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What is a computer virus?

“A virus may be loosely defined as a sequence of symbols
which, upon interpretation, causes other sequences of symbols
to contain (possibly evolved) virus(es).” (Fred Cohen)



Cohen’s viruses
The definition

Let M be a Turing machine and V ⊆ Σ∗ then 〈M,V 〉 ∈ VS if

∀v ∈ V , h ∈ HM (1)
if ∃ n1 < ω (2)
∧ h(0) = 〈s0, _, _〉 (3)
∧ h(n1) = 〈s0, t1, p1〉 (4)
∧ t1[p1, |v|] = v (5)

then ∃ v′ ∈ V , n2 < ω, pos < ω (6)
∧ h(n2) = 〈_, t2, _〉 (7)

∧ t[pos, |v′|] = v′ (8)
∧ ∨ pos ≥ p1 + |v| (9)

∨ p1 ≥ pos + |v′| (10)
∧ ∃ n3 < ω (11)
∧ n1 < n3 < n2 (12)
∧ h(n3) = 〈s3, t3, p3〉 (13)

∧ pos ≤ p2 ≤ pos + |v′| (14)
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Cohen’s viruses
Depicted
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Are Turing machines appropriate?
Literature

Thimbleby et al. in 1998: A Framework for Modelling
Trojans and Computer Virus Infection
Mäkinen in 2001: Comment on ‘A Framework for
Modelling . . . ’



Are Turing machines appropriate?

How are Turing machines defined precisely?
How are ‘interpreted sequences’ defined?



What is a Turing machine ?

Davis (1958), Minsky (1967), Hopcroft et al. (1979):
Turing machine computes a function:

M
input output

On computable numbers, with an application to the
Entscheidungsproblem, Turing, 1936

Machine that computes an infinite sequence

M

1 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 . . .
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Modeling a modern Turing machine
Infinite tape

Infinite tape: t : ω → Σ

Finite content: � /∈ Σ represents an empty square
Infinite tape: t : ω → Σ ·∪ {�}
Pure content: PΣ

Σ
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PΣ in one-one correspondence with Σ∗
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Modeling a modern Turing machine
Definition

Structure 〈Q,Σ, tr , q0〉 where
Q a finite set of states
Σ a finite set of tape symbols
q0 starting state
tr is a transition function such that

tr : Q × (Σ ·∪ {�})→ Q × Σ× {−1, 0, 1}



Modeling a modern Turing machine
Moves

Configurations: 〈s, t, p〉 where
state: s ∈ Q
tape: t : ω → Σ ·∪ {�}
position: p < ω

Moves: 〈s, t, p〉 ↪→〈s ′, t ′, p′〉



Modeling a modern Turing machine
Computation

Computations: →M binary relation on infinite tapes
t : ω → Σ ·∪ {�}

t →M t ′ ⇐⇒ 〈s, t, p〉 ↪→n 〈s ′, t ′, p′〉 /↪→

Condition 1: the machine start with〈s0, t ∈ PB, 0〉
Condition 2: The machine does not write �:

→M⊆ (PB)2

→M⊆ (Σ∗)2
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Modeling a modern Turing machine
Semantics

Basic: |M| : Σ∗ → Σ∗

Function on naturals: encode input and output
Representing all functions: one extra ‘erasure’ symbol



Turing’s Original Machine
Computable Numbers

In 1936, Turing wrote: On computable numbers, with an
application to the Entscheidungsproblem.

Real numbers
Binary expansion: π = 11, 001001000011111101 . . .
Non integer part: infinite sequence

Computable numbers
Binary expansion written by a machine ?

Computable sequences
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Turing’s original machine
Conditions

Mark the left-hand side
Figures: ‘output’
Auxiliaries: ‘notes’
F -squares

A contiguous sequence of figures
Not erasable (‘write-once’)

E -squares
a kind of scratchpad
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Turing’s original machine
Computed sequence

Computable sequence
0 1 0 1 1 0 1 1 1 0 . . .

Function output
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Interpreted Sequences
For modern Turing machines

Turing machine: computes a function
fully determined by transition function

Universal machine:
Computes the universal function
Computes the function of some other machine

Defining a Universal machine:
Encode the transition function: ‘program’
Encode the input to this machine: ‘input’
Encodings: injective and therefore decodable



Encodings
For modern Turing machines

Without specifying ‘valid’ encodings
Any machine ‘interprets’ any input
Empty string ‘encodes’ the machine itself
Entire input ‘encodes’ a constant function

Just one program
Interleaving of ‘program’, ‘input’ and simulated tape and
temporary symbols
Not every substring of the (total) input is interpreted



Interpreted Sequences
For modern Turing’s original machines

Turing’s original machine:
no input
no interpreted sequences

Turing’s universal machine:
itself unlike Turing’s original machines
the entire input is the encoding of exactly one machine
F - and E -squares: program is not a contiguous sequence
on the tape
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No benefit: non standard
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tape: ω → Σ

infinite tape with infinite content
compare with t : ω → Σ ·∪ {�}

starting state & position undefined
transition function unrestricted
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What is Cohen’s machine?

Not a modern Turing machine
Not Turing’s original (universal) machine

All sequences trivially computable
No distinction between figures and auxiliaries
No distinction between F -squares and E -squares



Insurmountable difference

Can the difference between Cohen’s machine and modern
Turing machines be overcome?

Viral equivalence: M ≡vir N if:
〈M,V 〉 ∈ VS ⇐⇒ 〈N ,V 〉 ∈ VS
Viral equivalence is incomparable to functional
equivalence

No, it cannot.



Summary

Precise definitions essential for Turing machines
Turing machines are inappropriate to model viruses
Cohen’s modelling non-standard

Outlook
Open door for other modellings of computer viruses
Dissect Turing’s machine and unify the two Turing
machine models: ‘Talkative Machine’ (TM)



The end

Thank you for your attention!
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≡vir * ≡func

M = 〈Q,Σ, tr , q0〉 N = 〈Q,Σ, tr ′, q0〉
Σ = {a, b} Q = {q0, q1}

tr(q0,_) = 〈q1, a, 0〉 tr ′(q0,_) = 〈q1, b, 0〉

Virally equivalent (trivially)
No functionally equivalent:

|M|func = t 7→ t[0 7→ a]
|M|func = t 7→ t[0 7→ b]



≡vir + ≡func

Two machines that compute x 7→ x · 1.

q0

q3

any,any,R

�,1,N

q0 q1

q2q3

any,any,R

�,0,N

0,0,N

0,1,N
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