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PHILOSOPHY 167 is a computer-based course in elementary proof theory
at Stanford University. The main purpose of the course is to introduce
(advanced) undergraduates to Gbdel's incompleteness theorems (Gbdel,
1931). These theorems are still, almost fifty years after their discovery,
a.mong the philosophically most striking and mathematically most impor
tant results in modern logic. They undermined a widely shared belief
concerning the extent of the axiomatic method, and they refuted a particu
lar, clearly formulated program in the foundations of mathematics (Hil
bert's program). This background is sketched in section I of our article,
where we also discuss the basic strategy of Gbdel's proofs. The special
problems inherent in a detailed presentation of Gbdel's proofs are met in
two ways:

1. the standard arguments are simplified by presenting them in a natural
formal framework, the theory TEM for elementary metamathematics,

2. the arguments are furthermore given on a computer and are checked by it;
this fact is exploited.

In section 2 we outline the content of the course, emphasizing the novel
points involved in 1. Taking up 2, we describe the computer implementa
tion in section 3. Finally, in section 4, we evaluate critically the curriculum,
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the mathematical work underlying the presentation of Code!'s proofs, and
the implementation; ways of improving the course are discussed.

Development of this course has been carried out since October 1975 at
the Institute for Mathematical Studies in the Social. Sciences, Stanford
University, under the general direction of Ceorg Kreisel and Patrick Sup
pes. The main work on developing the curriculum and the proof machin
ery was done in the years 1975 to 1977 by Wilfried Sieg with the collabora
tion of Lee Blaine and Vladimir Lifschitz. Ingrid Lindstrom and Sten
Lindstrom have been responsible for curriculum development during
1977-1979.

1. PROOF THEORY AND HILBERT'S PROCRAM

Hilbert's program is briefly described as well as the impact of Code!'s
incompleteness theorems on the aims of proof theory. The discussion of
the strategy of Codel's proofs will point to the peculiar difficulties for their
detailed presentation.

1.1 Hilbert's Program

Proofs are us~d in mathematics to establish theorems; in proof theory,
however, proofs, or rather derivations in formal systems, are the object of
mathematical study. Proof theory started with Hilbert's proposal to investi
gate mathematical proofs that involve abstract infinitistic reasoning by
finitist means. Hilbert proposed in particular his consistency program:
consider a formal system T which-can serve as a basis for all of classical
mathematics and prove (by finitist means) the consistency of T. In this way
Hilbert hoped to achieve a foundational reduction of all of mathematics to
a particularly elementary part; namely, to "finitist mathematics." Though
this part of mathematics had not been precisely characterized, it was clear
that it was concerned with concrete spatio-temporal objects and that it was
to employ only elementary combinatorial methods. When Hilbert formu
lated the aims of his proof theory, he had two significant facts available:

1. then-contemporary mathematics could be developed in formal systems of set
or type theory.

2. thefonnal systems could be described in a fmitist manner.

The first, purely empirical fact gave plausibility to Hilbert's belief that those
systems provided a complete framework for mathematics. The second fact
allowed him to formulate various properties of formal systems finitistically,
in particular, the consistency property (Bernays, 1930-1931).

1.2 Codet's Theorems

In 1930 Codel published two classical results which established that
Hilbert's foundational program cannot be carried out in its original form.
These results are:
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First incompleteness theorem. If T is a formal system containing arithmetic, then
there is a true sentence G which asserts its own unprovqbility and is such that:
(i) If T is consistent, then G is not provable in T.
(ii) If T is omega-consistent, then not-G is not provable in T.

Second incompleteness theorem. If T is a consistent formal system containing arith
metic, then T does not prove CONS(T); CONS(T) is formulated in the language
of T and expresses that T is consistent.

The first incompleteness theorem implies that no consistent formal theory
can prove all true arithmetic sentences, thus refuting the quasiempirical
completeness assumption, crucial for Hilbert's plan to settle the founda
tional problems of mathematics once and for all. The second incomplete
ness theorem shows that Hilbert's main reductive aim cannot be achieved,
as it presupposes that finitist mathematics is a part of the comprehensive
theory T. A consistency proof for T, however, cannot be carried out by
means formalizable in T. 1 Bu t the second theorem does not contradict
Hilbert's general formalist viewpoint. G6del remarked in his paper that

this viewpoint presupposes only the existence of a consistency proof in which
nothing but finitary means of proof are used, and it is conceivable that there
exist finitary proofs that cannot be expressed in the formalism P [of Principia
Mathematica ] ...

