash(A \rightarrow B)$.

A set Γ of sentences of $\mathcal{L}_{\mathrm{C}}^{\#}$ is inconsistent in $\mathbf{F O L}_{\mathrm{C}}$ if there is a formula B such that $\Gamma \vdash_{\mathbf{F O L}_{\mathrm{C}}} B$ and $\Gamma \vdash_{\mathbf{F O L}_{\mathrm{C}}} \neg B$. Otherwise Γ is consistent.

Theorem 5.7. Let Γ and Δ be sets of sentences, let A and A_{1}, \ldots, A_{n} be sentences, and let B be a formula.
(1) $\Gamma \cup\{A\} \vdash B$ if and only if $\Gamma \vdash(A \rightarrow B)$.
(2) $\Gamma \cup\left\{A_{1}, \ldots, A_{n}\right\} \vdash B$ if and only if $\Gamma \vdash\left(A_{1} \rightarrow \ldots \rightarrow A_{n} \rightarrow B\right)$.
(3) Γ is consistent if and only if there is some formula C such that $\Gamma \nvdash C$.
(4) If $\Gamma \vdash C$ for all $C \in \Delta$ and if $\Delta \vdash B$, then $\Gamma \vdash B$.

Proof. The proof is like the proof of Theorem 2.2, except that we may now use the derived rule SL instead of the particular axioms and rules of the system SL.

A system \mathbf{S} of deduction for $\mathcal{L}_{\mathrm{C}}^{\#}$ is sound if, for all sets Γ of sentences and all formulas A, if $\Gamma \vdash_{\mathbf{S}} A$ then $\Gamma \models A$. A system \mathbf{S} of deduction for $\mathcal{L}_{\mathrm{C}}^{\#}$ is complete if, for all sets Γ of sentences and all formulas A, if $\Gamma \models A$ then $\Gamma \vdash_{\mathrm{S}} A$

Remark. These definitions are like the definitions of soundness and completeness of systems for \mathcal{L}, except that the new definitions require Γ to consist of sentences, not just formulas. We hereby make the analoguous definitions for our other languages.

Theorem 5.8 (Soundness). The systems $\mathbf{F O L}_{\mathrm{C}}$ are sound.
Proof. The proof is similar to the proof of soundness for $\mathbf{S L}$ (Theorem 2.4). Let \mathbf{D} be a deduction in $\mathbf{F O L}_{\mathbf{C}}$ of a formula A from a set Γ of sentences. We shall show that, for every line C of $\mathbf{D}, \Gamma \models C$. Applying this to the last line of \mathbf{D}, this will give us that $\Gamma \models A$.

Assume that what we wish to show is false. Let C be the first line of \mathbf{D} such that $\Gamma \not \vDash C$.

The cases that $C \in \Gamma$, that C is an axiom, and that C follows by MP from earlier lines of \mathbf{D}, are just like the corresponding cases in the proof of Theorem 2.4.

The only remaining case is that C is $B \rightarrow \forall x E$ and C follows by QR from an earlier line $B \rightarrow E$ of \mathbf{D}. Since C is the first "bad" line of \mathbf{D}, $\Gamma \models B \rightarrow E$. Let $\mathfrak{M}=(\boldsymbol{D}, v, \chi)$ be any model and let s be any variable assignment. We assume that $v_{\mathfrak{M}}^{s}(\Gamma)=\mathbf{T}$ (i.e., that $v_{\mathfrak{M}}^{s}(H)=\mathbf{T}$ for each $H \in \Gamma)$, and we show that $v_{\mathfrak{M}}^{s}(B \rightarrow \forall x E)=\mathbf{T}$. For this, we assume that $v_{\mathfrak{M}}^{s}(B)=\mathbf{T}$ and we show that $v_{\mathfrak{M}}^{s}(\forall x E)=\mathbf{T}$. Let d be any element of \boldsymbol{D} and let s^{\prime} be any variable assignment that agrees with s except that $s^{\prime}(x)=d$. We must show that $v_{\mathfrak{M}}^{s^{\prime}}(E)=\mathbf{T}$. Since Γ is a set of sentences, $v_{\mathfrak{M}}^{s^{\prime}}(\Gamma)=\mathbf{T}$. Since the variable x does not occur free in $B, v_{\mathfrak{M}}^{s^{\prime}}(B)=\mathbf{T}$. Since $\Gamma \models B \rightarrow E$, it follows that $v_{\mathfrak{M}}^{s^{\prime}}(E)=\mathbf{T}$

Lemma 5.9. Let Γ be a set of sentences of $\mathcal{L}_{\mathrm{C}}^{\#}$ consistent in $\mathbf{F O L}_{\mathrm{C}}$ and let A be a sentence of $\mathcal{L}_{\mathrm{C}}^{\#}$. Then either $\Gamma \cup\{A\}$ is consistent in $\mathbf{F O L}_{\mathrm{C}}$ or $\Gamma \cup\{\neg A\}$ is consistent in $\mathbf{F O L}{ }_{C}$.

