
Beyond Pure Axioms:
Node Creating Rules in Hybrid Tableaux

Patrick Blackburn

Equipe Langue et Dialogue
INRIA Lorraine
Nancy, France

Balder ten Cate

Institute for Logic, Language and Computation
University of Amsterdam

Amsterdam, The Netherlands

Abstract

We present a method of extending the tableau calculus for the basic hybrid lan-
guage which automatically yields completeness results for many frame classes that
cannot be defined by means of pure axioms (for example, Church-Rosser frames).
The extended calculus makes use of node-creating rules. These rules trade on the
idea of using nominals to perform skolemization on formulas of the strong hybrid
language. Alternatively, viewing them from a Hilbert-style perspective, such rules
can be viewed as a systematic generalization of Gabbay’s irreflexivity rule. Our
completeness result covers all frame classes definable by pure nominal-free univer-
sal existential sentences of the strong hybrid language. This properly includes all
frame classes definable by universal existential first-order sentences.

1 Basic Hybrid Logic

Basic hybrid logic is the result of extending modal logic with nominals and
the @-operator. Suppose we are given a set σ of modalities, and two (count-
ably infinite) disjoint sets PROP (whose elements are typically written p, q,
and r, possibly subscripted, and called proposition letters) and NOM (whose
elements are typically written i, j, k, and l, possibly subscripted, and called
nominals). Then the basic hybrid language over σ, PROP and NOM is defined
as follows:

φ ::= p | i | ¬φ | φ ∧ ψ | 4(φ1, . . . φn) | @iφ.

Here p is a proposition letter, i is a nominal, and 4 is an n-ary modality
(an element of σ). Thus, except for the clauses for i and @iφ, this is the

standard definition of a modal language with arbitrary arity modalities (see,
for example, Definition 1.12 in [6]). We follow the usual convention of writing
3φ rather than 4(φ) when working with unary modalities.

What do the clauses for i and @iφ give us? Nominals are special proposi-
tion letters that are true at precisely one node in any model: they ‘name’, or
‘label’, the unique node they are true at. The @ operator allows us to assert
that a formula is true at a named node: @iφ says that φ is true at the node
named by the nominal i. In short, by hybridizing the modal language we make
it referential: it can now talk about individual nodes in Kripke models.

Let’s be precise. A model for the basic hybrid language over σ, PROP,
and NOM, is a Kripke model M = (W, (R4)4∈σ, V), such that the valuation
V assigns singleton subsets of W to nominals; such valuations are sometimes
called hybrid valuations. Apart from this restriction, everything is standard:
W is a non-empty set of nodes, and for all 4 in σ, if 4 is an n-ary modality,
then R4 is an n+ 1-ary relation. Following standard terminology we call the
pair (W, (R4)4∈σ) the frame underlying the model.

Given such a hybrid model M, we interpret our language as follows:

M, w |= a iff w ∈ V (a), where a ∈ PROP ∪ NOM

M, w |= ¬φ iff M, w 6|= φ

M, w |= φ ∧ ψ iff M, w |= φ and M, w |= ψ

M, w |= 4(φ1, . . . , φn) iff there are v1, . . . , vn ∈ W such that

(w, v1, . . . , vn) ∈ R4 and M, v1 |= φ1 . . .M, vn |= φn

M, w |= @iφ iff M, v |= φ, where V (i) = {v}

Readers unfamiliar with arbitrary arity modalities should note that in the
unary case the clause for modalities simplifies down to the more familiar:

M, w |= 3φ iff there is a v ∈ W such that (w, v) ∈ R3 and M, v |= φ.

If M, w |= φ then we say that φ is satisfied in M at w. For any frame F, if
φ is satisfied in every model (F, V) at every w in F no matter which (hybrid)
valuation V we choose, then we say that φ is valid on F. A formula is valid
if it is valid on every frame. A formula is valid on a class of frames F if it is
valid on every frame in F.