A modified Hilbert program has indeed been successfully pursued for
arithmetic and significant parts of mathematical analysis; see Kreisel (1968)
and Feferman (in press).

1.3 The Proofs

The further developments in proof theory are not touched upon in this
course, whose core consists rather of the detailed proofs of the incomplete
ness theorems. These proofs exploit, quite curiously, the very facts which
made Hilbert's program plausible. First, the elementary description of
formal theories can be given via an arithmetization of syntax in purdy
number-theoretic terms; second, for theories T containing elementary
number theory-a condition certainly satisfied by the comprehensive
theories whose consistency Hilbert wanted to establish-this opens the
possibility of defining the syntactic notions concerning T in T and, con
sequently, of reflecting on T within T. If the theorem predicate for T and

.the substitution relation can be defined in T, then one can show by an easy
semantic argument that the sentence expressing its own unprovability is
formally undecidable. G6del gave this argument in the introduction to his
paper; the semantic requirement on T is soundness: every sentence prov
able in T is true.

The proofs of G6del's theorems involve more than giving nontrivial
derivations in a theory T; central work has to be carried out in T's

1 As a matter of fact, finitist mathematics was thought to be contained in number theory.
On this assumption, even elementary number theory cannot be shown finitistically to be
consistent.



186 SIEG, LINDSTROM, & LINDSTROM

metatheory, in which the syntax of T is rigorously described. One has to
show, for example, that the syntactic notions can be represented in T. Usually
this is done as follows. The syntactic objects constituting T are first coded as
natural numbers and the syntactic notions, given by inductive definitions,
are turned into recursive (number theoretic) predicates. Then the rep
resentability of recursive predicates (or functions) is established. The ar
guments are given in an informal, mathematical way. In the presentation
described in section 2 one proceeds differently. The formal theory for
elementary metamathematics TEM is introduced, the inductively defined
syntactic notions are directly axiomatized, and their representability is
formally proved in TEM. The first incompleteness theorem is obtained as a
theorem of TEM and the second theorem is established by a simple
metamathematical argument concerning TEM. But even this simplified
presentation involves a great deal of technical work, if all details are carried
out without informal shortcuts. As it happens, certain shortcuts can be
systematically justified as we are working on a computer. This is explained
in section 3.

2. GODEL'S THEOREMS
FOR ZERMELO-FRAENKEL SET THEORY

In this section we outline the content'of the course, sketching standard
parts and elaborating on points where the presentation deviates from the
usual ones. The course is divided into five parts; the first two are concerned
with the informal presentation of Zermelo-Fraenkel set theory. In the third
part the syntactic objects constituting the formal theory ZF are identified
with binary trees, and the syntactic notions are formally given in TEM.
Assuming representability and derivability conditiops, self-referential sen
tences are constructed and used in Part 4 to establish classical theorems:
Tarski's indefinability result, the first incompleteness theorem and its Ros
ser variant, Lob's theorem, and the second incompleteness theorem. In the
final fifth part, which has not yet been implemented, the representability
and derivability conditions are verified.

2.1 Informal Metamathematics of ZF

Part 1 starts out with a description of the cumulative hierarchy, segments
of which are the intended models of ZF: the ZF-axioms just formulate
principles underlying the construction of the hierarchy. Then we show
that, apart from general mathematical notions like relation and function,
specific number-theoretic ones can be given in set theory. Having defined
the concept of a natural number explicitly (and indeed in a special syntactic
form guaranteeing absoluteness), one can formulate natural representabil
ity conditions relating an informal number-theoretic notion P and its set
theoretic counterpart p; namely,
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I. if P(Ml, ... , Mn), then ZF f-p(lMII, ... , /Mn/),

2. if not P(Ml, ... , Mn), then ZF f- -P(/MII, ... , /Mn/).

Here, 1M! is the von Neumann numeral for the natural number M. ZF can
be replaced by ZF*, that is, ZF without the axiom of infinity. The question
whether recursively defined number-theoretic functions can be rep
resented in ZF* leads to the problem of making recursive set-theoretic
definitions explicit. This problem is discussed in great detail, as it leads to a
central set-theoretic fact (the recursion theorem) which is essential for the
representability of recursive and inductive definitions.