Proof. The proof is like that of Lemma 2.5.
Lemma 5.10. Let Γ be set of sentences of $\mathcal{L}_{\mathrm{C}}^{\#}$ consistent in $\mathbf{F O L}_{\mathrm{C}}$. Let C^{*} be a set gotten from C by adding infinitely many new constants. There is a set Γ^{*} of sentences of $\mathcal{L}_{\mathrm{C}^{*}}^{\#}$ such that
(1) $\Gamma \subseteq \Gamma^{*}$;
(2) Γ^{*} is consistent in $\mathbf{F O L}_{\mathrm{C}^{*}}$;
(3) for every sentence A of $\mathcal{L}_{\mathrm{C}^{*}}^{\#}$, either A belongs to Γ^{*} or $\neg A$ belongs to Γ^{*};
(4) Γ^{*} is Henkin.

Proof. Let $c_{0}, c_{1}, c_{2}, \ldots$ be all the constants of $\mathcal{L}_{\mathrm{C}^{*}}^{\#}$. Let

$$
A_{0}, A_{1}, A_{2}, A_{3}, \ldots
$$

be the list (defined in the proof of Lemma 4.7) of all the sentences of $\mathcal{L}_{\mathrm{C}^{*}}^{\#}$. As in that proof we define, by recursion on natural numbers, a function that associates with each natural number n a set Γ_{n} of formulas.

Let $\Gamma_{0}=\Gamma$.
As in the proofs of Lemmas 3.7, 4.2, and 4.7, we shall make sure that, for each n, at most two sentences belong to Γ_{n+1} but not to Γ_{n}. As in the earlier proofs, it follows that for each n only finitely many of the new constants occur in sentences in Γ_{n}.

We define Γ_{n+1} from Γ_{n} in two steps. For the first step, let

$$
\Gamma_{n}^{\prime}= \begin{cases}\Gamma_{n} \cup\left\{A_{n}\right\} & \text { if } \Gamma_{n} \cup\left\{A_{n}\right\} \text { is consistent in } \mathbf{F O L}_{\mathbf{C}^{*}} ; \\ \Gamma_{n} \cup\left\{\neg A_{n}\right\} & \text { otherwise } .\end{cases}
$$

Let $\Gamma_{n+1}=\Gamma_{n}^{\prime}$ unless both of the following hold.
(a) $\neg A_{n} \in \Gamma_{n}^{\prime}$.
(b) A_{n} is $\forall x_{n} B_{n}$ for some variable x_{n} and formula B_{n}.

Suppose that both (a) and (b) hold. Let i_{n} be the least i such that the constant c_{i} does not occur in any formula belonging to Γ_{n}^{\prime}. Such an i must exist, since only finitely many of the infinitely many new constants occur in sentences in Γ_{n}^{\prime}. Let

$$
\Gamma_{n+1}=\Gamma_{n}^{\prime} \cup\left\{\neg B_{n}\left(x_{n} ; c_{i_{n}}\right)\right\} .
$$

Let $\Gamma^{*}=\bigcup_{n} \Gamma_{n}$.
Because $\Gamma=\Gamma_{0} \subseteq \Gamma^{*}, \Gamma^{*}$ has property (1).
We prove by mathematical induction that Γ_{n} is consistent for each n.
Γ_{0} (i.e., Γ) is consistent in $\mathbf{F O L}_{C}$ by hypothesis, but we must prove that it is consistent in $\mathbf{F O L}_{\mathbf{C}^{*}}$. Observe that any deduction \mathbf{D} from Γ in $\mathbf{F O L}_{\mathrm{C}^{*}}$ of a formula of $\mathcal{L}_{\mathrm{C}}^{\#}$ can be turned into a deduction from Γ in $\mathbf{F O L}_{\mathrm{C}}$ of the same formula: just replace the new constants occurring in \mathbf{D} by distinct variables that do not occur in \mathbf{D}. It follows easily that Γ is inconsistent in $\mathbf{F O L}_{\mathrm{C}}$ if it is inconsistent in $\mathrm{FOL}_{\mathrm{C}^{*}}$.