As promised, the hybridized language is referential. That nominals name
is hardwired into the definition of valuations, and the clause for @iφ says
“evaluate φ at the node that i names”. Notice that @ij says that the nominals
i and j name the same node, that @i3j means that the node named i has the
node named j as an R3-successor, and that @i 4 (j1, . . . , jn) means that the
n+ 1 nodes named i, j1,. . . ,jn, stand in the R4 relation.

It’s worth mentioning that the language we have just defined is a very

2

simple hybrid language: far stronger hybrid languages have been studied, for
example languages in which it is possible to bind nominals using the classical
quantifiers ∀ and ∃ (see, for example, [9,13,8]). But the syntactic simplicity
of the basic hybrid language is attractive. Moreover, its syntactic simplicity
pays off in terms of computational simplicity: the satisfaction problem of the
basic hybrid language (over the class of all models) is decidable in PSPACE
(this is proved for the unary case in [1]; the proof extends to the arbitrary
arity case). That is, the satisfaction problem for the hybridized language is
(up to a polynomial) no more complex than the satisfaction problem for the
underlying modal language.

2 Hybrid Tableaux

Hybridization gives us precisely the tools needed to define natural proof sys-
tems. This is because the basic hybrid apparatus of @-operators and nominals
allows us to reason about what happens at particular nodes, and to extract
information from under the scope of the modalities.

In Table 1 we give a sound and complete tableau calculus for basic hybrid
logic (the calculus is an arbitrary arity modality version of the calculus of [3]
that incorporates improvements to the equality rules introduced in [7]). To
prove a formula φ, proceed as follows: chose a nominal, say i, that is not in φ,
and start applying tableaux rules to ¬@iφ. That is, assert that it is possible
to falsify φ in some model at a node named i, and use the tableau rules to try
and build a falsifying model. If it turns out that this is not possible (that is,
if the tableau closes) we have proved φ.

It is clear from Table 1 that it is the hybrid machinery that propels this
calculus. For a start, all the rules are @-driven: we use @ to reason about
what must hold at named nodes. And, given the semantics of the @ operator,
the import of most of these rules should be clear. For example, the ¬ and ∧
rules dismantle the Boolean connectives in the obvious way, and the @ rule
lets us drop outermost occurrences of @. The first equality rule says that for
any nominal i on a branch we can conclude that i is true at the node named
i, which is obviously true. The second equality rule says that from @ij (“the
nominals i and j name the same node”) and @iφ (“φ is true at the node named
i”) we can conclude @jφ (“φ is true at the node named j”).

But the hybrid apparatus has a second, deeper, role to play. This becomes
apparent when we consider the 4 rules, and in particular the left-hand rule
for 4. It is probably easier to see what is going on in the unary case: Table 2
displays the unary form of all three rules containing occurrences of 4 (that
is, the two 4 rules and the third equality rule).

It’s the left-hand 3 rule that is crucial. We are given the assertion @i3φ
(“at the node named i, 3φ is true”). From this we conclude two things: @i3k
(“the node named i has at least one successor, which we shall call k”) and
@kφ (“at the node named k, φ holds”). That is, we have used the nominal k

3

Table 1
Tableau calculus for the basic hybrid logic

¬

@i¬φ

¬@iφ

¬@i¬φ

@iφ

∧

@i(φ ∧ ψ)

@iφ

@iψ

¬@i(φ ∧ ψ)

¬@iφ ¬@iψ

4

@i 4 (φ1, . . . , φn)

@i 4 (k1, . . . , kn)

@k1φ1

...

@knφn

¬@i 4 (φ1, . . . , φn) @i 4 (k1, . . . , kn)

¬@k1φ1 | . . . | ¬@knφn

@
@i@jφ

@jφ

¬@i@jφ

¬@jφ

Equality
(i occurs on branch)

@ii

@ij @iφ

@jφ

@i 4 (k1, . . . , kn) @k1k
′
1 . . . @knk

′
n

@i 4 (k′1, . . . , k
′
n)

Closure
A branch is closed if it contains a formula and its negation.

