
Labelled Tableaux for Nonmonotonic Reasoning:
Cumulative Consequence Relations

Alberto Artosi
Department of Philosophy,

University of Bologna,
via Zamboni 38, I-40126 Bologna, Italy

email: artosi@cirfid.unibo.it

Guido Governatori
School of Information Technology and Electrical Engineering

The University of Queensland
Brisbane, QLD 4072, Australia
email: guido@itee.uq.edu.au

Antonino Rotolo
CIRSFID, University of Bologna,

Via Galliera 3, I-40121 Bologna, Italy
email: rotolo@cirfid.unibo.it

Abstract
In this paper we present a labelled proof method for computing nonmonotonic consequence relations in
a conditional logic setting. The method exploits the strong connection between these deductive relations
and conditional logics, and it is based on the usual possible world semantics devised for the latter. The
label formalism KEM, introduced to account for the semantics of normal modal logics, is easily adapted
to the semantics of conditional logic by simply indexing labels with formulas. The basic inference rules
are provided by the propositional system KE+ —a tableau-like analytic proof system devised to be used
both as a refutation method and a direct method of proof— that is the classical core of KEM which is
thus enlarged with suitable elimination rules for the conditional connective. The resulting algorithmic
framework is able to compute cumulative consequence relations in so far as they can be expressed as
conditional implications.

1 Introduction
In this paper we present a labelled proof method suitable for computing cumulative non-
monotonic consequence relations in a conditional logic setting. Generally speaking, our aim
is to define a framework that, paying great attention to proof-theoretical formulations, will
turn out to be a fruitful step towards further computational developments in treating wide

Journal of Logic and Computation, 12 (6): 1027-1060.
c© Oxford University Press, 2002

The original publication is available at doi: 10.1093/logcom/12.6.1027.

http://dx.doi.org/10.1093/logcom/12.6.1027

classes of nonmonotonic inferences.
It is commonly acknowledged that the idea to study nonmonotonic logics in terms of

their consequence relations can be traced back to Gabbay [18]. Since nonmonotonic rea-
soning was brought up in the computer science field in the seventies, a great number of
formalisms have been developed. In the light of this plethora of different systems, the merit
of Gabbay was to focus on the minimal theoretical properties which should characterize all
systems that exhibit nonmonotonic behavior. Following this idea, some proposals have been
put forward to find a unifying approach to nonmonotonic reasoning. We refer, in particular,
to Shoham’s [37] general semantic framework for nonmonotonic logics, and Kraus, Lehman
and Magidor’s [31] and [29] approach to nonmonotonic consequence relations (see [28] for
a later “unified” semantic account of nonmonotonic consequence relations and related ar-
eas such as, e.g., belief revision and conditional logic). Shoham first proposed a preference
(ordering) semantics with partially ordered worlds. In this perspective, a proposition B is a
nonmonotonic (preferential) consequence of a proposition A if both A and B are satisfied in
the most normal worlds selected by the preference relation. Later on, Lehman and his col-
leagues extended Shoham’work by using too preferential models or similar machineries to
characterize some particular nonmonotonic inference. In general, they studied five families
of consequence relations and, for all of them, they provided both a semantic characteriza-
tion and a proof-theoretical definition by using Gentzen-style inference rules. The two views
were therefore integrated by means of “representation theorems” which associate semantics
to nonmonotonic deductive relations. Among such families it is worth mentioning the cumu-
lative, preferential and rational consequence relations. While preferential and rational sys-
tems have been widely investigated since they embody some general properties enjoyed by
well-known nonmonotonic logics (see, in particular [31]), the study of cumulative relations
seems to deserve more enquiry. Cumulative reasoning, in fact, is not only closely related to
some interesting systems such as defeasible logics (see, [7]), but, as the weakest system, it
encodes just the basic conditions identified by Gabbay.

In particular, a computational treatment of this family of consequence relations is still
missing. The only attempt in this direction is Lehmann’s algorithm [31] which, unfortunately,
works only for preferential reasoning. A different and more general route has been shown
by Fariñas del Cerro, Herzig and Lange [16]. They have pointed out that a computational
account of nonmonotonic inference can be provided by simply reducing computation to a
validity test in a (monotonic) conditional logic (henceforth CL). In fact, the idea is to exploit
the strong connections between nonmonotonic consequence relations and (monotonic) modal
and conditional logics. As is well-known, such a connection has been emphasized by several
scholars, such as Boutilier [8] and Katsuno and Satoh [28], whose analysis rely on Kripke
structures very close to Kraus, Lehmann and Magidor’s “preferential” models. In particular,
Boutilier [8] has shown on this basis that Kraus, Lehmann and Magidor’s [29, 31] preferential
and rational consequence relation systems and Degrande’s [15] logic N closely correspond
to the flat parts of modal CLs definitionally equivalent to the standard modal systems S4 and
S4.3.

In this paper we follow Fariñas del Cerro’s advice in order to develop a general and “effec-
tive computation . . . of nonmonotonic inference relations via automated deduction method”
[16, p. 387] in CL. We know only two previous attempts in this direction: Groeneboer and
Delgrande’s [26] and Lamarre’s [30] tableau-based theorem provers for some normal CLs.
In both approaches a conditional formula is checked for validity by attempting to construct
a model for its negation. What we undertake in this paper can be viewed as a further step

2

in the same direction, as in our approach cumulative nonmonotonic consequence relations
can be effectively computed by a counter-model validity test for the corresponding class of
conditional formulas.

Until now, the inferential structure of CLs has not been sufficiently explored to provide
reliable automated deduction methods for effectively computing the inferences sanctioned by
cumulative reasoning. In fact, in contrast with the striking development of CL’s semantic
setting, its inferential structure has remained largely unexplored (with the notable exceptions
of [39, 14, 23, 35]). To accomplish the above goal we shall proceed by first looking for a suit-
able CL that can be used as an appropriate counterpart of the class of cumulative consequence
relations. Such a logic, called CU, is a simple extension of Chellas’ [10] basic normal system
CK. Actually, our tableau proof system construction is just aimed to compute nonmonotonic
consequence relations in this (monotonic) CL whose “flat” (i.e., unnested) fragment is shown
to correspond to Kraus, Lehmann and Magidor’s basic system C for cumulative relations.
Let us point out that CU is in itself an additional outcome of this paper, which seems to offer
potentially a flexible proof method even for other normal conditional logics.

As regards the technical tools and the formalism adopted in the paper, our construction is
based on an algorithmic proof system which uses a labelling discipline, in the wake of Gab-
bay’s [20] Labelled Deductive Systems (LDSs), to generate and check models. A detailed
discussion of the merits of LDSs as a unifying framework is beyond the scope of this paper.
However, a key feature of LDSs is worth mentioning. LDSs are in general very sensitive to
the various features of different logics so that differently motivated and formulated logics can
very often be combined in a simple and natural way provided we have a suitable LDS formu-
lation for them (see, e.g., [21, 22, 4]). In LDSs the usual modal semantics is incorporated in
the syntactic label construction and only minor variations are needed to pass from one logic
to another [1, 4, 21, 22, 25, 5, 36, 40]. Thus, once an automated LDS is available for some
appropriate modal systems, only slight natural changes in the modal LDS are needed to yield
the appropriate semantics for CLs and nonmonotonic consequence relations.

More precisely, we use a labelled tableau system, called KEM, suitable for a variety of
intensional (modal) logics that can be characterized in terms of possible world semantics (see
[1, 22]). The general idea behind KEM is to represent modalities, and more generally inten-
sional operators, as labels which are nothing but structured sequences of world symbols. Due
to the basic format of such labels the semantics developed by Shoham [37] and adapted by
Kraus, Lehmann and Magidor [29] to nonmonotonic reasoning can hardly be encoded in the
KEM label formalism. To cover nonmonotonic consequence relations we thus need to treat
this kind of reasoning in a possible world setting. This requirement is far from being unnatural
because of the mentioned strong correspondence between nonmonotonic consequence rela-
tions and CLs, which enjoy a modal-like semantics. In this sense, our system can fruitfully
exploit the intuition of Fariñas del Cerro and his colleagues about the methods for comput-
ing nonmonotonic inferences. In particular, we refer to Chellas’s [10] approach according to
which a conditional can be conceived of as a modality parameterized by its antecedent. To
reflect this idea we propose to enrich KEM’s label formalism by attaching formulas to world
symbols. Accordingly, that B is a nonmonotonic consequence of a proposition A is intuitively
represented by an expression like T B : iA, that means that B is true in the worlds, denoted by
the label i, where A is true.

A crucial feature of our system is that it works both on the declarative and on the labelled
part of such expressions. However, much of the job is done thanks to an appropriate algebra
and to specific algorithmic procedures for manipulating labels. In the literature, it is usual

3

to distinguish two ways to deal with labels: 1) labels are propagated using logic-dependent
inference rules (see, for example, Fitting’s prefixed tableaux [17] and single-step tableaux
[33, 6]); 2) labels are matched according to logic-depended label unifications. Even if our
system employs the second strategy, it is worth noting that, in both cases, it is necessary to
take care of the formulas that parameterize labels when inference rules or unifications are de-
fined, and the conditions on such formulas should mimic the semantics of the nonmonotonic
system under analysis. Very often these requirements have a semantic nature, so that a sim-
ple inspection of the formulas involved is not enough. Intuitively, suppose we need to see
whether the labels iX and jY denote the same set of worlds. This is quite usual in labelled
tableaux, at least when the closure of a proof tree is obtained by checking for a contradiction
in the same worlds. To do so, for example, it could be necessary to check that the formulas
X and Y attached to the labels are equivalent, since a given formula A is true at the first label
and false at the second. If so, iX and jY correspond to the same worlds and it is possible to
make the contradiction explicit.

What can be done to verify these conditions is to devise auxiliary proof methods when-
ever they are needed. However, this solution is far from being optimal; indeed, it could be
computationally expensive because, in some cases, we are forced to check several times some
conditions, leading thus to redundancies and useless pieces of information. Fortunately, this
is not necessary for some logics, and, in such cases, a more elegant solution is to provide
syntactic criteria under which the conditions are met, thus using the information present in
the main proofs. Accordingly, we define a specific proof search method which enables us to
perform the check without generating redundant auxiliary trees. More precisely, this is done
by using a suitable modification of the classical proof system KE proposed by D’Agostino
and Mondadori [13]. Actually, the KEM system generalizes KE by using a labelled language
since its propositional core employs a similar mixture of tableau, natural deduction and struc-
tural rules. However, such a new version of KE, called KE+, makes the system completely
analytical. Thus, it is possible to keep track of strict dependencies between the different sub-
formulas generated by other formulas, so that it is easy to exploit this information to check
if such formulas are, for example, tautologies or classically equivalent. Unless we want to
accept a redundant system, this procedure is highly desirable in our system because of the
structure of the adopted label formalism. However, this is a result to be emphasized besides
the specific requirements of our proof system, since it is based on an intuition that can be
applied to other labelled systems which employ a similar package of inference rules.

To sum up, we shall proceed in the following way. First we briefly review Kraus, Lehmann
and Magidor’s [29] sequent system C for cumulative relations. Then we introduce Lewis-type
semantic structures akin to the kind of models used to characterize C. Such structures will al-
low us to establish a correspondence between C and the flat fragment of the above mentioned
conditional logic CU. At this point, we shall be able to show how cumulative relations can
be effectively computed by an LDS provided by a tableau-like proof system together with a
label formalism adequate to represent the intended semantics. The system is presented in two
steps. First, the labelling (formalism + label unification) scheme introduced in [1] to account
for the semantics of normal modal logics is adapted to represent Lewis-type semantic struc-
tures for CU. Then a suitable tableau inference and label propagation rules are introduced
which provide a sound and complete proof system for the flat fragment of CU. The system
is then improved by developing a proof search method based on KE+. Finally, we provide
some remarks on further extensions and related works.