Assume that Γ_{n} is consistent in $\mathbf{F O L}_{\mathbf{C}^{*}}$. Lemma 5.9 implies that Γ_{n}^{\prime} is consistent. If $\Gamma_{n+1}=\Gamma_{n}^{\prime}$, then Γ_{n+1} is consistent. Assume then that $\Gamma_{n+1}=$
$\Gamma_{n}^{\prime} \cup\left\{\neg B_{n}\left(x_{n} ; c_{i_{n}}\right)\right\}$ and, in order to derive a contradiction, assume that Γ_{n+1} is not consistent. By Theorem 5.7, every formula of $\mathcal{L}_{\mathrm{C}}^{\#}$ is deducible from Γ_{n+1} in $\mathbf{F O L}_{\mathrm{C}^{*}}$. Hence $\Gamma_{n+1} \vdash_{\mathbf{F O L}_{\mathrm{C}^{*}}}\left(p_{0} \wedge \neg p_{0}\right)$. In other words,

$$
\Gamma_{n}^{\prime} \cup\left\{\neg B_{n}\left(x_{n} ; c_{i_{n}}\right)\right\} \vdash_{\mathbf{F O L}_{\mathrm{C}^{*}}}\left(p_{0} \wedge \neg p_{0}\right)
$$

By the Deduction Theorem,

$$
\Gamma_{n}^{\prime} \vdash_{\mathbf{F O L}_{\mathrm{C}^{*}}} \neg B_{n}\left(x_{n} ; c_{i_{n}}\right) \rightarrow\left(p_{0} \wedge \neg p_{0}\right)
$$

Let \mathbf{D} be a deduction from Γ_{n}^{\prime} in $\mathbf{F O L}_{\mathbf{C}^{*}}$ with last line $\neg B_{n}\left(x_{n} ; c_{i_{n}}\right) \rightarrow$ $\left(p_{0} \wedge \neg p_{0}\right)$. Let y be a variable not occurring in \mathbf{D}. Let \mathbf{D}^{\prime} come from d by replacing every occurrence of $c_{i_{n}}$ by an occurrence of y. Since $c_{i_{n}}$ does not occur Γ_{n}^{\prime} or in $\neg B_{n}, \mathbf{D}^{\prime}$ is a deduction from Γ_{n}^{\prime} in $\mathbf{F O L}_{\mathrm{C}^{*}}$ with last line $\neg B_{n}\left(x_{n} ; y\right) \rightarrow\left(p_{0} \wedge \neg p_{0}\right)$. We can turn \mathbf{D}^{\prime} into a deduction from Γ_{n}^{\prime} in $\mathbf{F O L}_{\mathbf{C}^{*}}$ with last line $\neg \forall x_{n} B_{n} \rightarrow\left(p_{0} \wedge \neg p_{0}\right)$ as follows.

$$
\begin{array}{lcl}
\ldots & \ldots & \cdots \\
\ldots & \ldots & \cdots \\
\ldots & \ldots & \cdots \\
n . & \neg B_{n}\left(x_{n} ; y\right) \rightarrow\left(p_{0} \wedge \neg p_{0}\right) & \cdots \\
n+1 . & \neg\left(p_{0} \wedge \neg p_{0}\right) \rightarrow B_{n}\left(x_{n} ; y\right) & n ; \mathrm{SL} \\
n+2 . & \neg\left(p_{0} \wedge \neg p_{0}\right) \rightarrow \forall y B_{n}\left(x_{n} ; y\right) & n+1 ; \mathrm{QR} \\
n+3 . & \forall y B_{n}\left(x_{n} ; y\right) \rightarrow B_{n} & \mathrm{QAx} \\
n+4 . & \neg\left(p_{0} \wedge \neg p_{0}\right) \rightarrow B_{n} & n+2, n+3 ; \mathrm{SL} \\
n+5 . & \neg\left(p_{0} \wedge \neg p_{0}\right) \rightarrow \forall x_{n} B_{n} & n+4 ; \mathrm{QR} \\
n+6 . & \neg \forall x_{n} B_{n} \rightarrow\left(p_{0} \wedge \neg p_{0}\right) & n+5 ; \mathrm{SL}
\end{array}
$$

This shows that $\Gamma_{n}^{\prime} \vdash_{\mathbf{F O L}_{\mathrm{C}^{*}}} \neg \forall x_{n} B_{n} \rightarrow\left(p_{0} \wedge \neg p_{0}\right)$. But $\Gamma_{n}^{\prime}=\Gamma \cup\left\{\neg \forall x_{n} B_{n}\right\}$, so it follows that $\Gamma_{n}^{\prime} \vdash_{\mathbf{F O L}_{\mathrm{C}^{*}}}\left(p_{0} \wedge \neg p_{0}\right)$. By SL, we get the contradiction that Γ_{n}^{\prime} is inconsistent in $\mathbf{F O L}_{\mathrm{C}^{*}}$.

As in the proof of Lemma 2.6, the consistency of all the Γ_{n} implies that consistency of Γ^{*}. Hence Γ^{*} has property (2).