A tableau is closed if all of its branches are closed.

to decompose the the original information into two simpler parts. Where does
the nominal k come from? Nowhere: it’s brand new. That is, it is a nominal
that hasn’t previously occurred on the tableau branch. It is a newly created
name for the φ-witnessing R-successor node to i that must exist if the original
assertion is true.

The general form this rule takes in the left-hand 4 rule should now be
clear: distinct new nominal k1, . . . , kn are introduced to extract information
from under the scope of the n-place modality. Incidentally, the convention
that nominals only occurring below the bar of a tableau rule are new (and
syntactically distinct) is a convention we shall use in Sections 4 and 5 of the

4

Table 2
Unary form of the rules containing 4

3

@i3φ

@i3k

@kφ

¬@i3φ @i3k

¬@kφ1

Equality @i3k @kk
′

@i3k
′

paper when we discuss node creating rules.

We won’t discuss the right-hand 4 rule, nor the third equality rule; the
unary case should make clear what they do. Neither rule introduces new
nominals.

3 Adding Pure Axioms

If the first benefit of hybridization is that it is straightforward to define natural
proof systems, the second is this: once a base system has been defined, it is
easy to extend it to a complete system for many important classes of frames.
All we have to do is add pure axioms.

A pure formula is a formula that contains no propositional letters. Many
properties of frames can be defined using pure formulas. For example, transi-
tivity of R is defined by

@i(33j → 3j).

(This formula is valid on every transitive frame and falsifiable on every non-
transitive frame.) Similarly, irreflexivity of R is defined by

@i¬3i,

and trichotomy of R (that is, ∀xy(xRy ∨ x = y ∨ yRx) is definable by

@i3j ∨@ij ∨@j3i.

As these examples show, the frame-defining powers of pure formulas are dif-
ferent from those of orthodox modal formulas (that is, formulas built out of
ordinary proposition letters): transitivity is definable using an orthodox modal
formula, but irreflexivity and trichotomy are not.

But for present purposes the key fact about pure formulas is this: when
used as axioms (over a suitable base proof system) they are guaranteed to be
complete with respect to the class of frames they define (for a detailed proof,
see Chapter 7.3 of [6]). For example, adding the pure axiom for transitivity
given above to a (suitable) base proof system yields a system complete for

5

transitive frames, and adding the pure axiom for irreflexivity yields a system
complete for irreflexive frames. These results are cumulative: adding both
axioms yields a system complete for strict partial orders. Many suitable base
proof systems are known: for example, see Chapter 7.3 of [6] and [5] for
Hilbert-style approaches, and Seligman [15] for sequent calculi. And, once a
small technical point has been observed, the tableau calculus just presented
is suitable too.

The small technical point is this: the tableaux rules only take as input (and
produce as output) @-prefixed formulas. This means that the pure axioms
used with tableaux must be @-prefixed too, but some natural axioms (such as
the trichotomy defining formula given above) are not of this form. However
this is only an apparent restriction: if a pure formula φ defines a class of
frames F, then @kφ defines F as well, where k is any nominal not occurring
in φ. Thus any pure axiom can be put a form suitable for tableau processing
simply by prefixing a new nominal. For example

@k(@i3j ∨@ij ∨@j3i)

is a suitable tableaux axiom for trichotomy. With this observed, we have the
following completeness result:

Theorem 3.1 Let A be a finite collection of @-prefixed pure formulas. Let
TA be the tableau system given above extended with the following rule: at any
stage in the tableau, we are free to choose a formula from A, instantiate it
with nominals occurring on some branch B, and then add the result to the end
of branch B. Then TA is complete with respect to the class of frames defined
by

∧
φ∈A φ.

Proof. The result for unary modalities is proved in [3]. The extension to
arbitrary arity modalities is routine. 2

Note the restriction on instantiations: we only introduce instances of the
axioms which make use of ‘old’ nominals. In fact, this is the restriction we
shall remove when we introduce node creating rules in the following section.
But before doing this, let’s look at the theorem just stated, and indeed at the
whole idea of frame-definability using pure formulas, from a rather different
perspective.