In Part 2 we take up the tedious task of giving a detailed description of
the syntax of ZF. We justify also the informal practice of introducing
defined symbols and adding defining axioms to ZF (or ZF*) in the usual
way. One associates with each formula F in the expanded language via a
metamathematical translation a formula F1 in the language of ZF and
shows that:

I. DE f- (F # F'), and
2. if DE f-F, then T f-F'

where DE is a definitional extension of T, and T is either ZF or ZF*. These
considerations resolve the apparent conflict between mathematical con·
venience and metamathematical simplicity: one can work within defini
tional extensions of ZF or ZF* and yet use for metamathematical purposes
the very simple description of the basic system.

2.2 Formalization of Metamathematics in TEM

The description of ZF in Part 2 employs informal inductive definitions;
most of the metamathematical arguments proceed by induction on the
syntactic notions. In the third part of the course, the formal theory TEM
for elementary metamathematics is introduced. The theory is similar to
Kleene's generdlized arithmetic, where syntactic objects are viewed as
finitely branching, inductively generated trees (Kleene, 1952). The analysis
is pushed one step further here. Syntactic objects are identified with binary
trees built up from the empty tree S by a pairing operation [, ]. The
obvious axioms are formulated in a standard first-order language.

Tl: [2,Y] is not S
(The empty tree is not a paiL)

T2: if [21,22] is [Yl ,Y2] then 21 is Yl and 22 is Y2
(Two pairs are equal only if their respective components are equal.)

Ind: if FM(S) and
for all 2,Y: (FM(2) and FM(Y) only if FM ([2,Y]»
then for all 2: FM(2)

(The induction principle for arbitrary formulas FM.)
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These axioms express the basic facts about syntactic objects. Their struc
ture justifies certain kinds of very elementary inductive definitions of
unary predicates, which are called S-inductive definitions.' Informally, the
distinguishing feature of S-inductive definitions can be described as fol
lows: syntactic objects falling under an S-inductive definition reflect directly
their construction according to the generating clauses of the definition.
This condition is satisfied by the finitely many syntactic notions needed for
the formal pre~entationof ZF. But a satisfactory mathematical characteri
zation of S-inductive definitions is still to be given. If FMi is a formula of
TEM expressing the generating clauses for a predicate Ri, then TEM
contains the axiom:

(T3i) FMi(Ri,Z) if and only if Ri(Z).

Notice that the induction principle for Ri is provable. Given this
framework, the formal description of ZF is given straightforwardly along
familiar lines, and elementary metamathematical arguments can be for
malized immediately.

2.3 The Incompleteness Theorems

In the first section of Part 4, earlier informal considerations are paral
leled in TEM. Previously, number-theoretic notions were represented in
ZF*; now syntactic notions are represented. For this purpose much weaker
systems than ZF* are sufficient; but precisely which ones is a delicate
question and has as yet no satisfactory answer. First; we have to encode
syntactic objects as sets. From a model-theoretic point of view, this is done in
a natural way; the empty set codes the empty tree, the set-theoretic pair
(x,y) codes the pair [X, V], where x and y code X, respectively Y. Th us the
codes are considered as binary trees and have the same structure as the
syntactic objects they encode. Because the codes are built up from the
empty set by pairing, they have canonical names in the language of ZF, and
the coding function can be defined in TEM. (The code of an arbitrary
syntactic object T is denoted by 1T I.) The transcription of the generating
clauses for the Ri into the language of ZF yields set-theoretic inductive
definitions, which can be made explicit by the recursion theorem of Part 1.
It is an easy matter to verify the appropriate representability conditions in
TEM. The self-referential lemma is finally proved. Let F be an arbitrary
ZF-formula with exactly one free variable; then one can construct a sen
tence D, such that

2S-inductive definitions are related to the S-rudimentary attributes of Srnullyan (1961).
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That is, D expresses that it has propertyF. This lemma is the main technical
tool for obtaining the various proof-theoretic results.

There are three groups of results. The first group contains Tarski's
observation on the indefinability of an adequate notion of truth, the first
incompleteness theorern, and Rosser's improvement. The results of the
second group concern reflection principles and include Lob's theorem and
Code!'s second theorem. For these latter results so-called derivability con
ditions have to be satisfied by the theorem predicate:

Dl: ZF' f- theo( IX I) -> theo( Itheo( IX I) I)
D2: ZF' f- theo( IX -> y I) -> (theo( Ix I) -> theo (Wi) ).
Jeroslow (1973) used literal self-referential sentences to show that D2, the
provable closure under rMdens ponens. is redundant. That theorem and
some lemmas concerning Henkin-sentences are contained in the third
group of results.