Because either A_{n} or $\neg A_{n}$ belongs to Γ_{n+1} for each n and because each $\Gamma_{n+1} \subseteq \Gamma^{*}, \Gamma^{*}$ has property (3).

If $A_{n} \notin \Gamma^{*}$, then $A_{n} \notin \Gamma_{n+1}$ and so $\neg A_{n} \in \Gamma_{n+1}$. But this implies that $\neg B_{n}\left(x_{n} ; c_{i_{n}}\right) \in \Gamma_{n+1} \subseteq \Gamma^{*}$ if $A_{n}=\forall x_{n} B_{n}$. Hence Γ^{*} has property (4).

Exercise 5.3. Show that

$$
\left\{\forall v_{1} \forall v_{2}\left(P^{2} v_{1} v_{2} \vee P^{2} v_{2} v_{1}\right)\right\} \vdash \forall v_{1} P^{2} v_{1} v_{1}
$$

Exercise 5.4. Show that

$$
\vdash \forall v_{1} \exists v_{2} F^{1} v_{1}=v_{2} .
$$

Exercise 5.5. Let c_{1} and c_{2} be constants. Show that

$$
\left\{c_{1}=c_{2}\right\} \vdash c_{2}=c_{1} .
$$

Lemma 5.11. Let Γ^{*} be a set of sentences of a language $\mathcal{L}_{\mathrm{C}^{*}}^{\#}$ having properties (2), (3), and (4) described in the statement of Lemma 5.10. Then Γ^{*} is satisfiable.

Proof. We first note a useful fact about Γ^{*}.
(\dagger) For all sentences A of $\mathcal{L}_{\mathbf{C}^{*}}^{\#}$, if $\Gamma^{*} \vdash A$ then $A \in \Gamma^{*}$.
To see why (\dagger) holds, assume that $\Gamma^{*} \vdash A$ but $A \notin \Gamma^{*}$. By (3), $\neg A \in \Gamma^{*}$. Thus $\Gamma^{*} \vdash \neg A$, contradicting (2).

Remark. Though we did not state it, the analogue of (\dagger) held for the set Γ^{*} of Lemma 2.7.

As in the proofs of Lemmas 4.3 and 4.8 , we shall define a model whose domain is a set of equivalence classes of constants. As in the proof of Lemma 4.3, let R be the relation on C^{*} defined by

$$
R c_{1} c_{2} \text { holds iff } c_{1}=c_{2} \in \Gamma^{*}
$$

We shall prove that R is an equivalence relation on C^{*}.
For reflexivity, we must show that $c=c$ belongs to Γ^{*} for all members c of C^{*}. Since $c=c$ is an instance of Identity Axiom Schema (a), $\vdash c=c$ and so $\Gamma^{*} \vdash c=c$. By $(\dagger), c=c \in \Gamma^{*}$.

For symmetry, we must show that, for all members c_{1} and c_{2} of Γ^{*}, if $c_{1}=c_{2} \in \Gamma^{*}$, then $c_{2}=c_{1} \in \Gamma^{*}$. Assume that $c_{1}=c_{2} \in \Gamma^{*}$. By Exercise 5.5, $\Gamma^{*} \vdash c_{2}=c_{1} . \mathrm{By}(\dagger), c_{2}=c_{1} \in \Gamma^{*}$.

Before proving transitivity, we show that

$$
\left\{c_{1}=c_{2}, c_{2}=c_{3}\right\} \vdash c_{1}=c_{3}
$$

for any constants c_{1}, c_{2}, and c_{3}.

1.	$c_{1}=c_{2}$	Premise
2.	$c_{2}=c_{3}$	Premise
3.	$c_{2}=c_{1}$	$1 ;$ Exercise 5.5
4.	$c_{2}=c_{1} \rightarrow\left(c_{2}=c_{3} \rightarrow c_{1}=c_{3}\right)$	IdAx (b)
5.	$c_{1}=c_{3}$	$2,3,4 ; \mathrm{SL}$

For transitivity, we must show that, for all members c_{1}, c_{2}, and c_{3} of Γ^{*}, if $c_{1}=c_{2} \in \Gamma^{*}$ and $c_{2}=c_{3} \in \Gamma^{*}$, then $c_{1}=c_{3} \in \Gamma^{*}$. Assume that $c_{1}=c_{2} \in \Gamma^{*}$ and $c_{2}=c_{3} \in \Gamma^{*}$. By what we have just proved, $\Gamma^{*} \vdash c_{1}=c_{3}$. By $(\dagger), c_{1}=c_{3} \in \Gamma^{*}$.

