
ULTRAPRODUCTS IN ANALYSIS

JUNG JIN LEE

Abstract. Basic concepts of ultraproduct and some applications in Analysis, mainly in
Banach spaces theory, will be discussed.

It appears that the concept of ultraproduct, originated as a fundamental method of a model
theory, is widely used as an important tool in analysis. When one studies local properties
of a Banach space, for example, these constructions turned out to be useful as we will see
later. In this writing we are invited to look at some basic ideas of these applications.

1. Ultrafilter and Ultralimit

Let us start with the definition of filters on a given index set.

Definition 1.1. A filter F on a given index set I is a collection of nonempty subsets of I
such that

(1) A,B ∈ F =⇒ A ∩B ∈ F , and
(2) A ∈ F , A ⊂ C =⇒ C ∈ F .

Proposition 1.2. Each filter on a given index set I is dominated by a maximal filter.

Proof. Immediate consequence of Zorn’s lemma. ¤

Definition 1.3. A filter which is maximal is called an ultrafilter.

We have following important characterization of an ultrafilter.

Proposition 1.4. Let F be a filter on I. Then F is an ultrafilter if and only if for any
subset Y ⊂ I, we have either Y ∈ F or Y c ∈ F .

Proof. (=⇒) Since I ∈ F , suppose ∅ 6= Y /∈ F . We have to show that Y c ∈ F . Define
G = {Z ⊂ I : ∃A ∈ F such that A ∩ Y c ⊂ Z}. Since Y /∈ F , for any A ∈ F , A ∩ Y c 6= ∅.
Therefore, G is a collection of nonempty subsets of I. Moreover,

(1) If Z1, Z2 ∈ G , then we can find A1, A2 ∈ F such that A1 ∩ Y c ⊂ Z1, A2 ∩ Y c ⊂ Z2.
Now A1 ∩ A2 ∈ F and A1 ∩ A2 ∩ Y c ⊂ Z1 ∩ Z2, i.e., Z1 ∩ Z2 ∈ G .

(2) If Z1 ⊂ Z2 and Z1 ∈ G , then it’s clear that Z2 ∈ G .

So G is a filter. Since A ⊃ A ∩ Y c for any A ∈ F , we have F ⊂ G , and hence F = G by
maximality of F . Noting that Y c ∈ G = F , we are done.
(⇐=) Suppose G is a filter such that F ⊂ G . Suppose to the contrary that ∃Y ∈ G \F .
From our assumption, Y c ∈ F and hence Y c ∈ G . Then Y ∩Y c ∈ G , which is impossible. ¤
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Remark An ultrafilter U is called trivial (or non-free, principal, or fixed) if it is generated
by a single element i0 ∈ I, that means, I0 ∈ U if and only if i0 ∈ I0. An ultrafilter which
is not trivial is called free. Another notion is of importance for several constructions: an
ultrafilter U is called countably incomplete if there is a sequence of elements of U satisfying

I1 ⊇ I2 ⊇ · · · ,

∞⋂

k=1

Ik = ∅.

Some authors just say ultrafilters when mentioning countably incomplete ultrafilters, because
it’s the most interesting case. If I is finite, every ultrafilter is fixed. If I is infinite, then
there is a free ultrafilter on I. See [2].

Definition 1.5. Let F be a filter on I. A set of real numbers (xi)i∈I is said to converge to
x ∈ R with respect to F if for all ε > 0, {i ∈ I : |xi − x| < ε} ∈ F . In this case, x is called
the ultralimit of (xi)i∈I , denoted x = limU xi.

Remark If such x exists in the previous definition, it is unique, since F consists of nonempty
sets. So this definition makes sense.

The following is one of the important features of ultralimits.

Theorem 1.6. Let U be an ultrafilter on I and (xi)i∈I be a set of bounded real numbers,
then (xi)i∈I must converge.