As we mentioned earlier, there are far stronger hybrid languages than
the basic hybrid language, including hybrid languages in which we can bind
nominals with the classical quantifiers ∀ and ∃. In what follows we call the
extension of a basic hybrid language with such quantifiers a strong hybrid
language. Precise definitions of the syntax and semantics of strong hybrid
languages can be found in [8], but the reader will probably find the examples
given below of these languages in action clear enough.

Strong hybrid languages give us full first-order expressive power over frames
(this has been known since Arthur Prior’s pioneering work on hybrid languages

6

in the late 1960s, such as some of the papers in [14]; for a more recent dis-
cussion, see [8]). This means that strong hybrid languages are vastly more
powerful than the basic languages of the present paper, and have undecidable
satisfaction problems. But it spite of these differences, strong languages throw
useful light on what is going on when we use pure axioms.

As we have already remarked, the following pure formula of the basic
hybrid defines transitivity:

@i(33j → 3j).

Using a strong hybrid language, this can be re-expressed as follows:

∀x∀y@x(33y → 3y).

That is, we have substituted variables for nominals, and taken the universal
closure. It should be clear that the basic hybrid formula we started with
is valid on a frame F iff the strong sentence is true on the frame F: the
∀ quantifier captures the effect of trying out all possible assignments to the
nominals/variables. To give another example, the basic formula

@i¬3i

which defines irreflexivity can also be re-expressed as

∀x@x¬3x.

Indeed, the process is completely general. Call a sentence of a strong hybrid
language of the form ∀x1 . . . xnφ, where φ does not contain any quantifiers,
propositional letters, or nominals, a punf-sentence (this stands for pure, uni-
versal, nominal-free sentence). The previous examples show that transitivity
and irreflexivity can be expressed by punf-sentences, and in fact we have the
following:

Proposition 3.2

• For any pure formula φ of the basic hybrid language there is a punf-sentence
φ∀ of the strong hybrid language such that for any frame F, φ is valid on F

iff φ∀ is true on F.

• For any punf-sentence φ of the strong hybrid language there is a pure for-
mula φB of the basic hybrid language such that for any frame F, φ is true
in F iff φB is valid on F.

Proof. Item 1 is a generalization of the above examples: suppose we are given
a pure formula φ(i1, . . . , in), where ii, . . . , in are all the nominals in φ, then
the required φ∀ is ∀x1 · · · ∀xnφ([i1 ← x1, . . . , in ← xn]).

As for item 2, any punf-sentence φ of the strong hybrid language must have
the form ∀x1 · · · ∀xnφ(x1, . . . , xn) where φ contains no quantifiers, proposition
letters, or nominals. Hence the required φB is φ([x1 ← i1, . . . , xn ← in]). 2

7

This gives us a new perspective on pure axioms. For a start it tells us that the
frame classes expressible by pure axioms are simply the frame classes definable
by punf-sentences. Moreover, it gives us an alternative way of thinking about
Theorem 3.1:

Theorem 3.3 Let S be a finite collection of punf-sentences, all of which have
an @-prefixed matrix. Let TS be the tableau system given above extended with
the following rule: at any stage in the tableau, we are free to choose a formula
from S, perform universal instantiation on it using nominals present on branch
B, and add the resulting basic hybrid formula to the end of branch B. Then
TS is complete with respect to the class of frames defined by

∧
φ∈S φ.

Proof. Simply a reformulation of Theorem 3.1. It’s worth stressing that
we are only using the strong hybrid language in the background, as a way of
recording extra axioms. The formulas actually used on the tableau are, just as
before, basic formulas: in concrete terms this reformulation changes nothing.

