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WHAT IS A COMPUTER VIRUS?

“A virus may be loosely defined as a sequence of symbols
which, upon interpretation, causes other sequences of symbols

to contain (possibly evolved) virus(es).” (Fred Cohen)



COHEN’S VIRUSES

THE DEFINITION

Let M be a Turing machine and V C X* then (M, V) € VS if
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SEQUENCES & MACHINES

e Contiguous sequences (strings)
@ Any substring on the tape

@ Uses a special flavour of Turing machines
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ARE TURING MACHINES APPROPRIATE?
LITERATURE

@ Thimbleby et al. in 1998: A Framework for Modelling
Trojans and Computer Virus Infection

@ Makinen in 2001: Comment on ‘A Framework for
Modelling . .."



ARE TURING MACHINES APPROPRIATE?

@ How are Turing machines defined precisely?

@ How are ‘interpreted sequences’ defined?



WHAT 1S A TURING MACHINE ?

Davis (1958), Minsky (1967), Hopcroft et al. (1979):
Turing machine computes a function:

input output
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WHAT 1S A TURING MACHINE ?

Davis (1958), Minsky (1967), Hopcroft et al. (1979):
Turing machine computes a function:

input output
—_ M —

On computable numbers, with an application to the
Entscheidungsproblem, Turing, 1936
Machine that computes an infinite sequence

1100111100001 111--
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@ Infinite tape: t:w — X
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MODELING A MODERN TURING MACHINE
INFINITE TAPE

Infinite tape: t:w — X
Finite content: O ¢ > represents an empty square
Infinite tape: t:w — X U {0}
Pure content: Py
>
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@ Py in one-one correspondence with >*



MODELING A MODERN TURING MACHINE
DEFINITION

Structure (Q, X, tr, qo) where
@ Q a finite set of states
@ 2 a finite set of tape symbols
@ qo starting state
@ tr is a transition function such that

tr: Qx (Xu{O}) - QxXx{-1,0,1}



MODELING A MODERN TURING MACHINE

MOVES

e Configurations: (s, t, p) where
o state: s € Q
o tape: t:w — X U {O}
e position: p < w

e Moves: (s, t,p) —(s',t', p)



MODELING A MODERN TURING MACHINE
COMPUTATION

e Computations: — ), binary relation on infinite tapes
t:w—xu{O}
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MODELING A MODERN TURING MACHINE
COMPUTATION

e Computations: — ), binary relation on infinite tapes
t:w—xu{O}

t omt = (s,t,p) =" (st p)p

@ Condition 1: the machine start with(sy, t € Pg, 0)
@ Condition 2: The machine does not write [:

o —uC (Pg)?

° _>Mg (Z*)2



MODELING A MODERN TURING MACHINE

SEMANTICS

@ Basic: |[M|: ¥ — ¥*
@ Function on naturals: encode input and output

@ Representing all functions: one extra ‘erasure’ symbol



TURING’S ORIGINAL MACHINE
COMPUTABLE NUMBERS

In 1936, Turing wrote: On computable numbers, with an
application to the Entscheidungsproblem.
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TURING’S ORIGINAL MACHINE
COMPUTABLE NUMBERS

In 1936, Turing wrote: On computable numbers, with an
application to the Entscheidungsproblem.
@ Real numbers

e Binary expansion: m =11,001001000011111101...
o Non integer part: infinite sequence

@ Computable numbers

e Binary expansion written by a machine ?

@ Computable sequences



TURING’S ORIGINAL MACHINE
CONDITIONS
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@ Mark the left-hand side
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TURING’S ORIGINAL MACHINE
CONDITIONS
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TURING’S ORIGINAL MACHINE
CONDITIONS
s o BB BB

Mark the left-hand side
Figures: ‘output’

Auxiliaries: ‘notes’

F-squares
o A contiguous sequence of figures
o Not erasable (‘write-once’)

E-squares
e a kind of scratchpad



TURING’S ORIGINAL MACHINE

COMPUTED SEQUENCE

Computable sequence

EEEEEEEEEEER



TURING’S ORIGINAL MACHINE

COMPUTED SEQUENCE

Computable sequence
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TURING’S ORIGINAL MACHINE

COMPUTED SEQUENCE

Computable sequence

_Hol:Nol:H:Hol:M: N1 Mol |

Function output
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COMPUTER VIRUSES
ON TURING MACHINES

Can we define a virus as a (contiguous) ‘sequence of symbols’
that is ‘interpreted’ by a Turing machine?