4

2 Nonmonotonic Consequence Relations and Conditional
Logic

The study of nonmonotonic consequence relations has been undertaken by Gabbay [18] who
proposed three minimal conditions a (binary) consequence relation |∼ on a language L should
satisfy to represent a nonmonotonic logic, i.e.,

∆,A |∼A (Reflexivity)

∆,A |∼B;∆ |∼A
∆ |∼B

(Cut)

∆ |∼A;∆ |∼B
∆,A |∼B

(Cautious Monotonicity)

More recently, Kraus, Lehmann and Magidor [29] have investigated the proof-theoretic and
semantic properties of a number of increasingly stronger families of nonmonotonic conse-
quence relations. In particular, they have provided the following sequent system C to define
the (weakest) class of cumulative consequence relations, that closely corresponds to that sat-
isfying Gabbay’s minimal conditions (we assume that both the usual monotonic consequence
relation ` and its nonmonotonic counterpart |∼ are defined on the language L of classical
propositional logic).

A |∼A (Reflexivity)

` B→C A |∼B
A |∼C

(Right Weakening)

` A≡ B A |∼C
B |∼C

(Left Logical Equivalence)

A |∼B A |∼C
A∧B |∼C

(Cautious Monotonicity)

A∧B |∼C A |∼B
A |∼C

(Cut)

Notice that the following
A |∼B A |∼C

A |∼B∧C
(And)

A |∼B B |∼A A |∼C
B |∼C

(CSO)

are derived rules of C. A sequent A |∼B, A,B ∈ L (intended reading: B is a plausible con-
sequence of A), is called a conditional assertion. The (proof-theoretic) notion of cumulative
entailment is defined for such assertions. Let Γ be a set of conditional assertions. A condi-
tional assertion A |∼B is said to be cumulatively entailed by Γ iff A |∼B is derived from Γ
using the rules of C.

5

Let L> be the language obtained by adding the conditional connective > to L. The set of
(well-formed) formulas of L> is defined in the usual way. Formulas of L> are interpreted in
terms of Lewis-type semantic structures akin to the kind of models used by Kraus, Lehmann
and Magidor [29] to characterize C.

More precisely, it is enough to introduce some constraints (see definition 2) on the basic
selection function model presented in definition 1.

Definition 1 A selection function (SF) model is a triple M = 〈W, f ,υ〉 where

1. W is a nonempty set (of possible worlds);

2. f is a selection function which picks out a subset f (A,u) of W for each u in W and
A ∈ L>;

3. υ is a valuation assigning to each u in W and A ∈ L> an element from the set {T,F}.

We refer to the set of worlds f (A,u) as the set of A-worlds with respect to u.
Truth of a formula A at a world u in a model M, M |=u A, is defined as usual with the

conditional case given by
M |=u A > B iff f (A,u)⊆ ‖B‖ (1)

where ‖B‖ denotes the set of worlds where B is true, i.e., ‖B‖ = {w ∈W : υ(B,w) = T}. A
formula A is valid (|=SF) just when M |=u A for all worlds u in all SF models.

Definition 2 A selection function cumulative model (SFC) is an SF model M = 〈W, f ,υ〉
satisfying the following conditions:

1. f (A,u)⊆ ‖A‖ (Reflexivity)

2. If ||A||= ||B||, then f (A,u) = f (B,u) (Left Logical Equivalence)

3. If f (A,u)⊆ ‖B‖, then f (A∧B,u)⊆ f (A,u) (Cautious Monotonicity)

4. If f (A,u)⊆ ‖B‖, then f (A,u)⊆ f (A∧B,u) (Cut)

Notice that from 3 and 4 above we obtain

f (A,u)⊆ ||B|| ⇒ f (A∧B,u) = f (A,u) (2)

It is not hard to see that the class of SFC models fits exactly the conditional logic —call it
CU— containing classical propositional logic and the following axioms

1. A > A (ID)

2. (A > B)∧ (A∧B > C)→ (A > C) (RT)

3. (A > B)∧ (A > C)→ (A∧B > C) (CM)

and closed under the usual inference rules

A≡ B
(A > C)→ (B > C)

(RCEA)

6

and
(A1∧·· ·∧An)→ B

(C > A1∧·· ·∧C > An)→C > B
(RCK)

Notice that ID, RT , CM, RCEA, and RCK correspond, respectively, to Reflexivity, Cut, Cau-
tious Monotonicity, Left Logical Equivalence and Right Weakening. Of course, CU is noth-
ing but Chellas’ [10] conditional logic CK + ID augmented with RT and CM (Burgess’ [9]
axiom A3). A standard Henkin-style construction proves the completeness of CU with respect
to the class of SFC models.

Lemma 3 Let u be a set of formulas closed under CU. Let v = {B : A > B ∈ u}. If u,v are
consistent and ¬(A > C) ∈ u then {¬C}∪ v is consistent.

Proof Suppose {¬C}∪v is not consistent. Then {B1, . . . ,Bn} is a finite subset of v such that∧n
i=1 Bi∧¬C ` ⊥ which implies

∧n
i=1 Bi `C. In u we have A > Bi, therefore by RCK we can

conclude A > C ∈ u contradicting the consistency of u.

Theorem 4 |=SFC A iff `CU A.

Proof One half of the theorem is easy to prove, for it is a tedious but entirely routine exercise
to check that each axiom is valid in all the SFC models. For the other half let us consider the
canonical SFC model

〈W, f ,v〉
where

• W is the set of CU-maximal consistent sets (a usual Henkin construction shows that W
is not empty);

• f (A,u) = {w : {B : A > B ∈ u} ⊆ w};

• for any propositional letter p, v(p,u) = T iff p ∈ u.

We first show that the last clause can be extended to generic formulas of L, i.e., v(A,u) = T
iff A ∈ u.

We use induction on the complexity of a formula A. If A is an atomic proposition then the
property holds trivially.

Let us assume that v(A > B,u) = T . According to (1), f (A,u) ⊆ ||B||; moreover, by
maximality, either A > B or ¬(A > B) is in u. If the latter is the case, by Lemma 3, for any
w ∈ f (A,u), w∪{¬B} is consistent; but B ∈ w, thus w∪{¬B} is not consistent, and so we
have a contradiction; hence A > B ∈ u.

If A > B ∈ u then, by construction, f (A,u)⊆ ||B||, which implies v(A > B) = T .
We have now to prove that the model is cumulative. We only show the case for Cautious

Monotonicity and CM. The other cases can be found in [34]. We assume the antecedent of
clause 2 of Definition 2, that is f (A,u)⊆ ||B||, and we have to show that f (A∧B,u)⊆ f (A,u).

By maximality either A > B∈ u or¬(A > B)∈ u. If the latter is the case then, by Lemma 3,
∀w∈ f (A,u), w∪{¬B} is consistent. However, according to our assumption, each w contains
B, so w∪{¬B} is inconsistent, therefore ¬(A > B) cannot be in u, hence A > B ∈ u. Each
instance of axiom CM is in u, and, by maximality, u is closed under classical propositional

7

logic; thus, for any formula A > C, if A > C ∈ u, then A∧B > C ∈ u; this implies that for
every formula A

{C : A > C ∈ u} ⊆ {D : A∧B > D ∈ u}.
Finally, by the definiton of the selection function f for the canonical SFC model

f (A∧B,u)⊆ f (A,u).

Whether CU is interesting in its own right is an issue which need not detain us here.
What matters is that we can establish a mapping between C and CU similar to the well-
established correspondences between [29]’s stronger systems P and R of preferential and
rational relations and the flat fragments of well-known conditional logics.

In order to prove the equivalence between a nonmonotonic consequence relation and a
conditional logic, we have to define the kind of rules describing a nonmonotonic consequence
relation. First of all we notice that a property of a nonmonotonic consequence relation has
the form of a rule

A1, . . . ,An

B
(3)

where each Ai and B are either of the form C |∼D or ` E, where C, D, and E are classical
formulas.

At this point, we need some machinery for translating any structure of a nonmonotonic
consequence relation system into the language L>. Such a machinery has already been pro-
vided by Crocco and Lamarre [12]. According to their approach, it is enough to classify
properties of a nonmonotonic consequence relation as follows:

Definition 5 (cf. Definition 2.4 in [12]) A rule is:

• of type 1 if and only if the symbol of monotonic deduction (`) does not appear in it;

• of type 2 if and only if the symbol of monotonic deduction appears only in its premises.

The above classification gives us a base for introducing a transformation “∗” replacing |∼
with the conditional connective >.

Definition 6 (cf. Definition 2.6 in [12]) Let F be an expression of L; F∗ is the expression of
L> corresponding to F , such that:

• for every classical expression F , F∗ = F ;

• for every expression F = A |∼B, F∗ = A > B;

• for every expression F = A 6 |∼B, F∗ = ¬(A > B);

• for every rule F =
A1, . . . ,An

C
of type 1, F∗ = (A∗1∧·· ·∧A∗n)→C∗;

• for every rule F =
` B1, . . . ,` Bn,A1, . . . ,Am

C
of type 2,

F∗ =
B1, . . . ,B2

(A∗1∧·· ·∧A∗m)→C∗

8

According to the above transformation, rules of type 1 correspond to axioms of CLs, whereas
rules of type 2 correspond to inference rules of CLs.

We can now state formally the relationship between a nonmonotonic consequence rela-
tion and a conditional logic. Let S be a nonmonotonic consequence relation, and let K be
the conditional logic whose axioms and inference rules are the translation of the properties
characterizing S.

Theorem 7 [12] Let M be a sound and complete semantics for K. Then F is a general
property of S iff F∗ is valid in M.

Proof For the proof see [12].

Let |∼S denote the consequence relation S and let K− denote the conditional logic K
restricted to the formulas of the form A > B where A,B ∈ L.

Definition 8 A consequence relation |∼ is defined by an SF model M if the following condi-
tion is satisfied: A |∼B iff M |= A > B.

Definition 9 A consequence relation system S is said to correspond to a conditional logic K
if the following condition is satisfied: A |∼S B iff `K− A > B.

Theorem 10 The consequence relation system C corresponds to the conditional logic CU.

From Theorem 4 we know that CU is characterized by SFC-models. The theorem follows
from showing that the axioms and rules of CU are the translations, according to Definition 6,
of the rules of C and thus A |∼C B is the consequence relation defined by an SFC model.

From this it follows as a corollary that a consequence relation |∼ is cumulative iff it is
defined by some SFC model. The same holds for the notion of cumulative entailment. For a
set Γ of conditional assertions let us denote by Γ′ the set containing the CU− translations of
the conditional assertions in Γ (i.e., A > B∈ Γ′ for each A |∼B∈ Γ). The following corollaries
are derived immediately from Theorem 10 (see Corollaries 3.26, 3.27 and 3.28 of [29] for
comparison).

Corollary 11 Let Γ be a finite set of conditional assertions and A |∼B a conditional assertion.
The following conditions are equivalent. In case they hold we shall say that Γ cumulatively
entails A |∼B.

1. A > B is derived from Γ′ using the axioms and the rules of CU.

2. A > B is satisfied by all SCF models which satisfy Γ′.

Corollary 12 A finite set of conditional assertions Γ cumulatively entails A |∼ B iff `CU∧
Γ′→ (A > B).

We conclude that the system C may be viewed itself as a restricted CL of the standard
(normal) type provided the relation symbol |∼ is interpreted as a >-type conditional con-
nective. With this background we shall be able, in the upcoming sections, to provide an
algorithmic framework for computing cumulative consequence relations in so far as they can
be expressed as conditional implications.