We insist that the matrices of the punf-sentences be @-prefixed to ensure
that the result of universal instantiation can be processed by the tableau. As
we have remarked, this restriction does not decrease the frame-defining powers
at our disposal. 2

While the perspectival shift from basic to strong hybrid languages is not par-
ticularly deep, it will be useful. We are about to introduce node creating
rules, which will give us complete tableau for many more frame classes. Which
classes? As we shall eventually see, any frame class definable by a strong sen-
tence of the form ∀x1 . . . xn∃y1 . . . ymφ (where φ does not contain any quan-
tifiers, propositional letters, or nominals). In essence, we are going to show
how to move from the universal fragment of the strong hybrid language, to
the universal-existential fragment.

4 Node Creating Rules for Geach Formulas

Many important frame classes cannot be captured using pure axioms. One
example is the class of Church-Rosser frames, that is, frames satisfying the
property

∀wvu∃t(wRv ∧ wRu→ vRt ∧ uRt).
Another is the class of right-directed frames, that is, frames satisfying the
(stronger) property

∀vu∃t(vRt ∧ uRt).
We shall now show how to capture the logic of such frame classes in the setting
of a tableau calculus. We do so in two steps. In this section we discuss the
Church-Rosser property, and go on to define tableau rules capable of handling
any class of frames definable by a Geach formula. In the following section we
discuss right-directedness, and go on to show that we can handle any condition

8

expressible in the (pure, nominal-free) universal-existential fragment of the
strong hybrid language.

A little experimentation will quickly convince the reader that there is no
pure axiom defining Church-Rosser: there is simply no way to get a handle
on the convergence node (the t in the above first-order definition). However if
we think more dynamically, and in particular, if we think in terms of tableau
rules that create new nodes, we see that there is a very natural way of getting
exactly what we want:

@i3j @i3k

@j3l

@k3l

Remember our notational convention for tableau expansion rules: any nominal
that occurs only below the bar is newly introduced. Therefore the above
expansion rule should be read as follows:

Whenever @i3j and @i3k occur on a branch, we are allowed to create a
new nominal l and add @j3l and @k3l to the branch.

That is, suppose that we already have the following configuration of nodes:

• i

	�
�

� @
@

@R

j • • k

Then we are allowed to introduce a brand new nominal l that acts as a name
for the required convergence node:

• i

	�
�

� @
@

@R

j • • k
@

@
@R 	�

�
�

◦ l

Two remarks. First, this rule amounts to “using nominals as skolem con-
stants”: in effect we are using nominals to eliminate the existential quantifier
∃t in the first-order definition given above. Second, readers familiar with com-
pleteness proofs for hybrid tableau will realize that this rule is not only sound,
but complete as well. For by systematically applying this rule, we saturate
any branch of a tableau with convergence points. And this guarantees that
any countermodel to the input that we find will be a countermodel based on
a frame with the Church-Rosser property.

Does this strategy generalise to other frame properties? In fact, it gener-

9

alises straightforwardly to all frame properties that can be characterised by
Geach formulas (see [12]). These are orthodox modal axioms of the following
form (where m,n, s, t ≥ 0, and p is an ordinary propositional letter):

3m2np→ 2s3tp.

Geach axioms cover many well-known properties, among which are transitivity
(m = 2, t = 1, n = s = 0) and Church-Rosser (m = n = s = t = 1).

Now, every Geach axiom corresponds to a first-order frame property, namely
the following:

∀xyz∃u(xRmy ∧ xRsz → yRnu ∧ zRtu).

Here, as is customary, we have used Rn as a shorthand for a sequence of n R-
transitions. In other words, the above formula is shorthand for the following
formula:

∀xyza1 . . . am−1b1 . . . bs−1∃uc1 . . . cn−1d1 . . . dt−1

((xRa1 ∧ . . . ∧ am−1Ry) ∧ (xRb1 ∧ . . . ∧ bs−1Rz)→

(yRc1 ∧ . . . ∧ cn−1Ru) ∧ (zRd1 ∧ . . . ∧ dt−1Ru)).

