TURING MACHINES AND COMPUTER VIRUSES

Luite van Zelst

Institute for Logic, Language and Computation University of Amsterdam

 $3^{\rm rd}$ International Workshop on the Theory of Computer Viruses, 2008

OUTLINE

MOTIVATION

- **TURING MACHINES** Modern Turing machines
 Turing's original machine
- **3** Computer viruses
 - Interpreted Sequences
 - Cohen's viruses

WHAT IS A COMPUTER VIRUS?

"A virus may be loosely defined as a sequence of symbols which, upon interpretation, causes other sequences of symbols to contain (possibly evolved) virus(es)." (Fred Cohen)

COHEN'S VIRUSES THE DEFINITION

Let *M* be a Turing machine and $V \subseteq \Sigma^*$ then $\langle M, V \rangle \in \mathsf{VS}$ if

$$\forall v \in V, h \in \mathbb{H}_M$$
 (1)

$$f \exists n_1 < \omega$$
 (2)

$$\wedge h(0) = \langle s_0, \underline{\ }, \underline{\ } \rangle \tag{3}$$

$$\wedge h(n_1) = \langle s_0, t_1, p_1 \rangle \tag{4}$$

$$\wedge t_1[p_1, |v|] = v$$
 (5)

then
$$\exists v' \in V, n_2 < \omega, pos < \omega$$
 (6)

$$\wedge h(n_2) = \langle \underline{, t_2, _} \rangle$$
(7)

$$\wedge t[pos, |v'|] = v' \tag{8}$$

$$\wedge \quad \lor \ \mathsf{pos} \ge \mathsf{p}_1 + |\mathsf{v}| \tag{9}$$

$$\vee p_1 \ge pos + |v'| \tag{10}$$

$$\wedge \exists n_3 < \omega$$
 (11)

$$\wedge n_1 < n_3 < n_2$$
 (12)

$$\wedge h(n_3) = \langle s_3, t_3, p_3 \rangle \tag{13}$$

$$\wedge pos \le p_2 \le pos + |v'| \tag{14}$$

SEQUENCES & MACHINES

$M \quad Y \quad V \quad I \quad R \quad U \quad S \quad \cdots$

- Contiguous sequences (strings)
- Any substring on the tape
- Uses a special flavour of Turing machines

SEQUENCES & MACHINES

- Contiguous sequences (strings)
- Any substring on the tape
- Uses a special flavour of Turing machines

COHEN'S VIRUSES DEPICTED

ARE TURING MACHINES APPROPRIATE?

- Thimbleby et al. in 1998: A Framework for Modelling Trojans and Computer Virus Infection
- Mäkinen in 2001: Comment on 'A Framework for Modelling'

Are Turing machines appropriate?

- How are Turing machines defined *precisely*?
- How are 'interpreted sequences' defined?

What is a Turing machine ?

Davis (1958), Minsky (1967), Hopcroft et al. (1979): Turing machine computes a function:

On computable numbers, with an application to the Entscheidungsproblem, Turing, 1936 Machine that computes an infinite sequence

What is a Turing machine ?

Davis (1958), Minsky (1967), Hopcroft et al. (1979): Turing machine computes a function:

$$\xrightarrow{\text{input}} M \xrightarrow{\text{output}}$$

On computable numbers, with an application to the Entscheidungsproblem, Turing, 1936 Machine that computes an infinite sequence

• Infinite tape: $t: \omega \to \Sigma$

- Finite content: $\Box \notin \Sigma$ represents an empty square
- Infinite tape: $t: \omega \to \Sigma \cup \{\Box\}$
- Pure content: \mathbb{P}_{Σ}

• \mathbb{P}_{Σ} in one-one correspondence with Σ^{*}

• Infinite tape: $t: \omega \to \Sigma$

- Finite content: $\Box \notin \Sigma$ represents an empty square
- Infinite tape: $t: \omega \to \Sigma \cup \{\Box\}$

• \mathbb{P}_{Σ} in one-one correspondence with Σ^{*}

- Infinite tape: $t: \omega \to \Sigma$
- Finite content: $\Box \notin \Sigma$ represents an empty square
- Infinite tape: $t: \omega \to \Sigma \cup \{\Box\}$