9

3 KEM for Nonmonotonic Consequence Relations
In [1] we presented a proof system for normal modal logics, called KEM, which seems to
enjoy most of the features a suitable proof search system for modal (and in general non-
classical) logics should have. KEM is an algorithmic modal proof system which, in the spirit
of Gabbay’s [20] LDS, brings semantics into proof theory using (syntactic) labels in order to
simulate models in the proof language. Very briefly, it is based on a combination of tableau
and natural deduction inference rules which allows for a suitably restricted (“analytic”) ap-
plication of the cut rule; the label scheme arises from an alphabet of constant and variable
“world” symbols.1 A “world” label is either a world-symbol or a “structured” sequence of
world-symbols we call a “world-path”. Constant and variable world-symbols denote worlds
and sets of worlds respectively (in a Kripke model), while a world-path conveys informa-
tion about access between the worlds in it. As we have argued elsewhere, this proof system
appears to be flexible enough to be extended to cover the full range of non-classical logics
which are extensions of (or logically similar to) modal logic — indeed flexible enough to be
adapted to any setting having a Kripke-model based semantics (see, e.g., [21, 22]). This is
largely due to the particular label formalism it uses to generate and check models.

In this section we show how it can be extended, with little modification, to handle C. In
what follows L will denote the sublanguage of L> including L and all the boolean combina-
tions of formulas of the form A > B where A,B ∈ L.

3.1 Label Formalism
As we have already alluded to, KEM has two basic kinds of atomic labels: variables and
constants. Formally, let ΦC = {w1,w2, . . .} and ΦV = {W1,W2, . . .} be two arbitrary sets of
atomic labels, respectively constants and variables. A label in the sense of [1] is an element
of the set of labels ℑ defined as follows:

Definition 13 ℑ =
⋃

1≤p
ℑp where ℑp is:

ℑ1 = ΦC ∪ΦV

ℑ2 = ℑ1×ΦC

ℑn+1 = ℑ1×ℑn, n > 1 .

Thus, a label is any i ∈ ℑ such that either i is an atomic label or i = (k′,k) where (i) k′
is atomic and (ii) k ∈ ΦC or k = (m′,m) where (m′,m) is a label, i.e., i is generated as a
“structured” sequence of atomic labels. As we said, in the standard Kripke setting we may
think of constant and variable world-symbols as denoting respectively worlds and sets of
worlds. A label of the form (k′,k) is nothing else than a “world-path”. For instance, the label
(W1,w1) represents a path from w1 to the set W1 of worlds accessible from w1; (w2,(W1,w1))
represents a path which takes us to a world w2 accessible by any world accessible from w1
(i.e., accessible by the sub-path (W1,w1)) according to the appropriate accessibility relation.
Thus a label of the form (k′,k) is “structurally” designed to store information when we move
from a world (or a set of worlds) to another. We define the length of a label i, `(i), to be the
number of atomic labels in i. From now on we shall use i, j,k, . . . to denote arbitrary labels.

1See section 3.3, definition 23 for a formal definition of a KEM proof.

10

For a label i = (j,k), we shall call j the head and k the body of i, and denote them by h(i) and
b(i) respectively; hn(i) will denote the head of the sub-label of i whose length is n. We shall
call a label i restricted if its head is a (possibly indexed) constant, otherwise we shall call it
unrestricted.

In passing from Kripke models for modal logics to SF models the format of the labels
is left unchanged. The only modification is that atomic labels are now indexed by formulas.
Accordingly, let us stipulate that if i∈ΦC∪ΦV and Y ∈L then iY ∈ℑ1. We shall call a label
iY a formula-indexed label, and Y the label formula of i.2 The notion of a formula-indexed
label is then meant to capture the intended semantics. For example, (W A

1 ,w1) can be viewed
as representing (any world in) the set of the A-worlds with respect to w1 under some selection
function f . The label (wA

1 ,w1) represents an A-world in such a set. The interpretation of
labels of the form (k′,k) varies accordingly. Thus, the label (wA

2 ,(W A∨C
1 ,w1)) represents an

A-world with respect to any A∨C-world (with respect to w1). Such a formalism is motivated
by the general idea (see [10]) that > can be regarded as a necessity operator on the antecedent
of the conditional (i.e., A > B is read as [A >]B). Thus, it follows that whenever A > B is true
at a world u, B should be true at all the worlds in f (A,u) (A-worlds with respect to u); and
whenever A > B is false at u, there should be some A-world where B is false.

Definition 14 A labelled signed formula (LS-formula) [1] is a pair X : i where X is a signed
formula (i.e., a formula of L prefixed with a “T ” or “F”) and i is a label.

In the original KEM approach we attached labels to signed formulas (i.e., formulas of the
modal language prefixed with a “T ” or “F”) to yield labelled signed formulas (LS-formulas),
that is, pairs of the form X : i, where X is a signed formula and i is a label. Intuitively, an
LS-formula, TA : i is intended to mean: A is true at the world(s) denoted by the label i; for
instance, TA→ B : (W1,w1) means that A→ B is true at all the worlds (any world) accessible
from w1. Similarly FA → B : (W1,w1) means that A → B is false at the worlds denoted by
(W1,w1)

According to definition 14, this can be extended immediately to SF semantics. For in-
stance an LS-formula, TC : (W A∨B

1 ,w1), means that C is true at all the A∨B-worlds with
respect to w1.

As we have seen, formulas can occur in LS-formulas either as the declarative part or as
label formulas; moreover formulas in both parts can and must be used to draw inferences. To
deal with this fact we define when SA occurs in X : iY (SA@X : iY). More precisely:

SA@X : iY ⇐⇒
{

X = SA or
Y = A and S = T

where S ∈ {T,F}, A,Y ∈ L , X is a signed formula, and i ∈ ℑ. That means that either SA
is labelled with iY , or i (h(i)) is indexed with A. For example, in the expression SA@X : iY ,
where X = FB → C and iY = (W B∧C

1 ,w1), SA stands both for FB → C, and T B∧C, since
these are the formulas occurring in X : iY .

In what follows we assume familiarity with Smullyan’s [38] uniform notation for signed
formulas and the usual conversions between formulas and signed formulas.

2Notice that, for a label i, we shall use iY to indicate that the label formula of h(i) is Y . In general, when we
speak of the label formula of a structured label, we mean the label formula of the head of the label.

11

3.2 Label Unifications
The key feature of the KEM approach is that in the course of a proof search labels are ma-
nipulated in a way closely related to the semantics of modal operators and “matched” using
a specialized (logic-dependent) unification algorithm. That two labels i and k are unifiable
means intuitively that any world which one could get to by the path i could be reached by the
path k and vice versa (equivalently, that the sets of worlds they “denote” have a non-null in-
tersection). For example, (w3,(W1,w1)) and (W3,(w2,w1)) are unifiable (by simultaneously
linking W3 to w3 and W1 to w2); thus they virtually represent the same path (since w3 is a
world in W3 and w2 is a world in W1). LS-formulas whose labels are unifiable turn out to hold
at the same world(s) relative to the accessibility relation characterizing the appropriate class
of models. In particular two complementary LS-formulas such as TA : i and FA : k whose
labels are unifiable stand for formulas which are contradictory “in the same world”.

In this section we define a special notion of unification for C (σC-unification) which is
meant to “simulate” the conditions on the selection function f in SFC-models. We shall
proceed by first defining the unification for unindexed labels, and then by extending it to
formula-indexed labels.

First of all we introduce a label substitution ρ : ℑ 7→ ℑ thus defined:

ρ(i) =





i i ∈ΦC

j ∈ ℑ i ∈ΦV

(ρ(h(i)),ρ(b(i))) i ∈ ℑn,n > 1

For two labels i and j, and a substitution ρ , if ρ is a unifier of i and j then we shall say that
i, j are σ -unifiable. We shall use (i, j)σ to denote both that i and j are σ -unifiable and the
result of their unification. In particular

Definition 15 For all i, j,k ∈ ℑ

(i, j)σ = k iff ∃ρ : ρ(i) = ρ(j) and ρ(i) = k, and
for each n at least one of hn(i) or hn(j) is in ΦC.

According to the above condition, the labels (w3,(W1,w1)) and (W2,(w2,w1)) σ -unify on
(w3,(w2,w1)). On the other hand the labels (w2,(W1,w1)) and (W2,(W1,w1)) do not σ -unify
because both h2s are not in ΦC.

The same holds for SFC models. For example, that two labels, e.g., (W A∨B
1 ,w1) and

(wA∨B
3 ,w1), are unifiable will mean that wA∨B

3 is an A∨B-world in the set of A∨B-worlds
denoted by (W A∨B

1 ,w1). Accordingly, the pair of LS-formulas TC : (W A∨B
1 ,w1) and FC :

(wA∨B
3 ,w1) expresses a contradiction in the same world. However, this is just a trivial case

because of the identity of the label formulas. Generally speaking, the definition of the uni-
fication for indexed labels is more complicated since we have to take into account any label
formulas.

As said before, the conditions on label formulas should mimic the semantics of SFC-
models, but we have to devise them in a syntactic way. In particular, to check that two sets
of worlds denoted by different indexed labels overlap, we have to determine a specific mech-
anism for comparing distinct label formulas. From a proof-theoretical point of view, such a
comparison is concerned with the definition of a criterion for composing different structures

12

of formulas. However, it is well-known that cumulative logics do not allow unrestricted com-
positions of proofs (see, e.g., [11]). In other words, they avoid substituting an antecedent for
another antecedent by transitivity (via cut).

The aim of the following definitions is to establish the basic (restricted) conditions for the
substitution of two formulas equivalent w.r.t. |∼ (|∼-equivalent) and a given set of formulas.
The conditions for such an equivalence are given in Definition 20. In general equivalence
is a bidirectional relation; thus, to accomplish this goal we have to provide the conditions
for the two directions (Definition 19). The basic relations are given directly by the formulas
in the just mentioned set and are basically detected (in particular, via Right Weakening) as
entailment relations between the subformulas or the conjunctions of the relevant literals of
the formulas in such a set (Definitions 18 and 16).

Definition 16 • For every formula A, {A} c-fulfils A.

• If {A1, . . . ,An} contains a pair of complementary literals then, for every formula A,
{A1, . . . ,An} c-fulfils A.

• If A is of type α , then {α1,α2} c-fulfils A.

• If A is of type β , then {β1} c-fulfils A, and {β2} c-fulfils A.

• If {A1, . . . ,An} c-fulfils A, and {A11 , . . . ,A1m}, . . . ,{An1 , . . . ,Anm} c-fulfil respectively
A1, . . . ,An, then {A11 , . . . ,A1m , . . . ,An1 , . . . ,Anm} c-fulfils A.

It is easy to see that whenever a set of formulas c-fulfils a formula A the conjunction of the
formulas in the set propositionally entails A.

Proposition 17 Let A be a set of classical formulas. If A c-fulfils A, then
∥∥∧

Ai∈A Ai
∥∥ ⊆

‖A‖.

Proof We prove the property by induction on the number n of boolean operators occurring
in a formula A.
Case n = 1: If A is of type α , then the only set that c-fulfils it is {α1,α2}; hence

∥∥∥∥∥
∧

Ai∈A

Ai

∥∥∥∥∥ = ‖α1∧α2‖= ‖A‖

If A is of type β , then both {β1} and {β2} c-fulfil A. Moreover,

‖A‖= ‖β1∨β2‖= ‖β1‖∪‖β2‖

hence
∥∥∧

Ai∈A Ai
∥∥⊆ ‖A‖. We have thus proved the inductive base.

