
How To Think About Algorithms

In Theory and Practice

Elisa Elshamy

Dr. Victoria Gitman (mentor)

New York City College of Technology

CLAC Seminar

December 2, 2008



What is an Algorithm?
An algorithm is a mechanical procedure that takes an input and carries out a 

collection of instructions to produce an output in finite time.
Algorithms are almost everywhere in nature

� Writing a paper (following format)
� Industrial processes
� Laundry
� Cooking (by recipe)

Key  points

� Takes input, gives output

� Carried out mechanically

� Executed in finite time

� More than one algorithm for the same problem can exist

� Algorithms can only make sense if they aim to achieve a desired result

In computer lingo an algorithm is a computer program 

Al-Khwarizmi (780 – 850)

The word algorithm 

comes from the name of 

the 9th century Persian 

mathematician Abu 

Abdullah Muhammad ibn

Musa al-Khwarizmi whose 

works introduced Indian 

numerals and algebraic 

concepts



Algorithms Are Everywhere!

In simpler words - An algorithm is an explicit collection of steps for carrying out a task.

Addition is an example of a simple algorithm that we use almost daily!
Addition

For example consider 574 + 236

574

+   236 

___________ 

The word algorism originally referred only to the rules of performing arithmetic using Arabic 

numerals but evolved via European Latin translation of al-Khwarizmi's name into algorithm by the 18th 

century.  The word evolved to include all definite procedures for solving problems or performing tasks. 

018 

11



“said, I like to know where you got the 

notion”
People became most interested in the notion of algorithms after David Hilbert and Wilhelm 

Ackermann put forth the Entscheidungsproblem (German for decision problem) in 1928

The Entscheidungsproblem wanted an algorithm that could take any math problem as 
an input and tell us if that math problem was solvable or not.

Hilbert believed this was so…

In computer science, an instance of the Entscheidungsproblem would be asking for a program 
(perhaps a compiler) that could take any other program to let us know in advance if that program 

runs infinitely (not solvable).

Input

Algorithm

TRUE FALSE

Answer:  Rock The Boat by Hues Corporation



Formal Definition of an Algorithm?

Actually there is no formal definition of an algorithm…
But there has been many attempts

One such formalization of an algorithm is the Turing Machine model of computability.  Turing’s machine was 

brought to existence by Alan Turing in his 1936 paper “On Computable Numbers, with an Application to the 

Entscheidungsproblem”.  A Turing machine is a very simple modeled theoretical computer.  The hardware of a 

Turing machine consists of a tape which may extend left and right infinitely, divided into cells for storage and a 

reading/printing head that moves left and right to process programs. Turing machines demonstrate how 

computations are carried out mechanically.  

�Recursive Functions

�Turing’s Machine

�Unlimited Register      

Machines (URM’s)

A perception of 

what a Turing 

machine would be 

like if it was built. 

�



Turing’s Concept

Turing may have explained it somewhat differently...

Alan Mathison Turing (1912 – 1954)

An algorithm can be carried out on a Turing machine!

We must understand that Turing invented his machine about two decades before the advent of computers.  A 

machine containing the required technology needed to do computations was probably still somewhat vague to 

Turing.  However, the logic of Turing’s machine grasped the concepts of hardware and software so well that if 

we analyze our computing devices carefully enough we can see they are really all Turing machines!

To date all computers and Turing machines are equivalent in terms of computational limits.

Alan Mathison Turing originally envisioned a “computer” to not be the machine 

we have today, but actually a person who obediently takes instructions and 

carries out the process accordingly without question.  Turing called the different 

instructions “states” relating to a human’s states of mind.  No matter the 

hardware one truth still stands:



From States of Mind to Program Instructions

A Turing machine performs an action based on what it reads from the tape and the 
state of mind which it is in.

Think about your states of mind.  Let’s say you are taking a multiple choice test 
that you studied well for.  Your state of mind when taking such a test is very 
straightforward: 

• Read the question.

• Read every choice.

• Select the choice you perceive as “right”.

• Move on to the proceeding question.

A computer performs an action by what it reads from an input (either user-entered or a 
program) and what the program’s instruction tells it to do at that point.



Programming a Turing Machine

As with any programming language, we must follow a set of rules:
1. Each state/command must be uniquely named, so that the Turing machine head will know what write 

for each cell in the tape. 

2. The states must be structured as so:

State name, symbol read in current cell ( 0 or 1), state name for the next cell, what symbol to write in 
the current cell (0 or 1), and the direction the head should move to read from the tape (R or L)

i.e. Start,1,Next,0,R

3. The H state is reserved to halt the machine from doing further computation.

4. The numbers we are reading off the tape are the natural numbers. Since 0 has already been used for 
the symbol scheme, our zero will read off the tape as 1, one will read as 11, two as 111, and so on.  
However, after our computations we must ensure that our output still keeps true to our n+1 
definitions.  The tape always begins filled with a 0 in each cell that is not used by the input entered. 