• \mathbb{P}_{Σ} in one-one correspondence with Σ^{*}

- Infinite tape: $t: \omega \to \Sigma$
- Finite content: $\Box \notin \Sigma$ represents an empty square
- Infinite tape: $t: \omega \to \Sigma \cup \{\Box\}$
- Pure content: \mathbb{P}_{Σ} Σ 0 1 0 1 0 \Box \Box \Box
- \mathbb{P}_{Σ} in one-one correspondence with Σ^{*}

MODELING A MODERN TURING MACHINE DEFINITION

Structure $\langle Q, \Sigma, tr, q_0 \rangle$ where

- Q a finite set of states
- Σ a finite set of tape symbols
- q₀ starting state
- tr is a transition function such that

$$tr: Q \times (\Sigma \cup \{\Box\}) \rightarrow Q \times \Sigma \times \{-1, 0, 1\}$$

MODELING A MODERN TURING MACHINE MOVES

- Configurations: $\langle s, t, p \rangle$ where
 - state: $s \in Q$
 - tape: $t: \omega \to \Sigma \cup \{\Box\}$
 - position: $p < \omega$
- Moves: $\langle s, t, p \rangle \hookrightarrow \langle s', t', p' \rangle$

MODELING A MODERN TURING MACHINE COMPUTATION

Computations: →_M binary relation on infinite tapes
 t : ω → Σ ∪ {□}

$$t \rightarrow_{\mathcal{M}} t' \iff \langle s, t, p \rangle \hookrightarrow^{n} \langle s', t', p' \rangle \nleftrightarrow$$

- Condition 1: the machine start with $\langle s_0, t \in \mathbb{P}_B, 0
 angle$
- Condition 2: The machine does not write \Box :

•
$$\rightarrow_M \subseteq (\mathbb{P}_B)^2$$

• $\rightarrow_M \subseteq (\Sigma^*)^2$

MODELING A MODERN TURING MACHINE COMPUTATION

Computations: →_M binary relation on infinite tapes
 t : ω → Σ ∪ {□}

$$t \rightarrow_{\mathcal{M}} t' \iff \langle s, t, p \rangle \hookrightarrow^{n} \langle s', t', p' \rangle \nleftrightarrow$$

- Condition 1: the machine start with $\langle s_0, t \in \mathbb{P}_B, 0
 angle$
- Condition 2: The machine does not write \Box :

•
$$\rightarrow_M \subseteq (\mathbb{P}_B)^2$$

• $\rightarrow_M \subseteq (\Sigma^*)^2$

MODELING A MODERN TURING MACHINE

Computations: →_M binary relation on infinite tapes
 t : ω → Σ ∪ {□}

$$t \rightarrow_{\mathcal{M}} t' \iff \langle s, t, p \rangle \hookrightarrow^{n} \langle s', t', p' \rangle \nleftrightarrow$$

- Condition 1: the machine start with $\langle s_0, t \in \mathbb{P}_B, 0
 angle$
- Condition 2: The machine does not write \Box :

•
$$\rightarrow_M \subseteq (\mathbb{P}_B)^2$$

• $\rightarrow_M \subseteq (\Sigma^*)^2$

MODELING A MODERN TURING MACHINE SEMANTICS

- Basic: $|M| : \Sigma^* \to \Sigma^*$
- Function on naturals: encode input and output
- Representing all functions: one extra 'erasure' symbol

TURING'S ORIGINAL MACHINE Computable Numbers

In 1936, Turing wrote: *On computable numbers, with an application to the Entscheidungsproblem.*

- Real numbers
 - Binary expansion: $\pi = 11,001001000011111101...$
 - Non integer part: infinite sequence
- Computable numbers
 - Binary expansion written by a machine ?
- Computable sequences

TURING'S ORIGINAL MACHINE COMPUTABLE NUMBERS

In 1936, Turing wrote: *On computable numbers, with an application to the Entscheidungsproblem.*