It is worth noting that the formulas occurring in A have less operators than A.
Case n > 1: Let B = {A1, . . . ,An} be a set of formulas that c-fulfils A, and assume that the
property holds for it. Thus ∥∥∥∥∥

∧

1≤i≤n

Ai

∥∥∥∥∥⊆ ‖A‖

13

Let Ci = {Bi1 , . . . ,Bim},1≤ i≤ n be a set of formulas such that Ci c-fulfils Ai. Then, according
to Definition 16,

⋃
1≤i≤n Ci c-fulfils A. By the inductive hypothesis, the proposition holds for

each pair Ci and Ai, since each Ai has less operators than A. Hence
∥∥∥∥∥

∧

1≤ j≤m

Bi j

∥∥∥∥∥⊆ ‖Ai‖

However,
⋂

1≤i≤n

∥∥∥∥∥
∧

1≤ j≤m

Bi j

∥∥∥∥∥⊆
⋂

1≤i≤n

‖Ai‖

But

⋂

1≤i≤n

∥∥∥∥∥
∧

1≤ j≤m

Bi j

∥∥∥∥∥ =

∥∥∥∥∥∥∥

∧

1≤ j≤m
1≤i≤n

Bi j

∥∥∥∥∥∥∥

⋂

1≤i≤n

‖Ai‖=

∥∥∥∥∥
∧

1≤i≤n

Ai

∥∥∥∥∥

therefore ∥∥∥∥∥∥∥

∧

1≤ j≤m
1≤i≤n

Bi j

∥∥∥∥∥∥∥
⊆ ‖A‖

Let B be any set of LS-formulas. (In the course of a proof search, B will be the set of
LS-formulas occurring in a branch of a proof tree.)

Definition 18 We say that A forces B in (a branch) B, iff A and B are in B and either 1)
A = B or A is of type α and B = αn, n ∈ {1,2}; or 2) there exists a formula C in B such that
A forces C in B and C forces B in B.

Given a formula A, the notion of “forcing” is meant to determine the subformulas of A that
are propositionally entailed by A itself.

Definition 19 A supports B in (a branch) B iff

1. {B1, . . . ,Bn} c-fulfils B, and Bk : (W A
ik ,w1) ∈B for each k, 1≤ k ≤ n; or

2. there is a set of formulas A = {Z1, . . . ,Zn} such that, for all i, 1≤ i≤ n, Zi : (W A
i ,w1)∈

B, A forces Zi in B, and A c-fulfils B.

We are now ready to say when two formulas, A and B, are |∼-equivalent in B (A≈B B).

Definition 20 A≈B B iff A and B are in B and either

1. A≡ B; or

2. A and B support each other; or

3. there is a formula C in B such that A≈B C and B≈B C.

14

If A ∈ B, with A≈B
we shall denote the set of formulas {B1, . . . ,Bn} such that, for all i,

1≤ i≤ n, Bi ∈B and Bi ≈B A. It is obvious that A≈B
is an equivalence class, thus we abuse

the notation and we use A≈B
to denote a formula in such a class.

Two formulas A and B are obviously equivalent with respect to |∼ if they are classically
equivalent. Otherwise, through the notion of support (see definition 19), we have basically the
following cases: (i) the set of truth-value assignments which correspond to the consequences
of A satisfies B; (ii) the set of consequence relations of A propositionally entails B. So,
according to definition 20, A and B are equivalent with respect to |∼ in B if (a) the above sets
are equal, or (b) such sets are equal to another set. This means that they prove each other. To
further clarify this notion let us examine the following example.

Example 21 Let B be the following set of LS-formulas:

{TA :(W A
1 ,w1), T B :(W A

1 ,w1), TC :(W A
1 ,w1), TA :(WC

2 ,w1), TA :(W A∧B
3 ,w1)}

We want to show that A∧B≈B C. First of all both A∧B and C occur in B. It is immediate to
see that the two formulas do not support each other, therefore, if they are not equivalent, and
we assume that this is not the case, then we have to find a formula in B which is |∼-equivalent
to both. We have two candidates: A and B. Clearly B does not support any formula in B,
thus we consider A. It is obvious that A ≈B C: they support each other in B given the LS-
formulas TA : (WC

2 ,w1) and TC : (W A
1 ,w1) and condition 2 of Definition 19. At this point

we have to see whether A ≈B A∧B. That A∧B supports A can be verified from the LS-
formula TA : (W A∧B

3 ,w1); on the other hand B contains the formulas TA : (W A
1 ,w1), and

T B : (W A
1 ,w1), where {A,B} c-fulfils A∧B, therefore A≈B A∧B. Hence, by condition 2 of

Definition 20 C ≈B A∧B.

At we are now ready to introduce the notion of unification for indexed labels to be used
in the calculus. Briefly, two labels unify with respect to a set of LS-formulas if the unindexed
labels unify and the label formulas satisfy conditions corresponding to clauses 1–4 of the
semantic evaluation. In the next definition we provide such conditions.

Definition 22 Let iX and jY be two indexed labels, and let B be a set of LS-formulas. Then

(iX , jY)σB
C = (i, j)σ

where 1) X 6≡ ⊥ if h(i) ∈ΦV ; 2) Y 6≡ ⊥ if h(j) ∈ΦV , and one of the following conditions is
satisfied

a) X ≈B Y ;

b) i) X ≡> and there is a set of formulas A = {Z1, . . . ,Zn} such that for all k, 1≤ k≤
n, Zk : (W>

mk
,w) ∈B and A c-fulfils Y ; or

ii) Y ≡> and there is a set of formulas A = {Z1, . . . ,Zn} such that for all k, 1≤ k≤
n, Zk : (W>

mk
,w) ∈B and A c-fulfils X .

c) i) X is of type α , Y ≈B αn for n ∈ {1,2}, and there is a set of formulas A =
{Z1, . . . ,Zn} such that for all k, 1 ≤ k ≤ n, Zk : (W

Y≈B
mk ,w) ∈B and A c-fulfils

α3−n; or
ii) Y is of type α , X ≈B αn for n ∈ {1,2}, and there is a set of formulas A =
{Z1, . . . ,Zn} such that for all k, 1 ≤ k ≤ n, Zk : (W

X≈B
mk ,w) ∈B and A c-fulfils

α3−n.

15

According to 1) and 2) no label unifies with an unrestricted label whose label formula
is unsatisfiable. Intuitively, this excludes that two propositionally indexed sets of worlds
have a null intersection, which would be possible with an unrestricted label indexed with a
contradiction: since f (Y,u) = /0 if Y ≡ ⊥, so the “denotation” of the label is empty. Indeed
||⊥||= /0, and, by reflexivity, for each A ∈ L> and u ∈W , f (A,u)⊆ ||A||, hence f (⊥,u) = /0.

Clause a) corresponds to Left Logical Equivalence and CSO: both establish when two
formulas are equivalent with respect to |∼; but logically and nonmonotonically equivalent
formulas have the same selection function sets.

According to b), given a set of LS-formulas B containing A : (WC→C
1 ,w1), the labels

(W A→A
2 ,w1) and (wA∨B

2 ,w1) σB
C -unify. The intuition behind this unification is the following:

C →C and A→ A are two tautologies built from different propositional letters; however, the
reading of A : (WC→C

1 ,w1) is “A is true in every >-world with respect to w1”; this means
f (>,w1) ⊆ ‖A‖. On the other hand {A} c-fulfils A∨ B, thus, by Proposition 17 ‖A‖ ⊆
‖A∨B‖, hence f (>,u)⊆ ‖A∨B‖. Therefore, by cumulativity (2), f (>,w1) = f (A∨B,w1).

Clause c) is meant to characterize cumulativity. Cumulativity is a restricted version of
Left Weakening. Accordingly, we have to see whether a conjunction is a weakening of one
conjunct and the other conjunct is derivable in each minimal world with respect to the former
component. This is achieved thanks to the notion of c-fulfilment. Such a notion is nothing else
than the condition a set of formulas must satisfy to (propositionally) entail the formula which
is “fulfilled”. Notice that the notion of c-fulfilment is also strictly related to Right Weakening.
As an example, consider the following labels: i = (wA∧(C→(B∧D))

2 ,w1), j = (W A
1 ,w1), and the

following LS-formulas: A1 = T B : (W A
2 ,w1), A2 = T D : (W A

3 ,w1). Here (i, j)σB
C , where B

contains A1 and A2. Notice that A∧ (C → (B∧D)) is of type α , and A is α1. Moreover
{B,D} c-fulfils B∧D which, in turn, c-fulfils C→ (B∧D), i.e., α2. Thus B contains a set of
LS-formulas whose labels are appropriate, and whose declarative units c-fulfil α2.

Although the above conditions seem to be very cumbersome, as we shall see in section 5,
they can be easily detected by the LS-formulas occurring in a proof tree, and closely corre-
spond to the semantic conditions of SFC-models.3

3.3 Inference Rules
The heart of the proof system for C is constituted by the following rules which are designed to
work both as inference rules (to make deductions from both the declarative and the labelled
part of LS-formulas), and as ways of manipulating labels during proofs. In what follows
we write (i, j)σB

C to denote both that i and j are σB
C -unifiable and the result of their σB

C -
unification, and X̄ to denote the conjugate of X (i.e., X̄ = FA (or TA) if X = TA (or FA)).

α@X ,kY

αn : kY [n ∈ {1,2}] (α)

β@X ,kY

β̄3−n@X ′, jY ′

βn : (k, j)σB
C

[n ∈ {1,2}] (β)

3In particular, see Lemma 24 in Section 4. This lemma shows that if two labels i and j unify and they have a
non-null intersection, then the result of their unification corresponds to an element of the appropriate model. In other
words in Lemma 24 we shall prove that, provided that i and j unify, there exists a corresponding world in the model.

16

These are exactly the α and β rules of the original KEM method [1] in a slightly modified
version: the formulas the rule is applied to are either the declarative parts or the label for-
mulas. The α rules are just the usual linear branch-expansion rules of the tableau methods,
whereas the β rules correspond to such common natural inference patterns as modus ponens,
modus tollens, disjunctive syllogism, etc.

TA |∼B@X , iY

T B : (W A
n , iY)

[W A
n new] (T|∼)

FA |∼B@X , iY

FB : (wA
n , iY)

[wA
n new] (F|∼)

The rules T |∼ and F |∼ closely reflect the semantical evaluation clause 1 for > (see section
2 above). In other words, whenever A > B is true at a world u, B should be true at all the
worlds in f (A,u) (A-worlds); and whenever A > B is false at u, there should be some A-
world where B is false. Thus, such rules correspond to the elimination rules for > and their
structure derives from KEM modal rules ν and π (the elimination rules for the standard modal
operators in a labelled context, see [1]).

X : i X̄ : i
[i unrestricted] (PB)

X@Y, iY
′

X̄@Z,kZ′

× [(i,k)σB
C] (PNC)

PB (the “Principle of Bivalence”) is exactly the “cut” rule of the original method (it can be
thought of as the semantic counterpart of the cut rule of the sequent calculus). PNC (the
“Principle of Non-Contradiction”) is the modified version of the familiar branch-closure rule
of the tableau method. As it stands, it allows closure (“×”) to follow from two formulas
which are contradictory “in the same world”, represented by two σB

C -complementary LS-
formulas, i.e., two LS-formulas X : iY

′
and X̄ : kZ′ whose labels are σB

C -unifiable (such as,
e.g, TC : (W A∨B

1 ,w1) and FC : (wA∨B
3 ,w1)). Notice that, in contrast with the usual normal

modal setting, in the present setting a contradiction of the form FA : (wA
2 ,w1) may occur,

since this LS-formula states that there exists an A-world where A is false.
Now we are ready to introduce the formal definitions of a KEM tableau and a KEM proof

for a given formula.

Definition 23 A KEM-tableau (or simply tableau) for an LS-formula X : i is a tree, whose
root is X : i and nodes are LS-formulas obtained from previous nodes using the inference rules
of KEM. A branch is closed when it is possible to apply PNC; a tree is closed when all its
branches are closed. A KEM-proof (or simply proof) of A is a closed KEM-tableau for FA : i,
where i is in ΦC. Finally `KEM A means that there is a KEM-proof for A.

In the following section the above set of rules will be proved to be sound and complete
for C. Notice that the format of the rules prevents labels from having a length greater than
two. This is obviously due to the fact that C corresponds to CU− (in the context of C the
nesting of |∼ is meaningless).

