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Background : LCM
. -

Susumu Hayashi and N. Nakata (2001)

» Analogy of Constructive Mathematics
(realized by recursive functions)

» Realized by learnable (limit recursive)
functions

» Covers large parts of classical
elementary mathematics
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Background : LCM is quasi-classical

Excluded middle holds only for B

»{-formulas. i.e.
EM,(P) =Vz(dyPxy V Vy—Pxy)

P : decidable
E M, suffices for elementary classical
mathematics.
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Background : 1-backtracking game

o N

» two person game with 4 and €£.
s & can retract her moves,
» but cannot retract retraction itself.

» We will look at this more closely ...



Background : Fact
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Formula A is valid (realized) in LCM

erardi, Tierry Coquand, Hayashi (2005)
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Background : Fact
-

Berardi, Tierry Coquand, Hayashi (2005)

Formula A is valid (realized) in LCM

& £ has a winning strategy of bek! (7)),
where T, iIs Tarski game of A.
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Our contribution : PA;

o N

€ has a winning strategy o of bck!(T4),
< There is a proof n(o) of Ain PA;,
where PA; Is a sequent calculus without
Exchange,

and (o) is tree-isomorphic to o.



m(

backtracking play



backtracking play

f)"\)"\

m( m?2



backtracking play
-

N

mo( m?2



backtracking play
-

N

m( m?2
m1, m2 are cancelled and £ replies mo0.
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1-backtracking play

L -
m
m( m2 m’2

This 1s not allowed



1-backtracking play
- -

TRy AN
m0 m’2

inaccessible after m’1



1-excluded middle
| -

1-excluded middle £ M, is a schema
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1-excluded middle
| -

1-excluded middle £ M, is a schema
Va(dyPxzy V Vy—Pxy)

P : decidable



Tarski game G of E M,

 Ux(TyPry\ Ty —Pxy)



Tarski game G of £ M (2)

There is no recursive winning strategy for
G,
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Tarski game G of £ M (2)

There Is no recursive winning strategy for
G,
because £ must choose dyPxy or Vy—Pxy



Tarski game G of £ M(3)
| -

But there is a recursive winning strategy
for 1-bck play of &G
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1-bck play of ¢

S 3YPnyV Vy—=Pny
/ \
yPny YV'y—Pny
E Ny
Pnm —=Pnm -

-



1-bck play of ¢

N JyPny\/ Yy—Pny
/ \
yPny YYy—Pny



1-bck play of ¢

f\ =: JyPny\/Vy—Pny



P A

[ p

A(n)
DLA0) ... T

[VxA(x), A

[ dxA(x), A(An) -
[ 3rA(x),
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Remarks

o N

» No Exchange (Sequents are lists)

» Weakening and Contractions are
merged to logical rules

s w-rules
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A proof of &M,

A, JyPny, Pnm true
A, dyPny :

A, -Pnm v
A, Yy—Pny v

JyPny V Vy—Pny v



Interpretation of sequent

B, Bs,....B,. C



Interpretation of sequent

o N
By, B,...,B,,C

C': current position
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Interpretation of sequent

N
B,.B,..... B, C

C': current position

By, ..., B,: possible positions to backtrack



Isomorphic Theorem

o N

There Is a tree isomorphism between

s a proof tree of formula A
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Isomorphic Theorem

o N

There is a tree iIsomorphism between
s a proof tree of formula A

s a winning strategy (as a tree of move)
of bckl(TA)



Conclusion

-

» We introduce a proof system PA;, an
w-logic without Exchange

» We show a proof of formula A in PA;
and a winning strategies of bck!(T)
has a tree-isomorphism



The End

|
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