A sequent calculus for 1-backtracking

Stefano Berardi and Yoriyuki Yamagata

Background : LCM

Susumu Hayashi and N. Nakata (2001)

 Analogy of Constructive Mathematics (realized by recursive functions)

Background : LCM

Susumu Hayashi and N. Nakata (2001)

- Analogy of Constructive Mathematics (realized by recursive functions)
- Realized by learnable (limit recursive) functions

Background : LCM

Susumu Hayashi and N. Nakata (2001)

- Analogy of Constructive Mathematics (realized by recursive functions)
- Realized by learnable (limit recursive) functions
- Covers large parts of classical elementary mathematics

Background : LCM is quasi-classical

Excluded middle holds only for Σ_1^0 -formulas. i.e.

Background : LCM is quasi-classical

Excluded middle holds only for Σ_1^0 -formulas. i.e.

$EM_1(P) \equiv \forall x (\exists y Pxy \lor \forall y \neg Pxy)$

P: decidable

Background : LCM is quasi-classical

Excluded middle holds only for Σ_1^0 -formulas. i.e.

$$EM_1(P) \equiv \forall x (\exists y Pxy \lor \forall y \neg Pxy)$$

P: decidable

 EM_1 suffices for elementary classical mathematics.

• two person game with \mathcal{A} and \mathcal{E} .

- two person game with \mathcal{A} and \mathcal{E} .
- \mathcal{E} can retract her moves,

- two person game with \mathcal{A} and \mathcal{E} .
- \bullet \mathcal{E} can retract her moves,
- but cannot retract retraction itself.

- two person game with \mathcal{A} and \mathcal{E} .
- \bullet \mathcal{E} can retract her moves,
- but cannot retract retraction itself.
- We will look at this more closely ...

Background : Fact

Berardi, Tierry Coquand, Hayashi (2005) Formula A is valid (realized) in LCM

Background : Fact

Berardi, Tierry Coquand, Hayashi (2005) Formula A is valid (realized) in LCM $\Leftrightarrow \mathcal{E}$ has a winning strategy of $bck^1(T_A)$, where T_A is Tarski game of A.

 ${\cal E}$ has a winning strategy σ of $bck^1(T_A)$,

 \mathcal{E} has a winning strategy σ of $bck^1(T_A)$, \Leftrightarrow There is a proof $\pi(\sigma)$ of A in PA_1 ,

 \mathcal{E} has a winning strategy σ of $bck^1(T_A)$, \Leftrightarrow There is a proof $\pi(\sigma)$ of A in PA_1 , where PA_1 is a sequent calculus without Exchange,

 \mathcal{E} has a winning strategy σ of $bck^1(T_A)$, \Leftrightarrow There is a proof $\pi(\sigma)$ of A in PA_1 , where PA_1 is a sequent calculus without Exchange, and $\pi(\sigma)$ is tree-isomorphic to σ .

m1, m2 are cancelled and \mathcal{E} replies m0.

This is allowed

This is not allowed

inaccessible after m'1

1-excluded middle

1-excluded middle EM_1 is a schema

1-excluded middle

1-excluded middle EM_1 is a schema

 $\forall x (\exists y Pxy \lor \forall y \neg Pxy)$

P: decidable

Tarski game G of $EM_1(2)$

There is no recursive winning strategy for

G,

A sequent calculus for 1-backtracking - p. 11

Tarski game G of $EM_1(2)$

There is no recursive winning strategy for G,

because \mathcal{E} must choose $\exists y Pxy$ or $\forall y \neg Pxy$

Tarski game G of $EM_1(3)$

But there is a recursive winning strategy for 1-bck play of G

No Exchange (Sequents are lists)

Remarks

- No Exchange (Sequents are lists)
- Weakening and Contractions are merged to logical rules

Remarks

- No Exchange (Sequents are lists)
- Weakening and Contractions are merged to logical rules
- ω -rules

A proof of EM_1

true $\underline{A, \exists yPny, Pnm}$ $A, \exists y Pny$ $A, \neg Pnm$ $\frac{\overline{A,\forall y\neg Pny}^{\vee}}{\exists yPny\vee\forall y\neg Pny}^{\vee}\vee$

Interpretation of sequent

 B_1, B_2, \ldots, B_n, C

Interpretation of sequent

 $B_1, B_2, ..., B_n, C$

C: current position

Interpretation of sequent

 B_1, B_2, \ldots, B_n, C

C: current position

B_1, \ldots, B_n : possible positions to backtrack

Isomorphic Theorem

There is a tree isomorphism between

 \checkmark a proof tree of formula A

Isomorphic Theorem

There is a tree isomorphism between

- \checkmark a proof tree of formula A
- a winning strategy (as a tree of move) of $bck^1(T_A)$

Conclusion

- We introduce a proof system PA_1 , an ω -logic without Exchange
- We show a proof of formula A in PA₁
 and a winning strategies of bck¹(T_A)
 has a tree-isomorphism

The End