17

4 Soundness and Completeness
In this section we prove soundness and completeness theorems for KEM. We shall proceed
as usual by first proving that the rules for C are derivable in KEM, and then that the rules of
KEM are sound with respect to the semantics for C.

In the course of KEM-proofs labels are generated according to the structure of the for-
mulas involved, and, at the same time, they also generate (counter)-models. The labels are
intended to denote possible worlds and relations among them. The idea is that all the rele-
vant information is recorded in the labels. So, to extract such information, we have to map
labelled signed formulas to elements of SFC models. This is achieved with the help of three
functions, namely g, r, and m. The function g will map labels to sets of possible worlds:
a singleton for constants, a set of worlds (possibly empty) for variables. Moreover this set
should satisfy some constraints. The selection function f is assumed to be closed under the
conditions specifying cumulativity, but, we want to reconstruct it, through r, from the labels:
path labels are intended to represent not only worlds, but also record the selection function.
Finally, m, given an LS-formula, returns the evaluation of the formula with respect to the
world(s) denoted by its label. Let us now define these three functions which map labels into
elements of SFC models.

Let g be a function from ℑ to 2W defined thus:

g(iX) =





{wi} ⊆ f (X ,g(h(i))) if h(iX) ∈ΦC

{wi ∈W : wi ∈ f (X ,g(h(i)))} if h(iX) ∈ΦV

{wi} if i ∈ΦC

W if iX ∈ΦV

Let r be a function from ℑ to f defined thus:

r(iX) =

{
/0 if `(i) = 1
f (X ,g(iX)) if `(i) > 1

Let m be a function from LS-formulas to v thus defined:

m(SA@iX) =de f v(A,w j) = S

for all w j ∈ g(iX).

Lemma 24 Let B be a set of LS-formulas and let i, j be labels in B. If (iX , jY)σB
C , then

g(iX)∩g(jY) 6= /0.

This lemma, proved by induction on the length of labels, states that whenever two labels
unify, their denotations have a non-null intersection (the result of their unification).

Proof We confine ourselves to the case where i, j are both of length 2 and b(i) = b(j) = w1.
By definition, the following cases are present: 1) h(iX),h(jY) are two constants; 2) h(iX) is a
constant and h(jY) is a variable (the opposite case is analogous).

Case 1) Two constants unify iff they are the same constant. But then, according to the rules
of KEM, they have the same label formula X , and thus g(iX) = g(jY), from which it follows
g(iX)∩g(iY) 6= /0.

18

Case 2) We first note that g(iX) = f (X ,u) and g(jY) = f (Y,u), where {u}= g(b(i)) = g(b(j))
since we have assumed, granted unification, that b(i) = b(j). If h(i)∈ΦC and h(j)∈ΦV then
g(iX) is a world in the set of X-worlds with respect to u, while g(jY) is the set of Y -worlds
with respect to u. Then we have to see the relations between the set of X-worlds and the set
of Y -worlds. The two labels σB

C -unify: this means that at least one among conditions a), b)
and c) of Definition 22 is satisfied.
Case a) We are now going to prove that if X ≈B Y , then f (X ,u) = f (Y,u). It is immediate to
see that ≈B is an equivalence relation in B, so we prove only the cases where A≡ B (that is
the classical equivalence relation), and when X and Y support each other. If X ≡Y , according
to condition 2 of Definition 2, f (X ,u) = f (Y,u); since the labels unify Y 6≡ ⊥, and g(iX) 6= /0,
so g(iX)∩g(jY) 6= /0.

Otherwise if X supports Y , then either

i) there is a set of formulas {Z1, . . . ,Zn} that c-fulfils Y and for each formula Zk in such a
set Zk : (W X

k ,w1) occurs in B; or

ii) there is a set of formulas A = {Z1, . . . ,Zn} such that for each formula Zk in the set, X
forces Zk in B, and A c-fulfils Y .

For i) it is immediate to see that if {Z1, . . . ,Zn} c-fulfils Y , then ||∧n
k=1 Zn|| ⊆ ||Y ||. So,

f (X ,u)⊆ ||Zk||, 1≤ k ≤ n,

which implies
f (X ,u)⊆ ||Y ||.

For ii) As A forces each Zk in B, it is immediate to see that ||X || ⊆ ||Zk||, so ||X || ⊆
||∧n

k=1 Zk||. From the fact that {Z1, . . . ,Zn} c-fulfils Y , we obtain ||∧n
k=1 Zn|| ⊆ ||Y ||. By re-

flexivity f (X ,u)⊆ ||X ||, therefore f (X ,u)⊆ ||Y ||. Thus we have the same result in both cases.
We can repeat the same argument when Y supports X , obtaining f (Y,u)⊆ ||X ||. If X supports
Y , then, by (2) f (X∧Y,u) = f (Y,u). If Y supports X , then, again by (2), f (X∧Y,u) = f (X ,u);
therefore f (X ,u) = f (Y,u).
Case b) If X ≡>, then there is a set of formulas A = {Z1, . . . ,Zn} such that i) A c-fulfils X
and ii) for all Zk in A , we have Zk : (W>

km
,w1) ∈B. From i) we obtain that ‖∧n

k=1 Zk‖ ⊆ ‖Y‖;
moreover, we know that g(iX) = f (>,u), and ii) implies that f (>,u) ⊆ ‖Zk‖ for each Zk in
A , from which we have

f (>,u)⊆
⋂

1≤k≤n

‖Zk‖=

∥∥∥∥∥
n∧

k=1

Zk

∥∥∥∥∥⊆ ‖Y‖ ;

from this and the property (2) we conclude f (>,u) = f (Y,u). Therefore also in this case
g(iX)∩g(jY) 6= /0; the case Y ≡> is analogous.
Case c) For the remaining condition of Definition 22 let us suppose that X is of type α , Y
is α1, Z is α2, {Z1, . . . ,Zn} c-fulfils Z, and Z1, . . . ,Zn are in the branch with the right label,
namely jY (the other case, namely Y is of type α , is similar). As {Z1, . . . ,Zn} c-fulfils Z,
||∧n

k=1 Zn|| ⊆ ||Z||. So,
f (Y,u)⊆ ||Zk||, for all k,1≤ k ≤ n,

19

which implies
f (Y,u)⊆ ||Z||;

by the semantic conditions we have

f (Y ∧Z,u) = f (Y,u)

but f (Y ∧Z,u) = f (X ,u). From the last condition of Definition 2, and the fact that g(iX) 6= /0
we can also conclude in this case that g(iX)∩g(jY) 6= /0.

Lemma 25 Let B be a set of LS-formulas and let i, j be labels in B. If m(SA : i), and
(i, j)σB

C , then m(SA : (i, j)σB
C).

Proof Let us suppose that the lemma does not hold. Thus the proof trivially follows from
Lemma 24 and the definition of m.

According to the previous lemma if a formula has a given evaluation in a world denoted
by a label, and this label unifies with another label, then the value of the formula remains
unchanged in the worlds corresponding to the unification of the labels. This fact allows us to
verify the correctness of any rule in a standard semantic setting, whence the following lemma.

Lemma 26 If `KEM A, then |=SFC A.

Proof The α-rules and PB are obviously sound rules in CU, insofar as they are local rules,
they do not involve unifications (see also [13] for a proof of the soundness of such rules
in a classical propositional setting). For the β -rules and PNC: by the hypothesis (i, j)σB

C ,
then, by Lemma 25, the formulas involved have the same value in g(i), g(j) and g((i, j)σB

C);
after that these rules become rules of KE (classical propositional rules), and thus they are
sound rules in CU. For T |∼: let us suppose that it does not hold, then m(TA |∼ B : w1)
and not m(B : (W A

1 ,w1)). The former implies v(A |∼B,g(w1)) = T which is equivalent to
f (A,g(w1)) ⊆ ||B||. On the other hand we have that for some w ∈ f (A,g(w1)) v(B,w) = F ,
i.e., w ∈ ||¬B||, but this implies that f (A,g(w1)) 6⊆ ||B||, so we have a contradiction. The
proof for F |∼ is similar.

Lemma 27 Let Γ be a set of conditional assertions, and A be a conditional assertion. If Γ
cumulatively entails A, then `KEM

∧
Γ→ A.

Proof We show that the inference rules and the axioms of C are derivable in KEM. D’Agostino
and Mondadori [13] have shown that KE is sound and complete for classical propositional
logic and enjoys the property of transitivity of deductions. We provide KEM-proofs for Re-
flexivity, Left Logical Equivalence, Right Weakening, Cautious Monotonicity and Cut.

Reflexivity

1.FA |∼A w1
2.FA (wA

2 ,w1)
3.× (wA

2 ,w1)

Notice that closure follows from having two complementary formulas FA and A both labelled
with (wA

2 ,w1).

Left Logical Equivalence

20

1.TA |∼C w1
2.FB |∼C w1
3.TC (W A

1 ,w1)
4.FC (wB

2 ,w1)
5.× (wB

2 ,w1)

Here closure is obtained from TC : (W A
1 ,w1) and FC : (wB

2 ,w1). The labels σB
C -unify due to

the equivalence of the label formulas: by hypothesis A and B are equivalent.

Right Weakening

5. T B→C (wA
2 ,w1)

7. TC (wA
2 ,w1)

8. × (wA
2 ,w1)

6. FB→C (wA
2 ,w1)

×

1. TA |∼B w1
2. FA |∼C w1
3. T B (W A

1 ,w1)
4. FC (wA

2 ,w1)

Notice that we have applied PB to B→C with respect to (wA
2 ,w1). The right branch is closed

since, by hypothesis, we have already a KEM proof for B→C.

Cautious Monotonicity

1.TA |∼B w1
2.TA |∼C w1
3.FA∧B |∼C w1
4.T B (W A

1 ,w1)
5.TC (W A

2 ,w1)
6.FC (wA∧B

2 ,w1)
7.× (wA∧B

2 ,w1)

In this proof and in the next we can close the trees because of the condition c) of Definition 22.
The label formula of FC is of type α (A∧B), and the label formula of TC is α1 (A).

Moreover the branch contains a formula that c-fulfils α2 with the appropriate label (T B :
(W A

1 ,w1)), thus the formulas in 5 and 6 are σB
C -complementary since their labels σB

C -unify.

Cut

1.TA∧B |∼C w1
2.TA |∼B w1
3.FA |∼C w1
4.TC (W A∧B

1 ,w1)
5.T B (W A

2 ,w1)
6.FC (wA

2 ,w1)
7.× (wA

2 ,w1)

The label formula of TC is of type α , and the label formula of FC is α1. Moreover the
branch contains a formula that c-fulfils α2 with the appropriate label. Hence we can again
apply conditin c) of Definition 22; thus the formulas in 4 and 6 are σB

C -complementary since
their labels σB

C -unify.

21

From Theorem 4, Lemmas 27 and 26 we obtain

Theorem 28 `KEM A iff |=SFC A.

and from Theorem 28 and Corollary 12

Corollary 29 Let Γ be a set of conditional assertions. Γ cumulatively entails A |∼B iff `KEM∧
Γ→ (A |∼B).

5 Proof Search with KE+

5.1 Introduction
It is easy to see, from the above definition of unification and the form of the inference rules,
what problems arise for a tableau system which computes nonmonotonic consequence re-
lations in a CL setting.4 Each time we have to unify two labels we have to verify that a
complex relation between two formulas A and B holds. Essentially this relation amounts to
the following three cases: 1) A≈B B, 2) A≡ B, 3) either A or B is a classical tautology.

We shall examine these cases with the help of examples.
Let us first consider the set of conditionals Γ = {A |∼B,A |∼C,A∧B |∼D,C |∼A∧B}. It is

easy to prove that Γ cumulatively entails C |∼D. In fact from A |∼B and A |∼C we can derive,
by cumulativity, A∧B |∼C, which, together with A∧B |∼D, implies C |∼D by CSO.