We define a model $\mathfrak{M}=(\boldsymbol{D}, v, \chi)$ exactly as in the proof of Lemma 4.8, that is:
(i) $\boldsymbol{D}=\left\{[c]_{R} \mid c \in \mathrm{C}^{*}\right\}$.
(ii) (a) $v\left(p_{i}\right)=\mathbf{T}$ if and only if $p_{i} \in \Gamma^{*}$.
(b) $v\left(\left(P_{i}^{n},\left[c_{1}\right]_{R}, \ldots,\left[c_{n}\right]_{R}\right)\right)=\mathbf{T}$ if and only if $P_{i}^{n} c_{1} \ldots c_{n} \in \Gamma^{*}$.
(iii) (a) $\chi(c)=[c]_{R}$ for each $c \in \mathrm{C}^{*}$.
(b) $\chi\left(\left(F_{i}^{n},\left[c_{1}\right]_{R}, \ldots,\left[c_{n}\right]_{R}\right)\right)=[c]_{R}$ if and only if $F_{i}^{n} c_{1} \ldots c_{n}=c \in \Gamma^{*}$.

We must show that the definitions given in clauses (ii)(b) and (iii)(b) do not depend on the choice of elements of equivalence classes. In the case of clause (iii)(b), we need to show something additional. (See below.)

A special case of the proof that clause (iii)(b) is independent of the choice of elements of equivalence classes is Exercise 5.6, and the proof for the general case is merely an elaboration of the proof for the special case. The case of (ii)(b) is a bit simpler.

The additional fact we to show concerning clause (iii)(b) is that, for all F_{i}^{n} and all $c_{1}, \ldots c_{n}$, that there is a c such that

$$
F_{i}^{n} c_{1} \ldots c_{n}=c \in \Gamma^{*}
$$

Suppose there is no such c. By property (3) of Γ^{*},

$$
F_{i}^{n} c_{1} \ldots c_{n} \neq c \in \Gamma^{*}
$$

By property (4) of Γ^{*},

$$
\forall v_{1} F_{i}^{n} c_{1} \ldots c_{n} \neq v_{1} \in \Gamma^{*}
$$

Since

$$
\forall v_{1} F_{i}^{n} c_{1} \ldots c_{n} \neq v_{1} \in \Gamma^{*} \rightarrow F_{i}^{n} c_{1} \ldots c_{n} \neq F_{i}^{n} c_{1} \ldots c_{n}
$$

is an instance of the Quantifier Axiom Schema,

$$
\Gamma^{*} \vdash F_{i}^{n} c_{1} \ldots c_{n} \neq F_{i}^{n} c_{1} \ldots c_{n} .
$$

But $F_{i}^{n} c_{1} \ldots c_{n} \neq F_{i}^{n} c_{1} \ldots c_{n}$ is an instance of Identity Axiom Schema (a), and so Γ^{*} is inconsistent, contradicting property (2) of Γ^{*}.

Let P be the property of being a sentence A such that

$$
v_{\mathfrak{M}}(A)=\mathbf{T} \text { if and only if } A \in \Gamma^{*} .
$$

As in earlier proofs, we use a variant of formula induction to show that every sentence has property P.

The case of atomic sentences is like that case in the proof of Lemma 4.8, except for one change. Recall that in proving atomic cases (i)(b) and (i)(c), we first used a variant of term induction to demonstrate that all terms without variables have property Q, where t has property Q if and only if, for every $c \in \mathbf{C}^{*}$,

$$
\text { if } \operatorname{den}_{\mathfrak{M}}(t)=[c]_{R} \text { then } t=c \in \Gamma^{*} .
$$

In the course of this demonstration, we got a contradiction from the assumption that $\Delta \subseteq \Gamma^{*}$, where

$$
\Delta=\left\{t_{1}=c_{1}, \ldots, t_{n}=c_{n}, F_{i}^{n} t_{1} \ldots t_{n}=c, F_{i}^{n} c_{1} \ldots c_{n} \neq c\right\} .
$$

This assumption contradicted the hypothesis that Γ^{*} was finitely satisfiable. What we need to show in our new context is that it contradicts the hypothesis that Γ^{*} is consistent. Obviously $\Delta \vdash F_{i}^{n} c_{1} \ldots c_{n} \neq c$. Thus it is enough to show that $\Delta \vdash F_{i}^{n} c_{1} \ldots c_{n}=c$.