And now it is easy to define the required tableaux rules. All we need to do
is ‘walk along’ this formula from left to right, writing down the transition
relations in hybrid notation. If we do this (using i instead of x, j instead of y,
k instead of z, and l instead of u) we obtain the following tableaux expansion
rule:

@i3a1 . . . @am−13j @i3b1 . . . @bs−13k

@j3c1
...

@cn−13l

@j3d1

...

@dt−13l

Let’s look at a couple of examples. If we apply this schema to the Church-
Rosser property (that is, if we instantiate m, n, s and t to 1), then this gives
us exactly the expansion rule we have just discussed. It’s also interesting to
see the rule for transitivity produced by this schema:

@i3j @j3k

@i3k

Now, this rule does not create new nodes (after all, there’s no existential
quantifier in the definition of transitivity to be skolemized away). Moreover,

10

as transitivity can be characterised by a pure formula (namely @k(33i →
3i)), it doesn’t offer us anything new as far as frame classes are concerned.
Nonetheless, from a computational perspective, this rule is better than the
rule for transitivity of the previous section, which simply dumps the defining
pure formula on the tableau branch. The new rule, so to speak, sits and
waits for the antecedent to be fulfilled, and then fires to build the required
R-transition between i and k.

Two remarks. First, our approach to the Geach rules is similar to work
by Basin, Matthews and Viganò [2] in the labelled deduction tradition. These
authors don’t work with hybrid logic, rather they work with an orthodox
modal language and a labelling algebra interacting through a fixed interface.
Nonetheless, their use of skolemization has close affinities with the rules just
discussed, and their approach can handle all Geach conditions. Second, we
remark that the schema for Geach formulas could be generalised to languages
containing several distinct unary modalities: all that needs to be done is to
add appropriate indices to the diamonds in the above rule (to indicate which
binary relations interpret the various diamonds). But we shall leave this to
the reader, for a broader generalization awaits us.

5 Node Creating Rules and the Universal-Existential
Fragment

We now have a way of obtaining complete tableaux systems for frame prop-
erties such as the Church-Rosser property. However, the problem with the
right-directedness property has still not been solved, since right-directedness
is not equivalent to a Geach formula. In this section we will show how to
handle this condition, and then go on to show that we can handle any condi-
tion definable in the (pure, nominal-free) universal-existential fragment of the
strong hybrid language.

Right-directness is not definable by a Geach formula (in fact, no orthodox
modal formula whatsoever defines this condition, as the class of right-directed
frames is not closed under disjoint-union). There is a formula of the ba-
sic hybrid language that defines the class of right-directed frames, namely
@i2p→ @j3p. Unfortunately, as this is not a pure formula, we cannot apply
Theorem 3.1 to obtain completeness automatically. However, a little lateral
thinking shows that it is possible to handle this frame condition naturally,
using a more general kind of node creating rule.

First observe that right-directness can be defined by a very simple sentence
of the strong hybrid language, namely

∀xy∃z(@x3z ∧@y3z).

And now the crucial point: this strong formula provides a ‘recipe’ for what we
should do in a tableau proof, namely this: instantiate the universally bound

11

variables with old nominals, and the existentially bound variables with new
nominals. In short, it suggests the following tableau rule:

(j, k occur on the branch)

@j3i ∧@k3i

This rule provides exactly what we want. It says: suppose we have two nodes
named j and k:

j •

k •

Then we are free to create a new node, glue it in place to the right of these
nodes, and give it a name, say i.

j •
@

@
@R

◦ i

�
�

��

k •

As in the Church-Rosser example of the previous section, this new rule essen-
tially boils down to “skolemization using nominals”; the difference is we are
now thinking directly in terms of skolemizing strong hybrid formulas.

Of course, in one sense we have taken a step backwards. This rule is not
as nice as those for Geach conditions: we are back to simply placing instances
of a complex formula on the branch of a tableaux. But we gain something
important in return: generality.