Proof. Suppose |xi| ≤ M , ∀i ∈ I. Let S+
0 = {i ∈ I : xi ≥ 0}, S−0 = {i ∈ I : xi ≤ 0}.

Noting S−0 ⊃ (S+
0 )c, we know that at least one of these should be in U ; say S+

0 and set
T0 = [0,M ]. Define S+

1 = {i ∈ I : xi ≥ M
2
}, S−1 = {i ∈ I : xi ≤ M

2
}. Just like before, we may

assume that, say, S−1 ∈ U ; set T1 = [0, M
2

]. In a like fashion, define S+
2 = {i ∈ I : xi ≥ M

4
},

S−2 = {i ∈ I : xi ≤ M
4
}. Assume S+

2 ∈ U and set T2 = [M
4
, M

2
]. Iterate this process. By the

Principle of Nested Intervals, we get a point x ∈ R such that
⋂∞

k=0 Ik = {x}. We claim that
limU xi = x. Fix ε > 0 and consider the set {i ∈ I : |xi− x| < ε}. Choose N so that M

2N < ε.

Since the length of TN = M
2N , we have

⋂N
k=0 S̃k ⊂ {i ∈ I : |xi − x| < ε}, where S̃k is one of

S+
k or S−k whichever is in U . ¤

Above theorem is true in more general setting; in fact, we have the following result.

Theorem 1.7. Let K be a compact Hausdorff space. Then for each family (xi)i∈I with
xi ∈ K the limit

lim
U

xi = x

exists in K. This means, there is a unique point x ∈ K such that, for each neighborhood V
of x, the set {i ∈ I : xi ∈ V } belongs to U .

Proof. Refer to [2]. ¤
Remark Actually, a basic fact from general topology is that X is a compact Hausdorff space
if and only if for every indexed family (xi)i∈I in X and every ultrafilter U on I the ultralimit
of (xi)i∈I exists and is unique. See [4]

Usual rules of limits also work for ultralimits. More precisely, we have following proposition.
We omit its proof since it is just a simple check of definition.

Proposition 1.8. For ultralimits, we have that
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(1) limU |axi| = |a| · limU |xi|.
(2) limU |xi + yi| ≤ limU |xi|+ limU |yi|.
(3) If xi ≤ yi for any i, then limU xi ≤ limU yi.
(4) limU (xi + yi) = limU xi + limU yi.
(5) limU C = C for any C constant.
(6) limU xi · yi = limU xi · limU yi.

Remark (3)+(4) gives a proof of (2).

We close this section with a proposition about the product of ultrafilters.

Proposition 1.9. Let U , V be ultrafilters on index sets I, J , respectively. Then U × V is
an ultrafilter on I × J where U × V is defined by:

X ∈ U × V if and only if {j : {i : (i, j) ∈ X} ∈ U } ∈ V .

Proof. First we show that U ×V is a filter on I×J . Note that U ×V consists of nonempty
sets.

(1) Suppose A,B ∈ U ×V . We want to show that {j : {i : (i, j) ∈ A∩B} ∈ U } ∈ V . Let
Ã = {j : {i : (i, j) ∈ A} ∈ U } and B̃ = {j : {i : (i, j) ∈ B} ∈ U }. Since Ã, B̃ ∈ V ,
Ã∩ B̃ ∈ V . Choose j0 ∈ Ã∩ B̃ and let Aj0 = {i : (i, j0) ∈ A}, Bj0 = {i : (i, j0) ∈ B}.
Now Aj0 , Bj0 ∈ U so Aj0 ∩ Bj0 = {i : (i, j0) ∈ A ∩ B} ∈ U . This shows that

Ã∩ B̃ ⊂ {j : {i : (i, j) ∈ A∩B} ∈ U } and hence {j : {i : (i, j) ∈ A∩B} ∈ U } ∈ V .
(2) Suppose A ∈ U × V and A ⊂ C. Choose j0 ∈ {j : {i : (i, j) ∈ A} ∈ U }. Since

A ⊂ C, j0 ∈ {j : {i : (i, j) ∈ C} ∈ U }. Thus {j : {i : (i, j) ∈ A} ∈ U }(∈ V ) ⊂ {j :
{i : (i, j) ∈ C} ∈ U }, which shows C ∈ V .