- Real numbers
 - Binary expansion: $\pi = 11,001001000011111101...$
 - Non integer part: infinite sequence
- Computable numbers
 - Binary expansion written by a machine ?
- Computable sequences

TURING'S ORIGINAL MACHINE Computable Numbers

In 1936, Turing wrote: *On computable numbers, with an application to the Entscheidungsproblem.*

- Real numbers
 - Binary expansion: $\pi = 11,001001000011111101...$
 - Non integer part: infinite sequence
- Computable numbers
 - Binary expansion written by a machine ?
- Computable sequences

- Mark the left-hand side
- Figures: 'output'
- Auxiliaries: 'notes'
- *F*-squares
 - A contiguous sequence of figures
 - Not erasable ('write-once')
- *E*-squares
 - a kind of scratchpad

• Mark the left-hand side

- Figures: 'output'
- Auxiliaries: 'notes'
- *F*-squares
 - A contiguous sequence of figures
 - Not erasable ('write-once'
- *E*-squares
 - a kind of scratchpad

- Mark the left-hand side
- Figures: 'output'
- Auxiliaries: 'notes'
- *F*-squares
 - A contiguous sequence of figures
 - Not erasable ('write-once')
- *E*-squares
 - a kind of scratchpad

		0	*	1	\$	0	*	1	*	1	\$
--	--	---	---	---	----	---	---	---	---	---	----

- Mark the left-hand side
- Figures: 'output'
- Auxiliaries: 'notes'
- *F*-squares
 - A contiguous sequence of figures
 Not erasable ('write-once')
- E-squares

• a kind of scratchpad

- Mark the left-hand side
- Figures: 'output'
- Auxiliaries: 'notes'
- F-squares
 - A contiguous sequence of figures
 - Not erasable ('write-once')
- E-squares
 - a kind of scratchpad

- Mark the left-hand side
- Figures: 'output'
- Auxiliaries: 'notes'
- F-squares
 - A contiguous sequence of figures
 - Not erasable ('write-once')
- E-squares
 - a kind of scratchpad

TURING'S ORIGINAL MACHINE COMPUTED SEQUENCE

Computable sequence

TURING'S ORIGINAL MACHINE COMPUTED SEQUENCE

Computable sequence 0 1 0 1 1 0 1 1 0 ...

TURING'S ORIGINAL MACHINE COMPUTED SEQUENCE

Computable sequence 0 1 0 1 1 1 0 · · · ·

COMPUTER VIRUSES ON TURING MACHINES

Can we define a virus as a (contiguous) 'sequence of symbols' that is 'interpreted' by a Turing machine?

COMPUTER VIRUSES ON TURING MACHINES

Can we define a virus as a (contiguous) 'sequence of symbols' that is 'interpreted' by a Turing machine?

INTERPRETED SEQUENCES For modern Turing machines

- Turing machine: computes a function
 - fully determined by transition function
- Universal machine:
 - Computes the universal function
 - Computes the function of some other machine
- Defining a Universal machine:
 - Encode the transition function: 'program'
 - Encode the input to this machine: 'input'
 - Encodings: injective and therefore decodable

ENCODINGS For modern Turing machines

- Without specifying 'valid' encodings
 - Any machine 'interprets' any input
 - Empty string 'encodes' the machine itself
 - Entire input 'encodes' a constant function
- Just one program
- Interleaving of 'program', 'input' and simulated tape and temporary symbols
- Not every substring of the (total) input is interpreted

INTERPRETED SEQUENCES For modern Turing's original machines

• Turing's original machine:

- no input
- no interpreted sequences
- Turing's universal machine:
 - itself unlike Turing's original machines
 - the entire input is the encoding of exactly one machine
 - *F* and *E*-squares: program is not a contiguous sequence on the tape

INTERPRETED SEQUENCES For modern Turing's original machines

- Turing's original machine:
 - no input
 - no interpreted sequences
- Turing's universal machine:
 - itself unlike Turing's original machines
 - the entire input is the encoding of exactly one machine
 - *F* and *E*-squares: program is not a contiguous sequence on the tape

VIRUSES FOR TURING MACHINES

- Model at least two programs
- Non-program cannot be a virus
- Standard models inadequate New (universal) Turing machine?
 No benefit: non standard