3. COMPUTER IMPLEMENTATION

The online text material for the course is written in VOCAL (Smith,
1981) and is presented audiovisually using display terminals and head sets.
The instructor is a computer program named EXCHECK (McDonald,
1981). In addition to presenting the text material in audiovisual form, the
EXCHECK program has facilities for asking questions and checking the
answers. It also offers exercises in which the student is asked to construct
proofs, each line of which is checked for correctness by EXCHECK. There
are no lecture sessions, but students do consult with teaching assistants.
The curriculum text is also available in off-line form (Sieg & Lindstrom,
1978).

The reflective character of Code!'s proofs makes the presentation of this
material and its computer implementation essentially differentfrorn that of
other courses previously developed at Stanford (elementary logic and
axiomatic set theory). Here, as opposed to working within a single formal
system, one deals with several interrelated formal systems, primarily, the
system ZF of set theory and the system TEM of elementary metamathema
tics. This characteristic feature of the subject matter makes it a nontrivial
problem to implement it in such a way that it is possible

1. to give natural proofs which are not disturbed by an inordinate amount of
tedious detail.

2. to express thoughts in each theory freely and informally.

3. to switch easily from one formal system to another.

In the first part of the course, students are asked to do proofs in ZF.
They are not required to give genuinely formal derivations. But due to the
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nature of the proof-checking machinery the proofs have to be given in
greater detail than in informal presentations of the subject. When dealing
with TEM, students are similarly asked to do proofs within TEM.

The theory TEM serves as a formalized metatheory for ZF. When
working in a metatheory one often has to establish that certain results are
provable in the object theory. One way to do this is to axiomatize the
provability relation of the object theory in the metatheory and to establish
the result from these axioms. However, it is often far easier to simply derive
the result directly in the object theory and then use this fact in the
metatheory. For this purpose two procedures were added to the proof
checker system of EXCHECK; namely ZFSTART, for starting a derivation
in ZF from the metatheory, and ZFFINISH, for finishing the derivation in
ZF and returning to the metatheory. Within a ZF-derivation ~hestudent

may use prior results of the form ZF f- F or ZF* f- F, for some formula F.

4. CRITICAL EVALUATION AND FURTHER WORK

The proof theory course is still in need of further, detailed develop
ment. We close this article with a critical assessment of its present state and
indicate possibilities for its improvement. OUT remarks are centered
around three points: the ·mathematical work· underlying this presentation
of G6del's proofs, the organization of the curriculum, and the computer
implementation.

4.1 Mathematical Work

The course is obviously incomplete; its last part, on the verification of
representability and derivability conditions, has not yet been implemented.
It is not difficult to verify the representability conditions for the notions
actually used in the arguments. The verification can be carried out in TEM,
and a metamathematical argument concerning TEM yields the derivability
conditions. However, it would be much more efficient and elegant to show
that all S-inductive definitions are representable. The problem is that there
is not yet a satisfactory mathematical characterization of S-inductive defini
tions.

4.2 Curriculum Organization

As it stands, the course is difficult and requires some mathematical
sophistication on the part of students; not so much for the central proof
theoretic section, but for the material on set theory. That material covers a
nontrivial part of an introduction to axiomatic set theory. These observa
tions are borne out by the reaction of the four students who worked on the
course in 1977-1978 and in the spring quarter 1979. All of the students
finished the material on ZF; one of them also went through the lessons on
TEM, but stopped short of Part 4. Only one student completed the course.
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There are obviously two ways to go. One option is to give up the original
plan of making the course completely self-contained and require students
to be familiar with axiomatic set theory. Then the set-theoretic material can
be condensed to the bare minimum for establishing the recursion theorem.
The other option is to expand the course to a two-quarter course. In this
case, the material on ZF could include, for example a discussion of some
strong axioms of infinity and G6de1's related views on the reasons for the
incompleteness of ZF and similar systems.

4.3 Computer Implementation

Using the facilities provided by EXCHECK to a greater extent than has
been done until now, the on-line curriculum text should be made consider
ably more interactive by adding further questions and thus making the
student a more active participant. The on-line text also follows the off-line
text too closely. It would be preferable to cover only the main line of
arguments in the VOCAL lessons and expand the material by examples,
discussion, and by providing motivations for the notions introduced. The
VOCAL lessons should in general be easier to understand conceptually
than the off-line curriculum. However, the main challenge of future work
is to make more striking use of the computer; for example, by actually
determining codes of self-referential statements or by carrying Olit nontri
vial syntactic transformations.
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