We give now the KEM proof of this entailment:

1.TA |∼B w1
2.TA |∼C w1
3.TA∧B |∼D w1
4.TC |∼A∧B w1
5.FC |∼D w1
6.T B (W A

1 ,w1)
7.TA (W A

1 ,w1)
8.TC (W A

2 ,w1)
9.TA (W A

2 ,w1)
10.T D (W A∧B

3 ,w1)
11.TA∧B (W A∧B

3 ,w1)
12.TA (W A∧B

3 ,w1)
13.T B (W A∧B

3 ,w1)
14.TA∧B (WC

4 ,w1)
15.TA (WC

4 ,w1)
16.T B (WC

4 ,w1)
17.TC (WC

4 ,w1)
18.FD (wC

2 ,w1)
19.TC (wC

2 ,w1)
20.×

To close the tree we have to verify that the formulas in steps 10 and 18 are σB
C -complementary;

this means that their labels σCB -unify, that is their label formulas meet the conditions stated

4Accordingly, similar remarks hold for a tableau system for conditional logics.

22

in Definition 22. In particular we have that A∧B≈B D. To check this, it is enough to notice
that the branch at hand is a superset of the set of LS-formulas considered in Example 21. As
we can see from this example the notion of two formulas being |∼-equivalent (≈B) can be
mainly detected in KEM proofs by inspection of the formulas occurring in the tree.

Two formulas can be |∼-equivalent just because they are classically equivalent. Therefore
the next question concerns the treatment of equivalences. For example, it is quite obvious
that the assertion (A→ B) |∼C is cumulatively entailed by a set of assertions which includes
(¬A∨B) |∼C, because of the equivalence between the antecedents. How to check it in our
proof system? In general, the easiest solution might seem to open an auxiliary tree each time
we have to check whether two labels unify, which means that the label formulas turn out to be
equivalent5. Indeed, this solution leads to a remarkable increase in the complexity of proof
as the following tree shows.

1.T (¬A∨B) |∼C w1
2.F(A→ B) |∼C w1
3.TC (W¬A∨B

1 ,w1)
4.FC (wA→B

2 ,w1)

Notice that the tree closes if the labels of the complementary formulas TC and FC σB
C -unify,

which happens iff ¬A∨B is equivalent to A → B. Accordingly, we have to open a new tree
for proving their equivalence:

T¬A∨B
FA→ B
TA
FB
T B

F¬A∨B
TA→ B
TA
FB
T B

F(¬A∨B)≡ (A→ B)

Let us now consider the set of conditional assertions Γ such that {(>|∼B),(B |∼>),(A∨
¬A) |∼C)} ⊆ Γ. It is not hard to see that Γ cumulatively entails the conditional assertion
B |∼C. However, let us suppose that it is not the case. Since A∨¬A |∼C is equivalent to
>|∼C this means that C holds in all the >-worlds. Furthermore, f (>,u) = f (B,u). On the
other hand, according to the conclusion there is a B-world where C is false. Thus, since a
B-world is also a >-world, there is a >-world where C is at the same time true and false. Let
us see the KEM-tree for this case.

1.T (A∨¬A) |∼C w1
2.T>|∼B w1
3.T B |∼> w1
4.T B (W>

1 ,w1)
5.T> (W B

2 ,w1)
6.TC (W A∨¬A

3 ,w1)
7.FC (wB

2 ,w1)

5See Section 3.2.

23

The steps from 1 to 7 are straightforward. At this point we have two complementary formulas
(6 and 7), so we have to check whether they are also σB

C -complementary (i.e, complementary
under the σB

C -unification of their labels). In this case we have to go on with the proof, because
the label formula A∨¬A has not yet been analysed. Let D stand for the first 7 steps of the
proof. Thus we have:

8. TA (W A∨¬A
1 ,w1)

10. TA (W A∨¬A
1 ,w1)

9. FA (W A∨¬A
1 ,w1)

11. FA (W A∨¬A
1 ,w1)

D

It is immediate to see that both branches are open, but a closer inspection of the tree reveals
that it satisfies the condition of Theorem 36 below, thus A∨¬A ≡ >, from which it follows
that (W A∨¬A

1 ,w1) is equivalent to (W>
1 ,w1). Therefore the label (W A∨¬A

1 ,w1) σB
C -unifies with

(wB
2 ,w1); thus the tree is closed. Alternatively, we could open a tree for the negation of all

non-atomic label formulas. The above example makes an essential use of B |∼>, but such a
formula expresses a general property of C, thus is present, implicitly, in every nonmonotonic
theory.

Let us now consider the conditional assertion

(A∧¬A) |∼B (4)

which trivially holds, with the corresponding tree

1.F(A∧¬A) |∼B w1
2.FB (wA∧¬A

2 ,w1)

What tree have we now to develop? That for TA∧¬A or that for FA∧¬A? According to
the above remarks, we would have to develop the tree for FA∧¬A, but in the present case this
will not lead us to the desired result, since all we learn from an open tree is that the negation
of the formula is satisfiable. On the other hand, going on with the application of the inference
rules generates the following tree:

1.F(A∧¬A) |∼B w1
2.FB (wA∧¬A

2 ,w1)
3.TA (wA∧¬A

2 ,w1)
4.FA (wA∧¬A

2 ,w1)
5.×

Do the above remarks mean that we are doomed to have a proof system which is compu-
tationally unsatisfactory? Of course, from a proof-theoretical point of view it is not incorrect
to resort to auxiliary trees each time we have to compare label formulas. The point is that
such a strategy can be viewed as redundant because it uses sub-proofs to verify properties that
theoretically can be proved by referring only to the main proof-tree. Thus, in the next section
we shall develop a particular proof search procedure which allows us not to open auxiliary
tableaux or external oracles.

24

5.2 The Proof Search
The unification presented in section 3.2 compels us to check (label) formulas either for va-
lidity or for logical equivalence. As discussed in the previous section, this can be a very
expensive task whose accomplishment may require us to open an auxiliary proof tree when-
ever we have to check either condition (see [2] for details). Fortunately, as we said above the
main tree provides all the information we need so that we only have to make it available by
appealing to a suitable proof method. One such method is provided by the classical system
KE+. KE+ is based on D’Agostino and Mondadori [13]’s KE, a tableau-like proof system
which employs a mixture of tableau, natural deduction and structural rules (in practice, the
α-, β -, PB and PNC rules of section 3.3 restricted to the propositional part). KE+ uses the
same rules but adopts a different proof search procedure which makes it completely analyti-
cal and able to detect whether 1) a formula is either a tautology, or a contradiction, or only a
satisfiable one; and 2) a sub-formula of the formula to be proved is a tautology, and to use this
fact in the proof of the initial formula. The KE+ based method consists of verifying whether
the truth of the conjugate of an immediate sub-formula of a β -formula implies the truth of
the other immediate sub-formula. If it is so, then we have enough information to conclude
that the formula is provable. This result follows from the fact that the branch beginning with
β̄n (n ∈ {1,2}) contains no pair of complementary formulas leading to closure. This in turn
is proved by seeing whether a formula occurs twice in a branch, and that those occurrences
“depend on” appropriate formulas. This last notion is captured by the following definition.

Definition 30 Each formula depends on itself. A formula B depends on A either if it is
obtained by an application of the α-rule or it is obtained by an application of the KE rules on
formulas depending on A. A formula C depends on A,B if it is obtained by an application of
a β -rule with A,B as its premises. The formulas obtained by an application of PB depend on
the formula PB is applied to. If C depends on A,B then C depends on A and C depends on B.

We go now to the proof search, but first we need some terminology and definitions.

Definition 31 An α-formula is analysed in a branch when both α1 and α2 are in the branch.
A β -formula is analysed in a branch when either 1) if β̄1 is in the branch also β2 is in the
branch, or 2) if β̄2 is in the branch also β1 is the branch.

A β formula is said to be fulfilled in a branch if: 1) either β1 or β2 occurs in the branch
provided they depend on β , or 2) either β1 or β2 is obtained from applying PB on β .

Definition 32 A branch is E-completed if all the formulas occurring in it are analysed. A
branch is completed if it is E-completed and all the β -formulas occurring in it are fulfilled.

Definition 33 A branch is closed if it ends with an application of PNC. A tree is closed if all
its branches are closed.

Definition 34 A branch obtained by applying PB to a β -formula with β̄i as its root is a
β̄ -branch. Each branch generated by an application of PB to a formula occurring in a β̄ -
branch is a β̄ -branch. A semi β̄ -branch is a branch obtaind from a β̄ -branch by removing the
formulas depending only on the root β̄i. A branch generated by an application of PB which
is not a β̄ -branch is a β -branch.

Definition 35 A branch is a >-branch if it contains only formulas which are equivalent to >
and the formulas depending on them.

25

The proof search procedure starts with the formula to be proved; then

1. it selects a β̄ -branch φ which is not yet completed and which is the β̄ -branch with
respect to the greatest number of formulas;

2. if φ is not E-completed, it expands φ by means of the α- and β -rules until it becomes
E-completed;6

3. if the resulting branch is neither completed nor closed, then it selects a β -formula
which is not yet fulfilled in the branch — if possible a β -formula resulting from step 2
— then it applies PB with β1, β̄1 (or, equivalently β2, β̄2), and then it returns to step 1;
otherwise it returns to step 1.

Theorem 36 [24] For a formula A, A≡> if either:

1. in one of the β̄ -branches it generates there is an LS-formula which appears twice, and
one occurrence depends on β̄n,n ∈ {1,2}, and the other depends on β , or

2. each β̄ -branch is closed and the β -branches are >-branches, or

3. each semi β̄ -branch is a >-branch.

Proof A proof for a formula A is a closed tree for Ā. In other words every branch in a tree for
Ā contains a pair of complementary formulas B and B̄. Let us now recall some relationships
among complementary formulas:

α = β̄ α1 = β̄1 α2 = β̄2 (5)
β = ᾱ β1 = ᾱ1 β2 = ᾱ2 (6)

It is clear that the complement of a formula of type α is a formula of type β and the other
way around. Moreover this relationship is also true for their components.

At this point we examine the structure of the trees for formulas of type α and type β .

tree for α
α
α1
α2

tree for β , n ∈ {1,2}
β

β̄n βn
β3−n

Let us consider two complementary formulas α and β . Given the relationships in (5) and (6)
we have

tree for α
α
α1
α2

tree for β = ᾱ
ᾱ

α1 ᾱ1
ᾱ2

tree for β = ᾱ
ᾱ

α2 ᾱ2
ᾱ1

(7)

and

tree for β
β

β̄1 β1
β2

tree for β
β

β̄2 β2
β1

tree for α = β̄
β̄
β̄1
β̄2

(8)

6For α-formulas we do not duplicate components, i.e., if α , and αn (for n ∈ {1,2}) are in a branch, then we add
to the branch only α3−n.

26

To prove the theorem we have to show that each time a tree for A meets the conditions of the
theorem then the tree for Ā is closed and the other way around, that is if a tree for A is closed
then there is a tree for Ā satisfying the conditions of the theorem.

We prove the theorem by induction on the number n of binary connectives occurring in a
formula.
Inductive base, n = 1. Let us consider the trees in (7). Let us suppose that the tree for α is
closed, i.e., α ≡ ⊥ and, consequently, ᾱ ≡ >. Then either (i) α1 = ⊥ or (ii) α2 = ⊥ or (iii)
α1 = ᾱ2.

In the first case the left branch (β̄ -branch) of the first tree for β is closed: it contains
α1, which is ⊥. On the other hand in the left branch we have ᾱ1 which is >, and thus the
branch is a >-branch. If we consider the second tree then it is immediate to see that the semi
β̄ -branch is a >-branch. We can repeat the same argument for (ii).

