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A proof of Gödel’s theorem 

 

Per Lindström 

 

 

Let N = (N, +, ., 1) be the standard model of arithmetic and let Th(N), the theory of N, be 

the set of sentences of first-order arithmetic true in N. Let c.e. be short for “computably 

enumerable”. (We apply the notions of computability theory to sets of, relations between, 

etc. syntactic expressions. The natural number n is identified with the sequence 1n+1 of of 

n+1 1’s.) 

 The following result is a form of Gödel’s (first incompleteness) theorem.  

 

Theorem 1. Th(N) is not c.e. 

 

In this note we give a quite simple proof of this result, a straightforward combination of 

(more than half a century) old ideas.  

 We begin by sketching a proof of the Church-Turing theorem that first-order logic is 

undecidable.  

 Let X be a finite set of symbols, e.g. X = {0,1,h,q} (as in Lemma 1, below). An X-

word is a finite string of (occurrences of) members of X. uv is the concatenation of the 

words u and v. It is convenient to assume that there is an empty word ø: uø = øu = u for all 

u. Let X* be the set of X-words (including ø). 

 A production (over X) is an expression of the form 

  "u# $ "v#. 

Here ", # are variables and u,v%X*. The expression w0 $ w1 is an instance of this 

production if there are w,w'%X* such that w0 = wuw' and w1 = wvw'. A combinatorial 

system C (over X) is determined by a finite set of productions (over X) and an initial word 

(axiom) wi%X*. A word w is derivable in C, C |– w, if there is a sequence w0,...,wm of X-
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words such that (a) w0 = wi, (b) for k < m, wk $ wk+1 is an instance of a production of C, 

and (c) wm = w. 

 We borrow the following result from computability theory (cf. Davis (1958), Kleene 

(1952)); it is essentially just another way of saying that there is a Turing Machine whose 

halting problem is (computably) unsolvable. 

 

Lemma 1. There is a finite set of productions 

(P)  "ui# $ "vi#,   i ! p, 

over {0,1,h,q} such that the following holds. For every n, let Cn be the combinatorial system 

with these productions and whose initial word is hq1q1n+1h. Then  

(i)  the set {n: Cn |– 0} is not computable, 

(ii) Cn |– 0 iff {w: Cn |– w} is finite. 

 

Since {n: Cn |– 0} is c.e., it follows that {n: not Cn |– 0} is not c.e. 

 Lemma 1 can be applied to prove the undecidability of first-order logic as follows; the 

proof is essentially Turing’s original proof. 

 Let F be a one-place predicate, o a two-place function symbol, and let ø, 0, 1, h, q be 

individual constants. (The interpretation of o we have in mind is concatenation). For w = 

s0s1...sn, where the si are single symbols, let [w] := (s0o(s1o(s2o...osn)...); [si] := si. 

 Let the productions (P) be as in Lemma 1. For i ! p, let 

  &i(x,y) := 'zz'(x = (z o [ui]) o z' ( y = (z o [vi]) o z'). 

Next, let ) be the conjunction of the following sentences: 

  *xyz((x o y) o z = x o (y o z)), 

  *x(x o ø = ø o x = x), 

  *xy(Fx ( +{&i(x,y): i ! p} $ Fy). 

Let t(x) := [hq1q] o (x o h). Let ,(x) := 

  ) ( Ft(x) $ F0. 

Finally, let n := [1n+1]. 
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 It is now not difficult to see that for every n, ,(n) is valid iff for every set Y of X-

words, if t(n)%Y and Y is closed under the productions (P), then 0%Y. And so 

  ,(n) is valid iff Cn |– 0. 

From this and Lemma 1(i) it follows that the set of valid sentences of {F, o, ø, 0, 1, h, q} is 

not computable, as desired. 

 Modifying this proof we can now prove the following result of Trakhtenbrot (cf. 

Ebbinghaus et al. (1984)). A sentence - is finitely valid if it is true in all finite models. 

 

Theorem 2. There is a finite language L such that the set of finitely valid sentences of L is 

not c.e. 

 

Proof (sketch). Let L = {F, o , ø, 0, 1, h, q, e}, where F, o , ø, 0, 1, h, q are as above and e is 

an individual constant. Let .(x) := 

  x = 0 + x = 1 + x = h + x = q. 