1.	$t_{1}=c_{1}$	Premise
..	\cdots	
..	\ldots	\ldots
..	\cdots	\cdots
n.	$t_{n}=c_{n}$	Premise
$n+1$.	$\begin{aligned} & t_{1}=c_{1} \rightarrow \\ & \quad\left(F_{i}^{n} t_{1} t_{2} \ldots t_{n-1} t_{n}=c \rightarrow F^{n} c_{1} t_{2} \ldots t_{n-1} t_{n}=c\right) \end{aligned}$	$\operatorname{IdAx}(\mathrm{b})$
\cdots		
..	\ldots	\ldots
$2 n$.	$\begin{aligned} & t_{n}=c_{n} \rightarrow \\ & \quad\left(F_{i}^{n} c_{1} c_{2} \ldots c_{n-1} t_{n}=c \rightarrow F^{n} c_{1} c_{2} \ldots c_{n-1} c_{n}=c\right) \end{aligned}$	$\operatorname{IdAx}(\mathrm{b})$
$2 n+1$.	$F_{i}^{n} c_{1} \ldots c_{n}=c$	1,..., $2 \mathrm{n} ;$ SL

Cases cases (ii) and (iii) of the proof that all formulas have property P are like the corresponding cases in the proof of Lemma 2.7.

Case (iv) is like the corresponding case in the proof of Lemma 4.8, except for one change. The last step in case (iv) proof was to show that

$$
\text { for all } c \in \mathrm{C}^{*}, A(x ; c) \in \Gamma^{*} \quad \text { iff } \quad \forall x A \in \Gamma^{*} \text {. }
$$

The "if" part of this "iff" was proved using the fact that Γ^{*} was finitely satisfiable. In the new context, we must prove it using the fact that Γ^{*} is consistent. To do this, assume that $\forall x A \in \Gamma^{*}$. Notice that, for each $c \in \mathrm{C}^{*}$, the sentence

$$
\forall x A \rightarrow A(x ; c)
$$

is an instance of the Quantifier Axiom Schema. Thus $\Gamma^{*} \vdash A(x ; c)$. By (\dagger), $A(x ; c) \in \Gamma^{*}$.

As in our earlier proofs, we have in particular that $v_{\mathfrak{M}}(A)=\mathbf{T}$ for every member of A of Γ^{*}, and this means we have shown that Γ^{*} is satisfiable.

Theorem 5.12. Let Γ be a consistent set of sentences of $\mathcal{L}_{\mathrm{C}}^{\#}$. Then Γ is satisfiable.

Proof. By Lemma 5.10, let Γ^{*} have properties (1)-(3) of that lemma. By Lemma 2.7, Γ^{*} is satisfiable. Hence Γ is satisfiable.

Theorem 5.13 (Completeness). Let Γ be a set of sentences of $\mathcal{L}_{\mathrm{C}}^{\#}$ and let A be a formula of $\mathcal{L}_{\mathrm{C}}^{\#}$ such that $\Gamma \models A$. Then $\Gamma \vdash_{\mathbf{F O L}_{\mathrm{C}}} A$. In other words, $\mathrm{FOL}_{\mathrm{C}}$ is complete.

Proof. Since $\Gamma \models A$, for every model \mathfrak{M} and every variable assignment s, if Γ is true in \mathfrak{M}, then $v_{\mathfrak{M}}^{s}(A)=\mathbf{T}$. Let x_{1}, \ldots, x_{n} be all the variables occurring free in A. Let \mathfrak{M} be any model in which Γ is true. For every variable assignment $s, v_{\mathfrak{M}}^{s}(A)=\mathbf{T}$. This means that $\forall x_{1} \ldots \forall x_{n} A$ is true in \mathfrak{M}. Thus

$$
\Gamma \models \forall x_{1} \ldots \forall x_{n} A .
$$

Since $\Gamma \models \forall x_{1} \ldots \forall x_{n} A, \Gamma \cup\left\{\neg \forall x_{1} \ldots \forall x_{n} A\right\}$ is not satisfiable. By Theorem 5.12, $\Gamma \cup\left\{\neg \forall x_{1} \ldots \forall x_{n} A\right\}$ is inconsistent. Let B be a formula such that $\Gamma \cup\left\{\neg \forall x_{1} \ldots \forall x_{n} A\right\} \vdash B$ and $\Gamma \cup\left\{\neg \forall x_{1} \ldots \forall x_{n} A\right\} \vdash \neg B$. By the Deduction Theorem, $\Gamma \vdash\left(\neg \forall x_{1} \ldots \forall x_{n} A \rightarrow B\right)$ and $\left.\Gamma \vdash \neg \forall x_{1} \ldots \forall x_{n} A \rightarrow \neg B\right)$. By SL, $\Gamma \vdash \forall x_{1} \ldots \forall x_{n} A$. Using the Quantifier Axiom Schema and MP n times, we get that $\Gamma \vdash A$.