VIRUSES FOR TURING MACHINES

- Model at least two programs
- Non-program cannot be a virus
- Standard models inadequate New (universal) Turing machine?
 - No benefit: non standard

COHEN'S TURING MACHINE

- tape: $\omega \to \Sigma$
 - infinite tape with infinite content
 - compare with $t: \omega \to \Sigma \cup \{\Box\}$
- starting state & position undefined
- transition function unrestricted
 - $tr: K \times \Sigma \rightarrow K \times \Sigma \times \{-1, 0, 1\}$
 - even with $\Box \in \Sigma$ finite content undecidable

COHEN'S TURING MACHINE

- tape: $\omega \to \Sigma$
 - infinite tape with infinite content
 - compare with $t: \omega \to \Sigma \cup \{\Box\}$
- starting state & position undefined
- transition function unrestricted
 - $tr: K \times \Sigma \rightarrow K \times \Sigma \times \{-1, 0, 1\}$
 - even with $\Box \in \Sigma$ finite content undecidable

COHEN'S TURING MACHINE

- tape: $\omega \to \Sigma$
 - infinite tape with infinite content
 - compare with $t: \omega \to \Sigma \cup \{\Box\}$
- starting state & position undefined
- transition function unrestricted
 - $tr: K \times \Sigma \rightarrow K \times \Sigma \times \{-1, 0, 1\}$
 - even with $\Box \in \Sigma$ finite content undecidable

WHAT IS COHEN'S MACHINE?

- Not a modern Turing machine
- Not Turing's original (universal) machine
 - All sequences trivially computable
 - No distinction between figures and auxiliaries
 - No distinction between F-squares and E-squares

INSURMOUNTABLE DIFFERENCE

Can the difference between Cohen's machine and modern Turing machines be overcome?

- Viral equivalence: $M \equiv_{vir} N$ if: $\langle M, V \rangle \in VS \iff \langle N, V \rangle \in VS$
- Viral equivalence is incomparable to functional equivalence

No, it cannot.

SUMMARY

- Precise definitions essential for Turing machines
- Turing machines are inappropriate to model viruses
- Cohen's modelling non-standard
- Outlook
 - Open door for other modellings of computer viruses
 - Dissect Turing's machine and unify the two Turing machine models: 'Talkative Machine' (TM)

Thank you for your attention!

INSURMOUNTABLE DIFFERENCE

$\equiv_{\it vir} \not\subseteq \equiv_{\rm FUNC}$

$$egin{aligned} & \mathcal{M} = \langle Q, \Sigma, tr, q_0
angle & \mathcal{N} = \langle Q, \Sigma, tr', q_0
angle \ & \Sigma = \{a, b\} & Q = \{q_0, q_1\} \ & tr(q_0, _) = \langle q_1, a, 0
angle & tr'(q_0, _) = \langle q_1, b, 0
angle \end{aligned}$$

- Virally equivalent (trivially)
- No functionally equivalent:

•
$$|M|_{func} = t \mapsto t[0 \mapsto a]$$

•
$$|M|_{func} = t \mapsto t[0 \mapsto b]$$

$\equiv_{vir} \not\supseteq \equiv_{\rm FUNC}$

FOR FURTHER READING I

beamericonbe M. Davis. Computability and unsolvability. McGraw-Hill, 1958.

Computation : finite and infinite machines. Prentice-Hall, 1967.

beamericonbook Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and Computation. Addison Wesley, 1979.

FOR FURTHER READING II

beamericonbook.J. Copeland.

The essential Turing: seminal writings in computing, logic, philosophy, artificial intelligence, and artificial life plus the secrets of enigma. Oxford University Press, 2004.

beamericonarde: Thimbleby, S Anderson and P. Cairns A Framework for Modelling Trojans and Computer Virus Infection. Computer Journal, 41: 444-458, 1998.

FOR FURTHER READING III

beamericonartele Mäkinen

Comment on 'A framework for modelling trojans and computer virus infection'.

Computer Journal, 44(4): 321-323, 2001.