Let )+ be the conjunction of ), above, and the following sentences:  

  *x(x o y = ø $ x = ø), 

  *x(x o e = e), 

  *xyz(x o y = x o z " e $ y = z), 

  *xyzu(.(x) ( .(y) ( x o z = y o u " e $ x = y), 

  ¬Fe and “ø, 0, 1, h, q, e are all different”. 

As before let t(x) := [hq1q] o (x o h). Let ,+(x) := 

  )+ (  Ft(x). 

Then 

(+)  ,+(n) has a finite model iff Cn |– 0.  

 First, suppose not Cn |– 0. Let A be a model of ,+(n). By Lemma 1(ii), {w: Cn |– w} is 

infinite. Moreover, [u] " [v] is true in A whenever Cn |– u, Cn |– v, and u " v. It follows that 

FA is infinite, and so A is infinite, as desired. 
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 Next, suppose Cn |– 0. By Lemma 1(ii), {w: Cn |– w} is finite. For every word w, let 

|w| be the length of w; |ø| = 0. Let r = max{|w|: Cn |– w}. Let A' = {w%{0,1,h,q}*: |w| ! r}. 

Let A = A' / {e}. Let FA = {w: Cn |– w}. For u, v%A, let 

  u oA v = uv if uv%A', 

             = e otherwise. 

Finally, let A = (A, FA, oA, ø, 0, 1, h, q, e). Then A is a finite model of ,+(n).  

 This proves (+). By (+), for every n, ¬,+(n) is finitely valid iff not Cn |– 0. It follows 

that the set of finitely valid sentences of L is not c.e., as desired. ! 

 Function symbols and individual constants can be replaced by predicates and 

(universally quantified) variables, respectively, preserving (finite) validity. Thus, Theorem 2 

has the following: 

 

Corollary 1. There is a finite set L of predicates such that the set of finitely valid sentences 

of L is not c.e. 

 

Actually, this holds with L = {P}, where P is a two-place predicate. 

 We can now derive Theorem 1 from Corollary 1 as follows. 

 The following number-theoretic lemma is essentially Gödel’s lemma on the so-called 

#-fuction; it is proved in the same way (cf. Davis (1958), Kleene (1952)). 

 

Lemma 2. For all m, n, and ki, i ! n, there are r, s such that for all i ! n and all k ! m, k = ki 

iff 'q!r(r = q(1+(i+1)s) + k). 

 

Lemma 3. Let R be any two-place relation on {k: k ! m}. There are then numbers n, r, s, r', 

s' such that 

  R = {(k,k'): k, k' ! m & 'i!n('q!r(r = q(1+(i+1)s + k) &  

      'q'!r'(r' = q'(1+(i+1)s' + k'))}. 

Proof. Let n, ki, ki' be such that R = {(ki,ki'): i ! n}. Let r, s be as in Lemma 2 and let r', s' 

be as in that lemma with ki replaced by ki'. ! 
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 Clearly, there is a result similar to Lemma 3 for n-place relations for every n. 

 For simplicity we now add the two-place predicate ! to the language of arithmetic. Let 

N' = (N, !). Clearly, Th(N) is c.e. iff Th(N') is. 

 In what follows let 'x!y- := 'x(x ! y ( -) and *x!y- := *x(x ! y $ -). 

 

Lemma 4. For any sentence - containing no function symbols or constants, we can 

construct an arithmetical sentence -* such that -* is true in N' iff - is finitely valid. 

 

Proof. We explicitly deal only with the case where - contains only one two-place predicate 

P; the extension to the general case is straightforward. We assume that the variables y, y', z, 

z', u, u', v, v', w do not occur in -. Let -'(u) be the result of relativizing all quantifiers in - 

to “! u”, i.e., replacing 'x by 'x!u and *x by *x!u. Let 0(y,z,y',z',u',x,x') := 

  'w!u'('v!y(y = v.(1+(w+1).z + x) ( 'v'!y'(y' = v'.(1+(w+1).z' + x')) 

(compare Lemma 3). 