To show that U × V is maximal, pick any X ⊂ I × J and suppose X /∈ U × V . By
maximality of V , {j : {i : (i, j) ∈ X} /∈ U } ∈ V . Choose j0 ∈ {j : {i : (i, j) ∈ X} /∈ U }
and consider the set {i : (i, j0) ∈ X}. By maximality of U , we have {i : (i, j0) ∈ Xc} ∈ U ,
which shows that {j : {i : (i, j) ∈ X} /∈ U }(∈ V ) ⊂ {j : {i : (i, j) ∈ Xc} ∈ U }. Thus
{j : {i : (i, j) ∈ Xc} ∈ U } ∈ V . ¤

2. Ultraproducts of Banach Spaces

Let (Ei)i∈I be a family of Banach spaces. Consider the space `∞(I, Ei) of families (xi)i∈I

with xi ∈ Ei(i ∈ I) and

‖(xi)‖∞ = sup
i∈I

‖xi‖ < ∞.

Then `∞(I, Ei) is a Banach space, which is too big in some sense. Let NU be the subset of
all those families (xi)i∈I ∈ `∞(I, Ei) with limU ‖xi‖ = 0. One can easily verify that NU is a
closed linear subspace of `∞(I, Ei). So we are ready to give

Definition 2.1. The ultraproduct (Ei)U of the family of Banach spaces (Ei)i∈I with respect
to the ultrafilter U is the quotient space

`∞(I, Ei)/NU ,

equipped with the canonical quotient norm.
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Remark Often the ultraproduct (Ei)U is also denoted by
∏

i∈I Ei/U .

Given an element (xi) ∈ `∞(I, Ei), the corresponding equivalence class in (Ei)U will be
denoted by (xi)U . If all the spaces Ei are identical with a certain E, then we speak of
an ultrapower, denoted by (E)U or EI/U . There is a canonical (or diagonal) isometric
embedding J of E into its ultrapower (E)U , which is defined by J x = (xi)U , where xi ≡ x.
This embedding is generally not surjective; it is, however, when the ultrafilter U is principal
or the space E is finite dimensional. See [4]. It is worth mentioning that the quotient norm
of (xi)U can be computed by the following formula:

Proposition 2.2. Using the notations above, we have

‖(xi)U ‖ = lim
U
‖xi‖.

Proof. (≥) First of all,

lim
U
‖xi + yi‖ ≤ ‖xi + yi‖∞ , ‖(xi) + (yi)‖∞. (2.1)

If (yi) ∈ NU , then

lim
U
‖xi + yi‖ ≤ lim

U
‖xi‖+ lim

U
‖yi‖

︸ ︷︷ ︸
‖
0

= lim
U
‖xi‖ ≤ lim

U
‖xi + yi‖+ lim

U
‖ − yi‖

︸ ︷︷ ︸
‖
0

= lim
U
‖xi + yi‖,

that is, limU ‖xi + yi‖ = limU ‖xi‖. Taking infimum over (yi) ∈ NU in (2.1), we get

‖(xi)U ‖ ≥ lim
U
‖xi + yi‖ = lim

U
‖xi‖.

(≤) Let L , limU ‖xi‖ and δ > 0 be given. Let J , {i ∈ I : |‖xi‖ − L| < δ}, then J ∈ U
and

‖xi‖ < L + δ (2.2)

for all i ∈ J . Define (xJ
i )i∈I by

xJ
i =

{
xi, i ∈ J,

0, otherwise.