Exercise 5.6. In the proof of Lemma 5.11, clause (iii)(b) of the definition of the model \mathfrak{M} says that

$$
\chi\left(\left(F_{i}^{n},\left[c_{1}\right]_{R}, \ldots,\left[c_{n}\right]_{R}\right)\right)=[c]_{R} \quad \text { iff } \quad F_{i}^{n} c_{1} \ldots c_{n}=c \in \Gamma^{*}
$$

Show, in the special case $n=2$ and $i=0$, that this definition does not depend on the choice of elements of equivalence classes. In other words, assume that
(1) $\left[c_{1}\right]_{R}=\left[c_{1}^{\prime}\right]_{R}$ and $\left[c_{2}\right]_{R}=\left[c_{2}^{\prime}\right]_{R}$;
(2) $F^{2} c_{1} c_{2}=c \in \Gamma^{*}$ and $F^{2} c_{1}^{\prime} c_{2}^{\prime}=c^{\prime} \in \Gamma^{*}$,
and prove that

$$
[c]_{R}=\left[c^{\prime}\right]_{R}
$$

6 The semantics of second-order logic

The languages $\mathcal{L}_{\mathrm{C}}^{2}$ of second order logic.

For each set C of constant symbols, we have a language $\mathcal{L}_{\mathrm{C}}^{2}$.
Symbols of $\mathcal{L}_{\mathrm{C}}^{2}$: All symbols of $\mathcal{L}_{\mathrm{C}}^{\#}$ plus n-place predicate variables

$$
V_{0}^{n}, V_{1}^{n}, V_{2}^{n}, \ldots
$$

for each $n \geq 1$. In this section, we shall speak of v_{0}, v_{1}, \ldots as individual variables.

Remark. It is common also to have n-place function variables, but we omit them in the interest of simplicity.

Terms of $\mathcal{L}_{\mathrm{C}}^{2}$: The definition of terms is the same as that for $\mathcal{L}_{\mathrm{C}}^{\#}$.
Formulas of $\mathcal{L}_{\mathrm{C}}^{2}$: Modify the definition of formulas of $\mathcal{L}_{\mathrm{C}}^{\#}$ by changing clauses (2) and (5) as follows.
(2) For each n and i, if t_{1}, \ldots, t_{n} are terms, then $P_{i}^{n} t_{1} \ldots t_{n}$ and $V_{i}^{n} t_{1} \ldots t_{n}$ are formulas.
(5) If A is a formula and X is an individual or predicate variable, then $\forall X A$ is a formula.

Models for $\mathcal{L}_{\mathrm{C}}^{2}$: Models for $\mathcal{L}_{\mathrm{C}}^{2}$ are the same as models for $\mathcal{L}_{\mathrm{C}}^{\#}$.
Truth and logical implication for $\mathcal{L}_{\mathrm{C}}^{2}$:
For each model $\mathfrak{M}=(\mathbf{D}, v, \chi)$, a variable assignment is a function s that assigns an element of \mathbf{D} to to each individual variable and an n-place relation on \mathbf{D} to each n-place predicate variable. To the definition of $\operatorname{den}_{\mathfrak{M}}^{s}$, we add the stipulation that $\operatorname{den}_{\mathfrak{M}}^{s}\left(V_{i}^{n}\right)=s\left(V_{i}^{n}\right)$ for all n and i. The definition of $v_{\mathfrak{M}}^{s}$ is the same as that for $\mathcal{L}_{\mathrm{C}}^{\#}$, except for two changes. First, there is an extra subclause of the atomic clause (i):
(d) $v_{\mathfrak{M}}^{s}\left(V_{i}^{n} t_{1} \ldots t_{n}\right)=\mathbf{T}$ if and only if $\operatorname{den}_{\mathfrak{M}}^{s}\left(V_{i}^{n}\right)\left(\operatorname{den}_{\mathfrak{M}}^{s}\left(t_{1}\right), \ldots, \operatorname{den}_{\mathfrak{M}}^{s}\left(t_{n}\right)\right)$ holds.

Second, clause (iv) needs to be reinterpreted so that the variable x can be of either kind.

The definition of a free occurrence of a variable is as before, except that it now applies to both kinds of variables. Satisfaction and truth are defined as for $\mathcal{L}_{\mathrm{C}}^{\#}$, and so are logical implication, validity, and satisfiability.