 Next, replace Pxx', for any variables x, x', everywhere in -'(u) by 0(y,z,y',z',u',x,x'). Let 

-''(y,z,y',z',u,u') be the result.  

 Now let m be any number and let R be any two-place relation on {k: k ! m}. Let n, r, 

s, r', s' be as in Lemma 3. Then  

  R = {(k,k'): k, k' ! m & 0(r,s,r',s',m,k,k') is true in N'}. 

It follows that 

  - is true in ({k: k ! m}, R) iff -''(r,s,r',s',m,n) is true in N'. 

Finally, let -* :=  

  *yy'zz'uu'-''(y,z,y',z',u,u').  

By Lemma 3, if -* is true in N', then - is finitely valid. The converse implication follows, 

since all quantifiers of -'(u) are relativized to “! u”. ! 

Proof of Theorem 1. The function mapping - on -* as in Lemma 4 is computable. 

Suppose Th(N) is c.e. Then so is Th(N'). But then, by Lemma 4, the set of finitely valid 

sentences would be c.e., contradicting Corollary 1. It follows that Th(N) is not c.e. ! 
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 An arithmetical formula - is bounded if every quantifier expression in - is bounded, 

i.e., of the form *x!y or 'x!y, where x, y are any variables. - is essentially universal (e.u.) 

(or 11) if it is of the form *x1...xn2, where 2 is bounded. (Here we may take n to be 1, 

since, if x does not occur in 2, then *x1...xn2 is equivalent to *x*x1!x...*xn!x2.) 

 The formula -'' defined in the proof of Lemma 4 is bounded and so -* is e.u. Thus, 

(the proof of) Theorem 1 has the following: 

 

Corollary 2. The set of e.u. sentences true in N' is not c.e. 

 

Let PA be Peano Arithmetic. False e.u. sentences are disprovable in PA (in fact, in a very 

weak finite fragment of PA). Thus, if T is a consistent c.e. extension of PA, every e.u. 

sentence provable in T is true. Also, the set of e.u. sentences provable in T is c.e. Thus, from 

Corollary 2 we get: 

 

Corollary 3. If T is a consistent c.e. extension of PA, there is a true e.u. sentence not 

provable in T. 

 

An example of a true e.u. sentence not provable in T can be obtained as follows. Let W0, 

W1, W2, ... be the standard enumeration of the c.e. sets. Let K = {n: n%Wn}. Then K is c.e. 

There are productions (P), as in Lemma 1, such that K = {n: Cn |– 0}. (This is true of every 

c.e. set in place of K.) In the proof of Theorem 1 we effectively construct for every n an e.u. 

sentence 2n such that Cn |– 0 iff 2n is false. It follows that 

(1)  n%Wn iff 2n is false. 

{n: T |– 2n} is c.e. In proving this you actually compute a number e such that 

(2)  n%We iff T |– 2n. 

From (1), (2) it follows that  

(3)  T |– 2e iff 2e is false. 
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Now suppose T |– 2e. Then 2e is false. But then, 2e being e.u., T |– ¬2e. And so T is 

inconsistent, contrary to assumption. Thus, not T |– 2e. It follows that 2e is true. And so 2e 

is as desired. 

 To obtain a proof of Gödel’s second incompleteness theorem from this we have to 

translate the syntax of first-order arithmetic and computability theory into the language 

{+, ., 1} of first-order arithmetic and then show that the translation of (3) is provable in PA. 

 Another result, essentially equivalent to Theorem 1, which is particularly easy to prove 

on the present approach, is the following theorem. 

 Let HF be the set of hereditarily finite sets, i.e., finite sets whose members are finite, 

whose members of members are finite, etc. Let HF = (HF,%). 

 

Theorem 3. Th(HF) is not c.e. 

 

Proof. Let - be any sentence as in the proof of Theorem 1. Suppose the variables u, v do 

not occur in -. Let -'(u) be the result of relativizing all quantifiers in - to “%u”. As usual let 

(x,y) = {{x},{x,y}}. Let -''(u,v) be obtained from -'(u) by replacing Pxy by (x,y)%v. Let -* 

:= *uv-''(u,v). It is then clear that -* is true in HF iff - is finitely valid. And so Th(HF) is 

not c.e. ! 
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