INTERPRETED SEQUENCES

FOrR MODERN TURING MACHINES

@ Turing machine: computes a function

o fully determined by transition function
@ Universal machine:

o Computes the universal function

o Computes the function of some other machine
@ Defining a Universal machine:

e Encode the transition function: ‘program’

e Encode the input to this machine: ‘input’

e Encodings: injective and therefore decodable



ENCODINGS

FOrR MODERN TURING MACHINES

e Without specifying ‘valid’ encodings
e Any machine ‘interprets’ any input
e Empty string ‘encodes’ the machine itself
e Entire input ‘encodes’ a constant function

@ Just one program

@ Interleaving of ‘program’, ‘input’ and simulated tape and
temporary symbols

@ Not every substring of the (total) input is interpreted



INTERPRETED SEQUENCES

FOR MODERN TURING’S ORIGINAL MACHINES

@ Turing's original machine:
@ no input
@ no interpreted sequences



INTERPRETED SEQUENCES

FOR MODERN TURING’S ORIGINAL MACHINES

@ Turing's original machine:
@ no input
@ no interpreted sequences
@ Turing's universal machine:
o itself unlike Turing's original machines
e the entire input is the encoding of exactly one machine
e F- and E-squares: program is not a contiguous sequence
on the tape



VIRUSES FOR TURING MACHINES

@ Model at least two programs
@ Non-program cannot be a virus

e Standard models inadequate



VIRUSES FOR TURING MACHINES

@ Model at least two programs
@ Non-program cannot be a virus

e Standard models inadequate
New (universal) Turing machine?

o No benefit: non standard
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@ tape: w — X

e infinite tape with infinite content
e compare with t : w — ¥ U {0}
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COHEN’S TURING MACHINE

@ tape: w — X
e infinite tape with infinite content
e compare with t : w — X U {O}
@ starting state & position undefined
@ transition function unrestricted
o tr: KxX — KxXx{-10,1}
e even with O € X finite content undecidable



WHAT 1S COHEN’S MACHINE?

@ Not a modern Turing machine
@ Not Turing's original (universal) machine

e All sequences trivially computable
o No distinction between figures and auxiliaries
o No distinction between F-squares and E-squares



INSURMOUNTABLE DIFFERENCE

Can the difference between Cohen's machine and modern
Turing machines be overcome?

e Viral equivalence: M =, N if:
(M, V) e VS <= (N,V) e VS

e Viral equivalence is incomparable to functional
equivalence

No, it cannot.



SUMMARY

@ Precise definitions essential for Turing machines
@ Turing machines are inappropriate to model viruses

@ Cohen’s modelling non-standard

e Outlook
e Open door for other modellings of computer viruses

o Dissect Turing’s machine and unify the two Turing
machine models: ‘Talkative Machine’ (TM)



THE END

Thank you for your attention!



INSURMOUNTABLE DIFFERENCE
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M=(Q,%,tr,qo) N=(Q,%, tr qo)
r = {a, b} Q= {q0,q1}
tr(q07_) = <q17 a, 0> tr,(q()?_) = <q17 b7 0>

e Virally equivalent (trivially)
e No functionally equivalent:
o [M|fypc =t — t[0 — a]
o |M|fync =t t[0 +— b]



= vir ;_b =FUNC

Two machines that compute x — x - 1.

any,any,R any,any,R
0 ()
—| 4o —| 4o D'—O'L\I qQ1
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a3 Q3 |—— Q2
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