In the last case, (iii), we consider again one of the β̄ -branches where we have αn =
ᾱ3−n, and in both cases there are two occurrences of the same formula with the appropriate
dependencies.

We have now to analyse the case where the tree for α satisfies the conditions of the
theorem. In this case we have only one β -branch, then it should be a >-branch. This is
possible only when both α1 and α2 are >. Hence ᾱ1 and ᾱ2 are ⊥; therefore all the branches
of the tree for ᾱ are closed.

It is now time to examine the trees in (8). We assume that the trees for β are closed. The
only case when these trees are closed is when both β1 and β2 are ⊥. This means that β̄1 =>
and β̄2 =>; hence the branch in the tree for β̄ is a >-branch and a β -branch.

If the trees for β satisfy the conditions of the theorem, then we have to explore three cases;
we consider only the first tree for β , the argument for the other tree is similar: (i) β̄1 = β2,
(ii) the β̄ -branch is closed and the β -branch is a >-branch, and (iii) the semi β̄ -branch is a
>-branch.

(i) If β̄1 = β2, then β̄1 and β̄2 are the complement of each other, thus the tree for β̄ is
closed.

(ii) In this case we have that β1 =>, therefore β̄1 =⊥. Hence the tree for β̄ is closed.
(iii) If the semi β̄ -branch is a >-branch, then β2 => and, consequently, β̄2 =⊥; thus the

tree for β is closed.
Inductive Step, n ≥ 1. We assume that the theorem holds for formulas with up to n binary
connectives.

Let us consider again the trees in (7). First of all we notice that the formulas α1, α2, and
ᾱ2 have less that n binary connectives, and thus we can use the theorem and the trees they
generate to determine whether they are equivalent to > or ⊥. Moreover α1 is common to the
tree for α and the first tree for ᾱ , thus the sub-tree generated from it is common to the two
trees (the same is true when we consider α2 and the second tree for ᾱ).

An analysis of the trees involved shows that part of the trees is common to the tree for A
and the tree for Ā, while the remaining parts are the dual of each other; i.e., if B occurs in the
non-common part of A, then B̄ occurs in the non-common part of Ā and vice versa.

At this point, without any loss of generality, we can assume that the conditions of the
theorem can be seen from the immediate expansion of the dual parts. Then a detailed com-
parison of the resulting trees, using the same arguments as the inductive base, will show that
whenever a tree for A meets the conditions of the theorem a corresponding tree for Ā is closed
and the other way around.

27

We provide an illustration of the above notion by proving

10. T B (wA→(B→A)
3 ,w1)

12. TA (wA→(B→A)
3 ,w1)

11. FB,(wA→(B→A)
3 ,w1)

7. TA (wA→(B→A)
3 ,w1)

9. T B→ A (wA→(B→A)
3 ,w1)

8. FA,(wA→(B→A)
3 ,w1)

1.T ((A→ (B→ A)) |∼C w1
2.T>|∼D w1
3.FC |∼D w1

4.TC (W A→(B→A)
1 ,w1)

5.T D (W>
1 ,w1)

6.FD (wC
2 ,w1)

Here we have to see whether the labels in 5 and 6 unify. According to definition 22 this
holds if the label formula in 4 is a tautology. Notice that the label formula of W1 is of type
β and it is not yet analysed in the tree. Thus we apply PB. Furthermore, the left branch is a
β̄ -branch with respect to the label formula. We then apply a β rule, and we obtain another
β formula. According to the proof search we have to apply again PB and then we have
another application of a β rule. At this point we have two occurrences of TA with the right
dependencies. So the label formula A→ (B→ A) is >, and the labels in 5 and 6 unify, thus
closing the tree.

Definition 37 Let v be a function which maps each formula A into a set of (atomic) formulas
in such a way that 1) if A is atomic, then v(A) = {A}; 2) if A is of type α , then v(A) =
v(α1)∪ v(α2); 3) if A is of type β , then v(A) = v(β̄n)∪ v(β3−n) or v(A) = v(βn), n ∈ {1,2}.
A set S of (atomic) formulas v-fulfils a formula A iff S = v(A).

Corollary 38 Two formulas A,B are equivalent iff

• both A and B are >; or

• both A and B are ⊥; or

• each set of (atomic) formulas which v-fulfils A v-fulfils B and vice versa.

Proof The first two cases are obvious, then it suffices to note that each set S that v-fulfils a
formula A corresponds to a truth-value assignment for A, and that two formulas are equivalent
if they are satisfied by the same assignments.

The following proof is provided as an illustration of the use of the above notions.

5. TA (wA→B
2 ,w1)

7. T B (wA→B
2 ,w1)

6. FA (wA→B
2 ,w1)

1. T (¬A∨B) |∼C w1
2. F(A→ B) |∼C w1
3. TC (W¬A∨B

1 ,w1)
4. FC (wA→B

2 ,w1)

28

Obviously {TA,T B} and {FA} v-fulfil both¬A∨B and A→B. Accordingly, (W¬A∨B
1 ,w1)

and (wA→B
2 ,w1) σB

C -unify, thus closing the tree.

Remark 39 It is worth noting that Theorem 36 also shows the completeness of KE+ for
classical propositional logic. This is enough for the tautology test required by Definition 2. It
is not necessary to extend it to the whole of C, since the label formulas are always classical.
The same holds for the equivalence test and Corollary 38.

6 Discussion and Further Extensions
In this paper we have provided a unification scheme for computing the consequence relation
of C. Since C corresponds to the flat fragment of the conditional logic CU we have confined
ourselves to the case of the unification with labels of length 2. However, it is clear that such
a scheme can be extended to CU with nested conditionals. Generally speaking, this accords
with what is presented by Gabbay in some recent works (see, e.g., [19]). In particular, he has
shown that the recursive self-fibring of a nonmonotonic consequence relation corresponds to
a particular CL. As a second step, Gabbay and Governatori [22] have shown how to adapt
the KEM label formalism in order to deal with combined (fibred) modal logics. Moreover
they have proved that if KEM is sound and complete for each component then KEM is sound
and complete for the logic resulting from the fibred combination of the components. Thus,
by the same techniques we can provide sound and complete labelled tableaux calculi for CLs
corresponding to (fibred) nonmonotonic consequence relations.

Let us show very briefly how to do it. First of all, for any label i, `(i) > n, we call each
b(i), b(b(i)), . . . a segment of i and denote it by s(i). Since the length of a label i is the number
of the world symbols it is made of, we use sn(i) to denote the segment of i whose length is n.
Secondly, we have to define the countersegment-n of i, as follows:

cn(i) = h(i)X × (· · ·× (hk(i)Y × (· · ·× (hn+1(i)Z ,w0)))) (n < k < `(i))

where w0 is an auxiliary label.7 In other words the countersegment-n of a label i is the label
obtained from i by replacing sn(i) with an auxiliary world symbol. At this point, we are able
to define the unification for CU as follows:

Definition 40 (Cf. [21, 22]) For all iY , jX ∈ ℑ,

(iY , jX)σB
CU =

{
(iY , jX)σB

C
(cn(iY),cn(jX))σB

C

where w0 = (sn(iY),sn(jX))σB
CU.

Informally, definition 40 can be explained as follows. In general, each unification scheme
has several turning points, i.e., pairs of segments that should be matched (unified). In order
to obtain σB

CU we impose the same constraints for C on the formulas indexing such turning
points. In other words, it is enough to apply recursively the unification for C throughout
the paths represented by the labels. Notice that the process is reduced to a “step-by-step”

7An auxiliary label is nothing else than a dummy label, i.e., a label not appearing in i. The context in which such
a notion is applied will tell us what it stands for. For further details, see [1, 21, 22].

29

matching of atomic labels since the “underlying” modality of CU corresponds to the system
K.

Unfortunately, this is not enough to define a suitable proof system for CLs. It is quite
clear that the problems examined in section 5.1 arise again for label formulas with nested
conditionals. However, KE+ obviously does not cover this case. Let us consider the following
proof:

1.F(A > A) > C → (B→ B) > C w1
2.T (A > A) > C w1
3.F(B→ B) > C w1
4.TC (W A>A

1 ,w1)
5.FC (wB→B

2 ,w1)
6.× (wA>A

2 ,w1)

Obviously, we know that the proof tree should close since the label formulas A > A and B→B
correspond to>. The question is: how to check this fact without refuting them? For example,
by applying T |∼ to the step 4 we obtain:

TA : (W A
2 ,(W A>A

1 ,w1))

We can note that the structure of the label closely mimics the structure of the tree generated
by the corresponding label formula: by refuting A > A, the proof tree closes because we have
that A is false in a A-world, thus obtaining a contradiction. However, this is only a trivial
case. In general we have to deal with formulas with different structures.

To sum up, what we have to do is to devise a tool similar to KE+ for the language with
nested conditionals.

A second point to be considered as a matter of future work is the extension of the system
to other relevant notions of nonmonotonic consequence relation. We briefly suggest how
to treat some of them. In particular, let us recall at least three families of nonmonotonic
consequence relations which can be potentially covered by our proof system (see [29, 28]).

The first family is obtained by adding to C the following rule:

A1 |∼A2, . . . ,Ak−1 |∼Ak ,Ak |∼A1

A1 |∼Ak
(Loop)

It is easy to see that Loop is characterized in an SFC model by imposing this supplementary
condition:

For all 1 ≤ i, j ≤ k, if f (Ai,u) ⊆ ‖Ai+1‖ and f (Ak,u) ⊆ ‖A1‖, then f (Ai,u) =
f (A j,u).

Accordingly, we should be able to establish whether a sequence of labels in the branch of a
proof tree denotes a set of equivalent worlds. This can be achieved by the following definition.

Definition 41 A label formula B is said to be A-supported if 1) B,(W A,w1) is in the branch,
or 2) there is a formula C such that

(i) B is C-supported; and

(ii) C is A-supported.

30

Then two labels iY and jX unify if Y is X-supported and X is Y -supported.
As it is well-known, the system P, corresponding to the family of preferential relations,

consists of all the rules of C and the following:

A |∼C B |∼C
A∨B |∼C

(Or)

The semantic condition for Or is the following:

f (A∨B,u)⊆ f (A,u)∪ f (B,u).

The case for P is slightly more complicated, due to the interplay between C and the semantic
condition for Or. Basically, we have to define new rules for manipulating connectives in the
label formulas. This can be achieved by introducing new clauses which allow the composition
of different label formulas via Or and capture the formal properties of the relation ≤ [29].

The third family of consequence relations to be considered corresponds to the system R
and consists of P and the following rule:

A |∼B A 6 |∼¬C
A∧C |∼B

(Rational Monotonicity)

The semantic condition for Rational Monotonicity can be formulated as follows:

If f (A,u)∩‖B‖ 6= /0 then f (A∧B,u)⊆ f (A,u)

Rational Monotonicity says that the consequence relation contains A∧C |∼B whenever it
contains A |∼B and does not contain A |∼¬C. Since KE+ allows us to verify when ¬C is
v-fulfilled, the general conditions for Rational Monotonicity should require that the branch of
a proof tree contains a set of formulas Z such that Z v-fulfils ¬C and Z : (wA

n ,w1).
As we said before, the unification σC is defined from the unification for the modal logic K.

If we replace it with the unification for the modal logic D (namely we release the constraint
that two variables cannot unify) we characterize the property of consistency: if A 6≡ ⊥ and
A |∼B, then A 6 |∼¬B, whose semantic condition is: if A 6≡ ⊥ then for all u, f (A,u) 6= /0.

In conclusion, the system we have presented in this paper offers (at least potentially) a
uniform proof-theoretical method for treating a wide range of nonmonotonic consequence
relations as well as CLs. This can be seen as an advantage over the theorem proving methods
for CLs to be discussed in the following section, as it is not immediate how they could be
extended to logics other than those they have been devised for.