Start
Next
Go
Skip

1 1 1 1 1 1 0 01 1 0 1 1

Start, 1, Next, 0, R
Next, 0, Next, 0, R
Next, 1, Go, 1, R
Go, 0, Go, 0, L
Go, 1, Skip, 1, R
Skip, 1,……….
……….. 

Program Tape with infinite cell space

Read/writing head and states 

0



Addition Turing Machine

Addition Programmed

Start 0 -> H 0 

Start 1 -> Concatenate 1 R

Concatenate 1 -> Concatenate 1 R

Concatenate 0 -> FindEnd 1 R

FindEnd 1 -> FindEnd 1 R

FindEnd 0 -> Delete1 0 L

Delete1 1 -> Delete2 0 L

Delete2 1 -> Finish 0 L

Finish 1 -> H 1

The input entered by the user is 
two numbers separated by a 0.  
The head skips 1’s until it hits the 0 
breaking the two inputs and fills it 
with a 1 to concatenate the two 
inputs into one number. 
Remember, our inputs are always 
entered as n+1 and we added an 
extra 1 when we concatenated the 
two inputs, thus the head needs to 
delete the two extra 1’s. The head 
proceeds on skipping 1’s until it hits 
another 0 signaling it has reached 
the end of the user input. It then 
moves left to delete the extra 1’s. 



Multiplication Turing Machine

marktape,_ H,_
marktape,1 marktape2,1,>
marktape2,_ zerocase,_,>
zerocase,1 zerocase,_,>
zerocase,_ H,_
marktape2,1 marktape3,_,>
marktape3,1 marktape3,1,>
marktape3,_  marktape4,1,>
marktape4,1 startmultiply,_
marktape4,_ H,_
startmultiply,_ zerocase2,_,<
zerocase2,_ zerocase2,_,<
zerocase2,1 delete,_,<
delete,_ finish,_,<
delete,1 ,delete,_,<
finish,1 H,_
startmult,1 backtofirstinput,1,<
backtofirstinput,_ backtofirstinput,_,<
backtofirstinput,1 numofcopies,1,<
numofcopies,_  extraone,_,>
extraone,1 extraone,_,>
extraone,_ findend,_,>
findend,1 findend,1,>
findend,_ cleanup,1,<

cleanup,1 cleanup,1,<
cleanup,_ cleanup2,_,<
cleanup2,_,cleanup2,_,<
cleanup2,1 H,_
numofcopies,1 minuscopy,1,<
minuscopy,1 minuscopy,1,<
minuscopy,_ deletecopy,_,>
deletecopy,1 gotomakecopy,_,>
gotomakecopy,1 gotomakecopy,1,>
gotomakecopy,_ readthroughfirstcopy,_,>
readthroughfirstcopy,1 readthroughfirstcopy,1,>
readthroughfirstcopy,_ findfreespace,_,>
findfreespace,_ moveback,1,<
findfreespace,1 readthroughnewcopies,1,>
readthroughnewcopies,1 readthroughnewcopies,1,>
readthroughnewcopies,_ moveback,1,<
moveback,1 moveback,1,<
moveback,_ backtofirstcopy,_,<
backtofirstcopy,1 numofones,1,<
numofones,1 minusone,1,<
minusone,1 minusone,1,<
minusone,_ deteleone,_,>
deleteone,1 readthroughfirstcopy,_,>
numofones,_ refillcopy,1,<

refillcopy,_ refillcopy,1<
refillcopy,1 forward,1,>
forward,1 backtofirstinput,_,<

As we can see, 

programming 

something as trivial 

as multiplication 

gets lengthy!



Higher-Level Programming for a Turing Machine

We can shorten the lines of code by breaking a simple rule:
Currently we have been programming our Turing machine with a low-level/assembly language convention.  We 

wrote instructions where our states made decisions based on reading/writing 0’s and 1’s.  But let’s introduce 

more symbols and give our states more options to base their decisions on. 

Say instead of just 0 and 1, 

we have a, b, and c where:

a = 11

b = 01

c = 10

And where our instructions now 
look as so:

State1, a State2, a, R

State1, b State2, a, R

State1, c State3, c, L

State2, a State2, b, R

State2, b State3, a, L

Our original lines of code 
would have been:

State1, 1 State2, 1, R

State2, 1 State3, 1, R

State1, 0 State2, 1, R

State2, 0 State2, 0, L

State3, 1 State4, 0, R

State4, 1 State4, 1, R

State4, 0 State5, 1, R

State5, 1 State5, 1, L

Of course we must be mindful that our tape must be filled with the symbols a, b, or c.  So if we wanted to initialize 
our tape with 1111011000…, we would actually be entering aabc

WARNING: Using more symbols will not increase the bounds of 
computing!

We will always be able and WILL HAVE TO translate back to the 
original 0’s and 1’s to run our programs! 



Multiple Tapes for a Turing Machine

Previously one tape was used to carry out all computations and execute an output.