Consider the following sentence of $\mathcal{L}_{\mathrm{C}}^{2}$.

$$
\begin{aligned}
& \exists V^{2}\left(\forall v_{1} \exists v_{2} V^{2} v_{1} v_{2}\right. \\
& \quad \wedge \forall v_{1} \forall v_{2}\left(V^{2} v_{1} v_{2} \rightarrow \neg V^{2} v_{2} v_{1}\right) \\
& \left.\quad \wedge \forall v_{1} \forall v_{2} \forall v_{3}\left(\left(V^{2} v_{1} v_{2} \wedge V^{2} v_{2} v_{3}\right) \rightarrow V^{2} v_{1} v_{3}\right)\right)
\end{aligned}
$$

Call this sentence Inf. The solution to Exercise 3.3 shows that Inf can be true only in a model with an infinite domain. Conversely, Inf is true in every model with an infinite domain. This is because every infinite set can be linearly ordered in such a way that there is no greatest element. If the domain \mathbf{D} of \mathfrak{M} is infinite, then Inf is shown to be true in \mathfrak{M} by the variable assignment that assigns such a linear ordering of \mathbf{D} to V^{2}.
Theorem 6.1. Compactness fails for $\mathcal{L}_{\mathrm{C}}^{2}$.
Proof. For $n \geq 2$, let B_{n} be the following sentence of $\mathcal{L}_{\mathrm{C}}^{\#}$ (and so of $\mathcal{L}_{\mathrm{C}}^{2}$).

$$
\exists v_{1} \ldots \exists v_{n}\left(v_{1} \neq v_{2} \wedge \ldots \wedge v_{1} \neq v_{n} \wedge v_{2} \neq v_{3} \wedge \ldots \wedge v_{n-1} \neq v_{n}\right)
$$

(There is a conjunct $v_{i} \neq v_{j}$ for all i and j such that $1 \leq i<j \leq n$.) For each n, B_{n} is true in all models whose domain has size $\geq n$ and it is false in all models whose domain has size $<n$. Let

$$
\Gamma=\{\neg \operatorname{Inf}\} \cup\left\{B_{2}, B_{3}, B_{4}, \ldots\right\}
$$

Clearly Γ is not satisfiable. The theorem will be proved if we can show that Γ is finitely satisfiable. Let Δ be a finite subset of Γ. Let n be the largest number such that $B_{n} \in \Delta$. If \mathfrak{M} is any model whose domain is finite and has size $\geq n$, then, Δ is true in \mathfrak{M}.

Remark. Since compactness holds for $\mathcal{L}_{\mathrm{C}}^{\#}$, there can be no sentence like Inf in $\mathcal{L}_{\mathrm{C}}^{\#}$, and so also there is no sentence like $\neg \operatorname{Inf}$ in $\mathcal{L}_{\mathrm{C}}^{\#}$. Indeed, there is no set of sentences in $\mathcal{L}_{\mathrm{C}}^{\#}$ that does what $\neg \operatorname{Inf}$ does:

Exercise 6.1. Prove that there is no set Σ of sentence of $\mathcal{L}_{\mathrm{C}}^{\#}$ such that Σ is true in every model with a finite domain and false in every model with an infinite domain.

Hint. Consider the union of Σ and the set of all the B_{n}.

A recursive algorithm is an alogrithm that, except for limitations of program size and computer memory, could be implemented in a computer program and carried out by a computer. Call a formal language decidable if there is a recursive algorithm that, given a formula of the language as input, will output "yes" if the formula is valid and "no" if the formula is not valid.

The language of sentential logic is decidable. The truth-table alogrithm is recursive. The language of first-order logic is not decidable (even with empty C). Since the language of second-order logic contains that of firstorder logic, the language of second-order logic cannot be decidable.

Let us call a formal language semi-decidable if there is a recursive algorithm that, given a formula of the language as input, will output "yes" if the formula is valid and will not say "yes" (and perhaps will not even halt) otherwise.

Decidability implies semi-decidability, so the language of sentential logic is semi-decidable. The language of first-order logic (with, say, only finitely many constants) is semi-decidable. It is not hard to see that there is a recursive alogrithm for listing all deductions from the empty set in the system $\mathbf{F O L}_{\mathrm{C}}$ (if C is finite). Given input A, run this listing algorithm and give output "yes" if a deduction with last line A is listed. The language of second-order logic is not semi-decidable, even with empty C empty.

Semi-decidable languages are essentially the same as the languages for which there exist usable sound and complete systems of deduction. Thus there is no such system of deduction for second-order logic.

[^0]: ${ }^{1}$ Actually there is a subtlety here. The assumption that Γ is finitely satisfiable, if precisely formulated, says that every finite subset of Γ is true in some model for $\mathcal{L}_{\mathrm{C}}^{*}$. But we want Γ_{0} to be finitely satisfiable in the sense that every finite subset of Γ_{0} is true in a model for $\mathcal{L}_{\mathrm{C}^{*}}^{*}$. Nevertheless, there is no problem. Any model for $\mathcal{L}_{\mathrm{C}}^{*}$ can be made into a model for $\mathcal{L}_{\mathrm{C}^{*}}^{*}$ by defining χ of the new constants in an arbitrary way. Since Γ_{0} contains none of the new constants, subsets of it will be true in the resulting model if and only if they are true in the given one.