7 Comparison with Other Works
Groeneboer and Delgrande [26] present a method for constructing Kripke models for CLs
which generalizes Hughes and Cresswell’s [27] classical method of semantic tableau dia-
grams for the modal logic S4.3 to Delgrande’s [15] conditional logic N. This extension is
made possible by the correspondence between S4.3 and N. However, as Boutilier [8] has
shown, N fails to validate the rule of Cautious Monotonicity, and thus it lies outside the scope
of Gabbay’s [18] minimal conditions for nonmonotonic consequence relations. Lamarre [30]
takes a more direct approach by relying on Lewis’ [32] system of spheres models. How-
ever, his method does not cover CU. Moreover, as proof systems for CL, the systems just
mentioned suffer all the well-known computational drawbacks of the tableau method.

31

Although their primary aim is not automated deduction, Crocco and Fariñas del Cerro
[11] present a sequent system for CU which turns out to be very similar to ours. In their ap-
proach the cut rule is replaced by more restricted rules for identifying formulas in deduction.
Deductive contexts and restrictions on the transitivity of the deduction relation are repre-
sented at the level of auxiliary sequents, i.e., sequents involving a non-transitive deduction
relation. Accordingly, structural and logical operations are performed both on this level and
on the level of the principal (transitive) relation. The deductive context is fixed by a prefixing
rule in the antecedents of auxiliary sequents. Augmentation and reduction rules in such an-
tecedents allow us to identify those deductive contexts which are identical or compatible with
other contexts, thus providing criteria for substituting conditional antecedents by conditional
antecedents. In the present approach conditional antecedents are fixed by the inference rules
at the “auxiliary” level of label formulas, whereas the notion of compatible contexts—or of
criteria for antecedent identification—is captured by the label unification rule. Structural and
logical operations are performed both at the “principal” level of labelled formulas and at the
“auxiliary” level of label formulas, the only deduction relation involved being the transitive
one. Thus our approach can be said to perform what Crocco and Fariñas del Cerro call an
“extra-logical” control on the composition of proofs in the sense that the restrictions on the
transitivity of the deduction relation are represented at the “auxiliary” level of our labelling
scheme. This can be seen as an advantage of our method over Crocco and Fariñas del Cerro’s
as it allows us to treat a wide range of CLs by providing different constraints, closely related
to the appropriate semantic conditions, on the respective unifications (see [2]). Moreover, this
is achieved without banishing the cut rule, thus avoiding the problems arising from defining
connectives in the absence of such a rule.

Acknowledgments

This paper is an extended and revised version of [3] presented at TABLEAUX 2000, Interna-
tional Workshop on Analytic Tableaux and Related Methods, St. Andrews, July 3–7, 2000.

We would like to thank all the anonymous referees for their valuable criticisms, Marcello
D’Agostino for the fruitful discussions, and David Billington for his accurate proof-reading
of the final draft of the paper.

References
[1] Alberto Artosi, Paola Benassi, Guido Governatori, and Antonino Rotolo. Shakespear-

ian modal logic: A Labelled Treatment of Modal Identity. In M. Kracht, M. de Rijke,
H. Wansing, and M. Zakharyaschev, editors, Advances in Modal Logic. Volume 1, pages
1–20. CSLI Publications, Stanford, 1998.

[2] Alberto Artosi and Guido Governatori. A tableaux methodology for deontic conditional
logics. In Deon’98. 4th International Workshop on Deontic Logic in Computer Science,
pages 75–91, Bologna, 1998. CIRFID. http://arXiv.org/abs/cs.LO/0003050.

[3] Alberto Artosi, Guido Governatori, and Antonino Rotolo. A labelled tableau calculus
for nonmonotonic (cumulative) consequence relations. In R. Dyckhoff, editor, Auto-
mated Reasoning with Analytic Tableaux and Related Methods, pages 82–97, Berlin,
2000. Springer-Verlag.

32

http://eprint.uq.edu.au/archive/00002093/01/aiml96.pdf
http://eprint.uq.edu.au/archive/00002093/01/aiml96.pdf
http://eprint.uq.edu.au/archive/00002094/01/deon98a.pdf
http://eprint.uq.edu.au/archive/00002094/01/deon98a.pdf
http://eprint.uq.edu.au/archive/00002221/01/Tab2000f.pdf
http://eprint.uq.edu.au/archive/00002221/01/Tab2000f.pdf

[4] Alberto Artosi, Guido Governatori, and Giovanni Sartor. Towards a Computational
Treatment of Deontic Defeasibility. In M.A. Brown and J. Carmo, editors, Deontic
Logic, Agency and Normative Systems, pages 27–46. Springer-Verlag, Berlin, 1996.

[5] Matteo Baldoni. Normal multimodal logic with interaction axioms. In D. Basin,
M. D’Agostino, D. Gabbay, S. Matthews, and L. Viganò, editors, Labelled Deduction,
pages 33–58. Kluwer, Dordrecht, 2000.

[6] Bernhard Beckert and Rajeev Goré. Free-variable tableaux for propositional modal
logic. Studia Logica, forthcoming.

[7] David Billington. Defeasible logic is stable. Journal of Logic and Computation, 3:370–
400, 1993.

[8] Craig Boutilier. Conditional logics of normality: a modal approach. Artificial Intelli-
gence, 68:87–154, 1994.

[9] John P. Burgess. Quick completeness proofs for some logic of conditionals. Notre Dame
Journal of Formal Logic, 22:76–84, 1981.

[10] Brian Chellas. Basic conditional logic. Journal of Philosophical Logic, 4:133–153,
1975.

[11] Gabriella Crocco and Luis Fariñas del Cerro. Structure, consequence relation and logic.
In D. Gabbay, editor, What is a Logical System, pages 375–393. Oxford University
Press, Oxford, 1994.

[12] Gabriella Crocco and Philippe Lamarre. On the connections between non-monotonic
inference systems and conditional logics. In B. Nebel, C. Rich, and W. Swartout, edi-
tors, Principles of Knowledge Representation and Reasoning (KR’92), pages 565–571,
San Mateo (Ca), 1992. Morgan Kaufman Publishers.

[13] Marcello D’Agostino and Marco Mondadori. The taming of the cut. Journal of Logic
and Computation, 4:285–319, 1994.

[14] Herrie de Swart. A Gentzen- or Beth-type system, a practical decision procedure and
a constructive completeness proof for the counterfactuals logics vc and vcs. Journal of
Symbolic Logic, 48:1–20, 1983.

[15] James P. Delgrande. A first-order conditional logic for prototypical properties. Artificial
Intelligence, 33:105–139, 1987.

[16] Luis Fariñas del Cerro, Andreas Herzig, and Jérôme Lange. From ordering-based non-
monotonic reasoning to conditional logics. Artificial Intelligence, 66:375–393, 1994.

[17] Melvin Fitting. Proof Methods for Modal and Intuitionistic Logic. Reidel, Dordrecht,
1983.

[18] Dov M. Gabbay. Theoretical foundations for nonmonotonic reasoning in expert sys-
tems. In K.R. Apt, editor, Proc of the NATO Advanced Study Institute on Logics and
Concurrent Systems, pages 439–457, Berlin, 1985. Springer-Verlag.

33

http://eprint.uq.edu.au/archive/00002232/01/DEON96.pdf
http://eprint.uq.edu.au/archive/00002232/01/DEON96.pdf

[19] Dov M. Gabbay. Conditional implications and non-monotonic consequence. In
G. Crocco, L. Fariñas del Cerro, and A. Herzig, editors, Conditionals: from philoso-
phy to computer science, pages 337–360. Oxford University Press, Oxford, 1995.

[20] Dov M. Gabbay. Labelled Deductive Systems. Oxford University Press, Oxford, 1996.

[21] Dov M. Gabbay and Guido Governatori. Dealing with label dependent deontic modali-
ties. In P. McNamara and H. Prakken, editors, Norms, Logics and Information Systems,
pages 311–330. IOS Press, Amsterdam, 1998.

[22] Dov M. Gabbay and Guido Governatori. Fibred modal tableaux. In D. Basin,
M. D’Agostino, D. Gabbay, S. Matthews, and L. Viganò, editors, Labelled Deduction,
pages 163–194. Kluwer, Dordrecht, 2000.

[23] Ian Gent. A tableau- or sequent-style system for Lewis’s counterfactual logic VC. Notre
Dame Journal of Formal Logic, 33, 1992.

[24] Guido Governatori. KE+: Beyond Refutation In L. Dreschler-Fischer and S. Pribbenow,
editors, KI-95 Activities: Workshops, Posters, Demos, pages 75–76, Bonn, 1995.
Gesellschaft für Informatik.

[25] Guido Governatori. Un modello formale per il ragionamento giuridico. PhD thesis,
CIRFID, University of Bologna, Bologna, 1997.

[26] Chris Groeneboer and James P. Delgrande. Tableau-based theorem proving in normal
conditional logics. In AAAI’88, volume i, pages 171–176, 1988.

[27] George E. Hughes and Max J. Cresswell. An Introduction to Modal Logic. Methuen,
London, 1968.

[28] Hirofumi Katsuno and Ken Satoh. A unified view of consequence relation, belief revi-
sion, and conditional logic. In G. Crocco, L. Fariñas del Cerro, and A. Herzig, editors,
Conditionals: From Philosophy to Computer Science, pages 33–66. Oxford University
Press, Oxford, 1995.

[29] Sarit Kraus, Daniel Lehmann, and Menachem Magidor. Nonmonotonic reasoning, pref-
erential models and cumulative logics. Artificial Intelligence, 44:167–207, 1990.

[30] Philippe Lamarre. A promenade from monotonicity to nonmonotonocity following a
theorem prover. In B. Nebel, C. Rich, and W. Swartout, editors, Principles of Knowledge
Representation and Reasoning (KR’92), pages 572–580, San Mateo (Ca), 1992. Morgan
Kaufman Publishers.

[31] Daniel Lehmann. What does a conditional base entail? In R.J. Brachman, H.J.
Levesque, and R.Reiter, editors, Proceedings of Knowledge Representation and Rea-
soning, (KR’89), pages 212–222, San Mateo (Ca), 1989. Morgan Kaufman Publishers.

[32] David Lewis. Counterfactuals. Basil Blackwell, Oxford, 1986.

[33] Fabio Massacci. Strongly analytic tableaux for normal modal logics. In A. Bundy,
editor, Proceedings, 12th International Conference on Automated Deduction (CADE),
volume 814 of LNCS, pages 723–737, Berlin, 1994. Springer-Verlag.

34

http://eprint.uq.edu.au/archive/00002144/01/deon98d.pdf
http://eprint.uq.edu.au/archive/00002144/01/deon98d.pdf
http://eprint.uq.edu.au/archive/00002233/01/fmtld.pdf
http://eprint.uq.edu.au/archive/00002132/01/ke+.pdf
http://eprint.uq.edu.au/archive/00002073/01/tesi.pdf

[34] Donald Nute. Topics in Conditional Logic. Reidel, Dordrecht, 1980.

[35] Claudio Pizzi. Decision procedures for logics of consequential implication. Notre Dame
Journal of Formal Logic, 32:618–636, 1993. And 1993 correction (same journal).

[36] Alessandra Russo. Modal Logic as Labelled Deductive Systems. PhD thesis, Depart-
ment of Computing, Imperial College, London, 1996.

[37] Yoav Shoham. A semantical approach to nonmonotonic logics. In J. McDermott, editor,
Proceedings of the Tenth International Joint Conference on Artificial Intelligence, pages
388–392, Los Altos (Ca), 1987. Morgan Kaufman Publishers.

[38] Raymond M. Smullyan. First-Order Logic. Springer-Verlag, Berlin, 1968.

[39] Richmond H. Thomason. A Fitch-style formulation of conditional logic. Logique et
Analyse, 52:397–412, 1970.

[40] Luca Viganò. Labelled Non-Classical Logics. Kluwer, Boston, 2000.

35