But what if we add more tapes, and give ourselves more to work with:

a c b b a a c b b b

b a a a c b b b b b

1
2
3
4

Head reading two tapes and more symbols
It also means we would modify our instructions to know what to do for 

the top tape and what to do for the bottom tape.  The structure of our 

instructions would now be: 

<state, symbol read on top tape, symbol written on top tape, symbol 

read on bottom tape, symbol written on bottom tape, state to switch to, 

direction>

i.e. 1, a, b  b, a, 2, R

a b c a b a b a a c

1
2
3
4

If we were using one tape 
our program would have 

resembled something of the 

sort:

1, a 1, b, R

1, b 2, a, Ra b c b b

Head reading one tape 

b

a

WARNING: Using more tapes will not increase the bounds of 
computing!



Universal Turing Machine

A Universal Turing machine is actually a universal algorithm for Turing machines!

"Universal Turing Machine" © 2003 Jin 
Wicked, USA.

A Universal Turing machine (UTM) algorithm can be thought of as a 

software for a Turing machine.  Previously a Turing machine would take 

our instructions and would only be able to carry out that one algorithm.  

But if we think about this in terms of hardware that would become very 

expensive and not to mention tedious to reprogram a Turing machine 

over and over.  So we need a way that we can enter our Turing machine 

programs as input and only instruct the machine once to handle any input 

(program) it is given.  Our Universal algorithm does just that. It is a 

general program that is built into our Turing machine’s memory (head) 

that will be able to process any Turing machine program and it’s initial 

values that we write on the tape.     



1

The Universal Turing Machine Algorithm

Using an extended Turing machine (more symbols and tape), we can
easily organize a Universal Turing machine algorithm.

1 1 1 1 0 0 0 0 0 0

1 1 , , 1 , 1 ,

Read/Write head with UTM installed

1. Input Program 

instructions & initial 

values on tape

2. Copy the initial values and run program on this copy

1 1 0 0 0 0 0 0 0 0
4. Line by line record the current state 

of the program

UTM

R1 0 0 1 1 , 0 , , 1 01 H 0 0 1 1 1 1

Note: All tapes are actually infinite in length, and the successor 
program is written on the third tape with the initial value of 3.  
The symbols that can be read/written on the tape are now 

1 0 , R L H  

The read/write head and tapes can be compared to a computer (processor and memory).  The UTM can be compared to 

an operating system for our Turing machine.  The Turing machine algorithms can be thought of as computer programs 

and the symbols we use to write our Turing algorithms can be thought of as the programming syntax.   

1 1 1 0 0 0 0 0 0 3. Keeps track of the current cell 
that is being read



Unlimited Register Machines

After Turing machines, many models of computation shortly followed,  In 1963, 
Shepherdson and Sturgis defined Unlimited Register Machines.  

URMs are abstract computers that use registers R1, R2,…much like RAM memory would to 
store natural numbers r1,r2,…

The registers can be compared to the Turing 

machine’s tape.  However, registers are identified by 

a unique address denoted by Rn.  Data on the 

registers can be accessed at random.  In other 

words, data can be accessed regardless of its 

location and do not depend on a reading head or 

recorder to walk back.  Unfortunately, register 

machines do not realistically portray the work of a 

computer as does a Turing machine.

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10

R1 R2 R3 R4 R5 R6 Register Address 

Unlimited Register Machines have also been known as Random Access Machines (RAM).

***Please note URM’s were formalized about a 
decade after actual computers had already been 
invented and nearly 30 years from Turing’s 
machine, so it may be expected if some aspects 
are more realistic.



Programming the URMs

A URM program has the following finite list of instructions:

If rn = rm go to 
instruction q – else go 

to next instruction

J(m,n,q)Jump

rm = rnT(m,n)Transfer

rn = rn + 1S(n)Successor

rn = 0Z(n)Zero 

EffectSymbolismType

The instructions in a URM program are followed in order, starting from number 1.  Jump is 

the only instruction that may alter this course depending on the condition entered into the 

jump.  It is possible to force the program to loop by comparing a value in a register against 

itself using the jump instruct.  The program halts when there are no other instructions to 

follow or if no such instruction number exists.



Addition and Multiplication in URMs

Addition using a URM program

1. J(2,3,5)

2. S(1)

3. S(3)

4. J(1,1,1)

Multiplication using a URM program

1. T(1,3)

2. Z(1)

3. J(2,4,100)

4. S(4)

5. J(3,5,9)

6. S(1)

7. S(5)

8. J(1,1,5)

9. Z(5)

10. J(1,1,3)



7

Running URM Addition

Running Addition Flowchart for the addition URM

START

HALT

NO

YES

r2 = r3
?

R1 = r1 + 1
R3 = r3 + 1

Addition Program

1. J(2,3,5)

2. S(1)

3. S(3)

4. J(1,1,1)

2 0

R1 R2 R3

8 19 2