Call a sentence of a strong hybrid language of the form

∀x1, · · ·xn∃y1 · · · ymφ

where φ does not contain any quantifiers, propositional letters, or nominals,
a puenf-sentence (this stands for pure, universal existential, nominal-free sen-
tence). Then for any such sentence we have the following tableaux rule:

(i1, . . . , in occur on the branch)

φ[x1 ← i1, . . . , xn ← in, y1 ← k1, . . . , yn ← km]

Here we make use of the convention mentioned in Section 2: the k1, . . . , km

are new, distinct, nominals. And now we have:

Theorem 5.1 Let S be a finite collection of puenf-sentences, all of which
have an @-prefixed matrix. Let TS be the tableau system given above extended

12

with the following rule: at any stage in the tableau, we are free to choose a
formula from S, perform the tableaux rule associated with this formula using
nominals present on branch B together with the needed new nominals; we add
the basic hybrid formula so obtained to the end of branch B. Then TS is
complete with respect to the class of frames defined by

∧
φ∈S φ.

Proof. A proof is given in the full version of the paper. It uses the same
technique that was used in [3] to prove Theorem 3.1 (or equivalently, Theo-
rem 3.3). The fact that we are now instantiating puenf-sentences rather that
punf-sentences does not change the heart of the argument. 2

Notice that, in contrast to our previous result concerning Geach formulas,
Theorem 5.1 applies to modalities of arbitrary arity.

6 Conclusion

A fundamental result of hybrid logic is that it is possible to define basic proof
calculi in such a way that any extension with pure axioms is automatically
complete. While general, this result has limitations: it does not cover all
Geach formulas, let alone conditions like right-directedness. In this paper we
have shown that it straightforward to overcome these limitations. The key
is to make use of node creating rules. These enable us to provide complete
proof systems in the basic hybrid language that cover any frame condition
definable by a puenf-sentence. To conclude the paper we briefly note another
perspective on node creating rules, and make a conjecture.

Node creating rules are not restricted to tableaux proof systems: they
make perfectly good sense in Hilbert-style proof systems, where they become
special rules of proof. For example, when working with a Hilbert system, the
Church-Rosser tableau expansion rule takes the following form:

` (@i3j ∧@i3k → @j3l ∧@k3l)→ θ and l 6∈ θ and l 6= i, j, k

` θ

Likewise, the right-directedness expansion rule becomes the following Hilbert-
style proof rule:

` (@j3i ∧@k3i)→ θ and i 6∈ θ and i 6= j, k

` θ

And in general, given any puenf-sentence ∀x1, · · ·xn∃y1 · · · ymφ ∈ A the cor-
responding Hilbert-style rule is:

` φ[x1 ← i1, . . . , xn ← in, y1 ← k1, . . . , ym ← km]→ θ

` θ

where k1, . . . , km are distinct, unequal to i1, . . . in, and don’t occur in θ.

Two remarks. First, proving completeness in the Hilbert system case is

13

rather similar to the proof in the tableaux case. The crucial work takes place
in an extended version of the Lindenbaum Lemma (that is the step in the com-
pleteness proof where a consistent set is transformed into a maximal consistent
set; see, for example, Lemma 7.25 of [6]). Essentially we add the required new
nominals when performing the inductive Lindenbaum construction; the new
rules guarantee the consistency of these additions. Full details are presented
in [5].

Second, the fact that node creating rules make sense in the Hilbert setting
should not be a surprise, since they are essentially something familiar to modal
logicians: rules for the undefinable. Gabbay [10] introduced the irreflexivity
rule, an additional rule of proof for orthodox modal language that makes it
possible to directly construct irreflexive models, and Venema [16] presents a
far-reaching generalization to logics containing the difference operator. This
is not the place to make detailed comparisons, but we make two remarks.
First, because the notion of reference to nodes is primitive in hybrid logic,
the hybrid rules are arguably more natural (though this is partly a matter
of taste). Second, in the hybrid logical case, there is a particularly simple
answer to the question “But where do such rules come from?”: they reflect
the skolemization possibilities offered by puenf-formulas.