Now we claim that
‖(xi)U ‖︸ ︷︷ ︸

C‖
inf(ki)∈NU

‖(xi)+(ki)‖∞

≤ ‖(xJ
i )U ‖︸ ︷︷ ︸
C‖

inf(`i)∈NU
‖(xJ

i
)+(`i)‖∞

. (2.3)

Indeed, (xJ
i ) + (`i) = (xi) + (`i)− (mi), where

mi =

{
0, i ∈ J

xi, otherwise.

Since J ⊂ {i ∈ I : ‖mi‖ < ε} for every ε > 0, this shows that limU ‖mi‖ = 0 and hence we

obtain the inequality (2.3). Thus, ‖(xi)U ‖ ≤ ‖(xJ
i )U ‖ ≤ supi ‖xJ

i ‖
(2.2)

≤ L+δ. Letting δ → 0,
we finally have ‖(xi)U ‖ ≤ L = limU ‖xi‖. ¤
Remark Actually, in (2.3), ‖(xi)U ‖ = ‖(xJ

i )U ‖.
There is another important notion: the ultraproduct of operators.
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Definition 2.3. Let (Ei)i∈I and (Fi)i∈I be families of Banach spaces indexed by the same
set I. For each i ∈ I let Ti ∈ L(Ei, Fi) be given. In addition, suppose that supi∈I ‖Ti‖ < ∞.
The operator from (Ei)U into (Fi)U defined by the following rule

(xi)U 7−→ (Tixi)U

is called the ultraproduct of the family of operators (Ti)i∈I with respect to the ultrafilter U ,
and is denoted by (Ti)U .

Remark We have to mention that the operator (Ti)U is well-defined. Indeed ‖Tixi‖ ≤
‖Ti‖ · ‖xi‖, so supi∈I ‖Tixi‖ < ∞ and

0 ≤ lim
U
‖Tixi‖ ≤ lim

U
‖Ti‖ · ‖xi‖ = lim

U
‖Ti‖ · lim

U
‖xi‖.

This implies that we have limU ‖Tixi‖ = 0 whenever limU ‖xi‖ = 0.

How do we compute the norm of ‖(Ti)U ‖? Next proposition answers this question.

Proposition 2.4. ‖(Ti)U ‖ = limU ‖Ti‖.
Proof. (≤) ‖(Tixi)U ‖ = limU ‖Tixi‖ ≤ limU ‖Ti‖ · limU ‖xi‖ = limU ‖Ti‖ · ‖(xi)U ‖.
(≥) Let ε > 0 be given. For each i ∈ I, there exists x̃i such that ‖x̃i‖ = 1 and ‖Tix̃i‖ ≥ ‖Ti‖

1+ε
.

Now ‖(Ti)U ‖ ≥ ‖(Tix̃i)U ‖ = limU ‖Tix̃i‖ ≥ 1
1+ε

limU ‖(Ti)U ‖. Taking ε → 0, we get the
result. ¤
It is quite natural to expect that the ultraproduct of Banach spaces preserves many kinds
of structures. We, without proofs, illustrate some of these results. See [3].

Proposition 2.5. We have the following stabilities:

(1) The class of Banach algebras is stable under ultraproducts.
(2) The class of C*-algebras is stable under ultraproducts.
(3) The class of Banach lattices is stable under ultraproducts.

Combined with classical representation theorem (Gelfand’s representation theorem, for ex-
ample. See [1], [6].), the results above yield

Theorem 2.6. We have following two representations:

(1) Let Ki (i ∈ I) be compact Hausdorff spaces. Then there is a compact Hausdorff space
K such that the ultraproduct (C(Ki))U is linearly isometric to C(K). This isometry
preserves the multiplicative and the lattice structure.

(2) Let 1 ≤ p < ∞ and let µi (i ∈ I) be arbitrary (σ-additive) measures. Then (Lp(µi))U

is order isometric to Lp(ν) for a certain measure ν.

Proof. Refer to [3]. ¤

To be continued...
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