We close with a conjecture. In one sense, we know how many frame classes
are covered by this result, namely precisely the frame classes definable by
puenf-formulas. But obviously it would be nice to back this up with a charac-
terization in terms of traditional correspondence theory. We have such a result:
in [4] we show that the frame conditions by puenf-formulas are exactly the
universal-existential closures of strongly bounded first-order formulas. This is
a large class of formulas, and we conjecture it covers every Sahlqvist-definable
frame class. If this could be proved it would nicely supplement the result of
Goranko and Vakarelov [11], which states that in reversive hybrid languages
(that is, languages where the set of modalities is closed under converses) ev-
ery Sahlqvist formula is equivalent to a pure formula. Incidentally, note that
the sets of puenf-definable and Sahlqvist-definable frame conditions cannot
be identical, since many puenf-definable (indeed punf-definable) conditions
such as irreflexivity, antisymmetry, and discreteness are not definable by any
orthodox modal formula at all.

References

[1] C. Areces, P. Blackburn, and M. Marx. A roadmap on the complexity of hybrid
logics. In J. Flum and M. Rodŕıguez-Artalejo, editors, Computer Science Logic,
number 1683 in LNCS, pages 307–321. Springer, 1999. Proceedings of the 8th
Annual Conference of the EACSL, Madrid, September 1999.

[2] David Basin, Seán Matthews, and Luca Viganò. Labelled propositional modal
logics: Theory and practice. Journal of Logic and Computation, 7(6):685–717,
1997.

14

[3] P. Blackburn. Internalizing labelled deduction. Journal of Logic and
Computation, 10:137–168, 2000.

[4] P. Blackburn and B. ten Cate. Correspondence theory for hybrid logic, 2002.
Manuscript, INRIA Lorraine and ILLC, University of Amsterdam.

[5] P. Blackburn and B. ten Cate. Hybrid axiomatics: the propositional case, 2002.
Manuscript, INRIA Lorraine and ILLC, University of Amsterdam.

[6] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge University
Press, 2001.

[7] P. Blackburn and M. Marx. Tableaux for quantified hybrid logic. In C. Areces
and M. de Rijke, editors, Methods for Modalities 2, Workshop Proceedings,
November 29-30, 2001. ILLC Amsterdam, 2001.

[8] P. Blackburn and J. Seligman. Hybrid languages. Journal of Logic, Language
and Information, 4(3):251–272, 1995. Special issue on decompositions of first-
order logic.

[9] R. Bull. An approach to tense logic. Theoria, 36:282–300, 1970.

[10] D.M. Gabbay. An irreflexivity lemma with applications to axiomatizations of
conditions on linear frames. In U. Mönnich, editor, Aspects of Philosophical
Logic, pages 67–89. Reidel, Dordrecht, 1981.

[11] Valentin Goranko and Dmiter Vakarelov. Sahlqvist formulas in hybrid polyadic
modal logics. Journal of Logic and Computation, 11(5):737–754, 2001. Special
issue on hybrid logic.

[12] G. Hughes and M.J. Cresswell. A New Introduction to Modal Logic. Routledge,
1996.

[13] S. Passy and T. Tinchev. An essay in combinatory dynamic logic. Information
and Computation, 93:263–332, 1991.

[14] A.N. Prior. Papers on Time and Tense. University of Oxford Press, 1968.

[15] J. Seligman. Internalization: The case of hybrid logics. Journal of Logic and
Computation, 11(5):671–689, 2001. Special issue on hybrid logic.

[16] Y. Venema. Derivation rules as anti-axioms in modal logic. Journal of Symbolic
Logic, 58:1003–1034, 1993.

15

	Basic Hybrid Logic
	Hybrid Tableaux
	Adding Pure Axioms
	Node Creating Rules for Geach Formulas
	Node Creating Rules and the Universal-Existential Fragment
	Conclusion
	References

